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INTRODUCTION 

The importance of CG coefficients for physical applica
tions is uncontested. For instance, they are employed to de
fine model Hamiltonians, to introduce tensor order param
eters for structural phase transitions, to determine selection 
rules of transitions, or to calculate transition probabilities. 
To obtain an efficient computation and tabulation of CG 
coefficients, we utilize reasonably as far as possible each ad
missible "symmetry" and "generating" relation for these co
efficients. We define symmetry relations for CG vectors 
e;U';a"w as correlations between CG vectors that belong to 
the same triplet (a,a' ,a") of equivalence classes. Generating 
relations correlate CG vectors that belong to different tri
plets of equivalence classes. The purpose of the present paper 
is to introduce a new class of symmetry and generating rela
tions for CG vectors. These relations are engendered by cer
tain elements of the full automorphism groupl of the group 
in question. In some cases these relations involve other sym
metries of CG vectors, such as their behavior under complex 
conjugation or their permutational symmetries. We make 
general estimates and give some examples of the utility of the 
"automorphism approach." We argue under what circum
stances generating relations are preferred to a direct calcula
tion of CG vectors. We are primarily interested in an appli
cation of this approach to the systematization of the 
computation of space group CG coefficients. 

The material of the present article is organized as fol
lows: In Sec. I we recall briefly the basic properties of the 
automorphism group A (G) and its representation theory for 
which G should be finite or countable. For countable groups 
G it is assumed that each unirrep is finite-dimensional, as for 
space groups. Compact continuous groups could be consid
ered, but we wish to avoid topological questions. Since CG 
vectors of G shall be inspected with respect to its automor
phism group A (G), we embed G and A (G) in a supergroup 
that contains G as normal subgroup. If the center Z (G) ofG is 
trivial, we choose A (G) as this supergroup. Ifthecenter Z (G) 
is nontrivial, we choose the so-called "holomorph" 1 

H (G) = G (§) A (G) as the supergroup. We also point outthat 
projective matrix representations of the "little cogroups"z 
A (G t/G of A (G) [or A (G)u'"'-'H(Gt/G ofH(G)] occur in 
general. We denote "little groups" 1,2 of A (G) by A (G t and 
t~os~ofH (G )by H (G )a. Since we also take complex conjuga
tlOn mto account, we are able to make predictions concern
ing the reality of factor systems. In Sec. 2 we recall some 

properties ofCG vectors. We derive in Sec. 3 simple but 
nontrivial relations between "multiplicities" m(a,a';a"). 
These relations are associated with certain "outer" automor
phisms. Multiplicities indicate how often a given unirrep of 
G is contained as constituent in the considered Kronecker 
product. Schur's lemma with respect to G is used to Sec. 4 to 
derive symmetry relations for CG vectors of G. However, 
they are only nontrivial when the subgroup A (G); of "inner" 
automorphisms is a proper subgroup of the so-called "triple 
intersection group" A (G ta'a" = A (G tnA (G )a'nA (G )U". 
Complex conjugation gives further features of the factor sys
tems and special representations of the little cogroups. In 
Sec. 5 three different classes of new generating relations are 
defined. They are associated with specific outer automor
phisms. We derive in Sec. 6 correlations between CG vec
tors, which correspond to "special" symmetries of 3jm fac
tors. These relations are associated with the multiplication 
of a Kronecker product by one-dimensional nontrivial unir
reps. Finally in Sec. 7 we apply the automorphism approach 
to space group CG vectors in order to demonstrate its utility 
and to give some striking examples. In addition these exam
ples show that automorphisms, complex conjugation, and 
multiplication by one-dimensional nontrival unirreps lead to 
different symmetry and generating relations for CG vectors. 

1. AUTOMORPHISM GROUP AND HOLOMORPH 

We recall briefly some properties of automorphism 
groups. Since CG coefficients of a given group G are to be 
investigated with regard to their behavior concerning its au
tomorphism group A (G), we have to embed G and A (G) in a 
supergroup that contains G as a normal subgroup. A (G) can 
be chosen as the supergroup if an only if the group of inner 
automorphisms A (G); of G is isomorphic to G, because this 
requires that the center Z (G ) be trivial. For each group with a 
nontrivial center Z (G) cannot be embedded in its automor
phism group, and we extend G and its full automorphism 
group A (G ) to a semidirect product group H (G ), which is 
usually called the "holomorph" 1 of G. 

Since in general G cannot be regarded as subgroup of 
automorphism group A (G), let us start with the definition of 
the holomorph H (G) of G: 

H(G) = G®A (G). (1.1) 

To be more specific, the elements of A (G) are denoted by 
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aEA (G) and satisfy 

a(g)a(g') = a(gg') for all g,g'EG, 

ale) = e for all aEA (G), 

aj(ak(g)) = (ajak)(g) for all gEG, 

(1.2) 

where ajakEA (G). Moreover, adopting the same notation 
for group elements of H(G) as introduced in Ref. 1, i.e., 
(g;a)ES(G), the multiplication law reads 

(gm;aj)(gn;ak) = (gmaj(gn);ajak). (1.3) 

We assume in addition that a complete set 
D = ! D a:aEAG J of ordinary matrix unirreps of G is given, 
where a indicates an equivalence class of G. The set of equiv
alence classes is denoted by AG. For each aEA (G) the follow
ing equivalence relation holds: 

D a(a(g)) - D alal(g) for all gEG. (1.4) 

Note that a(a)EAG indicates a well-defined element of AG for 
each aEAG and aEA (G), where na =dim D a 
= dim D alal_na(al must be satisfied. The elements of A (G) 

not only map G onto G, but also AG onto A G • The mapping 
a:a---+(l(a), aEAG, must not depend on the chosen form of the 
matrix unirreps D a of G, even though it is defined by (1.4). 
We may write Eq. (1.4) as an equality by inserting an na -

dimensional unitary matrix za(a): 

D"(a(g)) = za(a)Dalal(g)Z"(a)+ for all gEG. (1.5) 

For obvious reasons we define 

(1.6) 

which is just the corresponding "little cogroup,,2 of D a with 
respect to H (G). Therefore, 

H(Gt = G®A (G)a (1.7) 

presents the corresponding "little group" of D a with respect 
to H (G), and the factor group H (G)a /G is isomorphic to 
A (G r. The set ofmatricesZ a = !Z"(a):aEA (G)aJ defines a 
na-dimensional representation of A (G r, which is in general 
a projective one. 3,4 This means 

za(a)za(a') = Qa(a,a,)za(aa') for all a,a'EA (Gt, 

( 1.8) 

where Q":A (G rXA (G )a_c is a standard factor system of 
A (G la, which (up to equivalence4

) does not depend on the 
chosen form of the unirreps D ". 

A factor system for inner automorphisms occurs if the 
center Z (G) of Gis nontrivial, as can be seen from the follow
ing. Denoting the subgroup of inner automorphisms by 
A (G );, we know that 

A (G);c:::::G/Z(G) (1.9) 

holds. We adopt the following notation for coset representa
tives: 

(1.10) 

where G:Z (G) denotes the set of (left) coset representatives of 
G with respect to Z (G); each element gEG can be uniquely 
written as g = Gjzk ;GjEG:Z (G) and ZkEZ (G). Hence each 
ajEA (G); can be identified with a particular GjEG:Z (G); i.e., 

aj = Gj , aG} = GjgG j-
1 for all gEG. (1.11) 
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Defining 

za(aj)=D"(Gj ) for all =aGjEA(G); (1.12) 

and using GjGk = GjkZjk , GjkEG:Z (G) and ZjkEZ (G), it 
follows that 

Z"(aj)za(a k ) = D "(zjdZ"(aGjJ for all aj,akEA (G);. 

( 1.13) 

Introducing D "(z) = e;Y'(Zll" , zEZ (G ), we have 

Q"(aG,aG )=/Y'IZjkl for all a},akEA(GL, (1.14) 
j k 

which forms a standard factor system of A (G);. 
As has already been pointed out, each group G can be 

embedded in its automorphism group A (G ), if Z (G ) is trivial. 
This means that G forms a normal subgroup of A (G). For 
such cases A (G)" is now the "little group" of D" with respect 
to A (G) and the factor group A (G r / G is the corresponding 
"little cogroup" of D ". Observe that in comparison to 
G<JH (G )" ~ H (G) now G<JA (G )" ~A (G ) holds, irrespec
tive of which a has been considered. But note also that 
A (G)a need not be a normal subgroup of A (G). 

Irrespective of whether G can be embedded in A (G) or 
whether the holomorph must be considered for the follow
ing, a left coset decomposition of A (G) with respect toA (G)" 
is chosen, 

ajEA (G):A (G la, j = 1,2, ... ,IA (G )I/IA (G )"1 (1.15) 

so that each element aEA (G) can be uniquely expressed in 
terms of ajEA (G):A (G)a and aaEA (G )a. The subsets 

..::l (a) = ! a'EAG la' = aj(a); ajEA (G):A (G)" I CA G 
(1.16) 

of AG define orbits, where each orbit is associated with a 
certain aEAG. Accordingly, AG is decomposable into dis
joint subsets..::l (a), aEAG, where ..::lAG is a subset of AG and 
is usually called the "representation domain" of G with re
specttoA (G )andhencealsowithrespecttoH (G). Therefore, 
outer automorphisms correlate inequivalent unirreps of Gin 
a generic way whenever A (G tisapropersubgroupofA (G). 

Since Eq. (1.5) holds for each aEA (G ),let us take 
a = ajak for some aj,akEA (G). Equation (1.5) yields 

D "((aja k )(g)) = za(ajak)D (a;akll"l(g)Z"(ajak)+ 

=D"(aj(adg))) for all gEG, (1.17) 

which implies 

(ajak)(a) = adaj(a)) for all aEA G , 

Z"(aj)Zai"l(ak) = Q"(aj,ak)Z"(ajak)· 

(1.18) 

(1.19) 

When the matricesZ"(a), aEA (G) andaEA G, have been de
termined independently, it is necessary to consider the uni
modular quantities Q":A (G )XA (G )_C, which satisfy 

Q"(aUaj)Q"(a,aj,ak) = Q"(a;,ajak)Qa,{"I(aj,ak)' (1.20) 

These quantities generalize the concept of factor systems, 
since Eqs. (1.19) cannot be compared with the usual defini
tion of projective representations. Certainly when restricting 
the elements of A (G) to those of A (G)a the corresponding 
quantities Q" form a standard factor system of A (G)". 

Since the projective matrix representations Z" of 
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A (G t will play an essential role for the subsequent discus
sion, it is useful to gain more insight into the structure of 
their factor systems. For this purpose let us take also into 
account complex conjugation in order to give predictions 
about the factor systems Q a. It is well known 1.2 that complex 
conjugation classifies unirreps into three classes: 

Da(g)* = U a+ Da'(g)ua for all gEG; (1.21) 

type I(*)---orthogonal: uaua* = + la' a = a*; 
(1.22) 

type II(*)-symplectic: uaua* = - la' a = a*; 
(1.23) 

type 1I1(*)--complex: uaua+ = la' a#a*; 
(1.24) 

When (1.22) or (1.23) is realized, Schur's lemma with 
respect to G requires 

Z a(a)* = eiwa(a)u a + Z a(a)Ua for all aEA (G)a (1.25) 

for some well-defined unimodular factors eiWa(a), aEA (G la, 
since u a and za(a), aEA (G t, are assumed to be known. 
Now from (1.8) and (1.25) the factor system satisfies 

for all a,a'EA (G la, (1.26) 

that is, the factor system is real up to equivalence. However, 
since, on the other hand, the matrices Z ala), aEA (G t, can 
be chosen so that eiwa(a) = I for each aEA (G t, the relevant 
set Z a of matrices Z ala), aEA (G la, belongs to a real factor 
system. Their behavior under complex conjugation is de
scribed by the same unitary matrix ua as occurs in (1.25). 
But note the difference that D a is a unirrep of G and Z a is a 
projective representation of A (G )a. Moreover, za forms a 
projecti ve unirrep of A (G )a, since it follows from a character 
test that Z a(a), aEA (G )i - G /Z (G ) forms a projective unir
rep of A (G )i' 

Taking finally the case of (1.24), where a and a* distin
guish two inequivalent unirreps of G related by 

A (G )a' = A (G t, aEA III(.) (1.27) 

we may derive 

za'(a)=e-iVa(a)uaza(a)*ua+ for all aEA(Gt. 

(1.28) 

As above, the phase factors eiVa(a), aEA (G la, cannot be omit
ted, ifthe matrices za(a) and za'(a), aEA (Gt, have been 
determined independently. On the other hand, Eqs. (1.28) 
can be utilized to define za'(a) from za(a) by choosing the 
phase factors e - iva(a) in some way. If this is done Z a and Z a' 

are type 111(*) projective unirreps of A (G t, whose factor 
systems are correlated by 

for all a,a'EA (G )a. (1.29) 

In contrast to the previous cases, Eqs. (1.29) do not predict 
whether the factor systems for type III( *) projective unirreps 
of A (G t are real or complex. But note once again that the 
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behavior of za(a), aEA (G la, under complex conjugation is 
described by the same unitary matrix ua as occurs in (1.24). 

2. CG VECTORS FOR G 

In a general method of systematically computing CG 
coefficients,S the columns ("CG vectors") of the CG matri
ces are interpreted as symmetry adapted vectors under the 
action of the Kronecker product, i.e., 

D aa'(g)CJa';a"w = ID %; (g)qa';a"w, 
k 

a"EAG' w=I,2,oom(a,a';a"), j=I,2,oona", (2.1) 

where Daa'(g) = Da(g)®Da'(g), gEG. m(a,a/;a") denotes 
the so-called "multiplicity" and indicates how often the un
irrep D a" occurs in D aa'. m(a,a/;a") is given by the charac
ter formula 1,2,6 

m(a,a/;a") = IG I-I Ixa(g)xa'(g)Xa"(g)*. (2.2) 
gEG 

Note the asymmetry in this formula, the third simple charac
ter is complex conjugated. By changing the definition, the 
more symmetric 3jm symbols may be used. 6, 

7 The CG coeffi
cients and 3jm symbols are related by unitary transforma
tions, which always can be chosen real, if certain conditions 
are satisfied.8

,9 

3. AUTOMORPHISM SYMMETRIES OF MULTIPLICITIES 

It is readily verified from (1.5) and (2.2) that for each 
triplet (a,a/,a") the relation 

m(a,a/;a") = m(a(a),a(a/);a(a")) for all aEA (G)(3.1) 

holds. Restricting the elements aEA (G) to elements of the 
"triple intersection group" 

(3.2) 

Eqs. (3.1) are trivial. However, if A (G )aa'a" is a proper sub
group of A (G), it follows that for each nontrivial left coset 
representative 

(3.3) 

(3.1) is nontrivial, since at least one of the quantities 
a/(a),a/(a/),a/(a") is different from a, a', a", respectively. 
Taking into account the notations (1.15), Eqs. (3.1) are readi
ly extended to 

m(af(a),a1'(a');a%"(a")) 

= m(a(af(a )),a(a1' (a/));a(a%" (a"))) 

= m((afa)(a),(aja)(a');(ara)(a")) for all aEA (G), 
(3.4) 

where ar EA (G):A (G V denotes corresponding left coset re
presentatives. Summarizing, each element of the triple inter
section group (3.2) maps the corresponding triplet (a, a/ ,a") 
onto itself, whereas each nontrivial left coset representative 
a/EA (G):A (G ta'a" maps (a,a/,a") on a different triplet 
(a/(a),a/(a/),a/(a")). Thus the latter give rise to nontrivial 
symmetry relations of the corresponding multiplicities and 
ensure that there exists a one-to-one correspondence 
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between the decomposition 
Daa'(g)_l:a" $m(a,a';a")Da"(g) and 

D a,lal,a,la'l(g)_ I $ m(a,a';a")D a,la"l(g). 
a" 

We call the set 

(3.5) 

..::1 (aa'a") = [(a,(a),a,(a'),a,(a"):a,EA (G):A (G )aa'a") a "tri
plet orbit." This suggests that the product setAG XAG XAG 
decomposes into mutually disjoint subsets..::1 (aa'a"). We 
have no proof of this conjecture. 

We introduce the "pair intersection group" 

A (G)aa' =A (G)anA (G)a'. (3.6) 

Clearly, 

A (Gta'a"~A (G)aa'. (3.7) 

When A (G )aa'a" is a proper subgroup of A (G )aa', each left 
coset representative 

(3.8) 

maps the triplets (a,a',a") onto (a,a',b,(a")), i.e., only the 
third quantity a" is affected. Therefore, 

m(a,a';a") = m(a,a';b,(a")) 

for all b,EA (G ta':A (G )aa·a". (3.9) 

Since the subgroup relation 

(3.10) 

is always valid, it is useful to consider the case where 
A (G ta'a" is a proper subgroup of A (G lao. Each left coset 
representative 

(3.11) 

maps (a,a',a") on a different triplet (c,(a),c,(a'),a"), and 
therefore we have 

m(a,a';a") = m(c,(a),c,(a');a") 

for all c,EA(G)a":A (G )aa·a". (3.12) 
For convenience, let us give now a more precise defini

tion of "symmetry" and "generating" relations for CG vec
tors of G. For this purpose we recall that CG vectors cr';a"w 
are labeled by a triplet (a,a',a"), the multiplicity index w 
[w = 1,2, ... ,m(a,a';a")] and the row indexj 
(j = 1,2, ... ,n a" ) of the unirrep D a". By definition we call 
each correlation between CG vectors of G, which belong to a 
given triplet (a,a' ,a") a "symmetry" relation, if only their 
multiplicity index and/or their row index are affected. Ac
cordingly, each element of the triple intersection group 
A (G )aa'a" gives rise to a symmetry relation for correspond
ing CG vectors ofG, since each aEA (G t a'a" leaves (a,a',a") 
unaltered. In contrast to symmetry relations, we call a corre
lation between CG vectors of G a "generating" relation, if 
the correlated CG vectors belong to two different triplets 
(a,a',a") and (y,y',y"), respectively. Accordingly, each non
trivial left coset representative a,EA (G):A (G )aa'a" or 
b,EA (G ta':A (G t a'a " or c,EA (G )a":A (G ta'a" must gener
ate a generating relation for the corresponding CG vectors of 
G. Hence in contrast to the preceding case at least one alpha 
in (a,a',a") must be affected by a nontrivial left coset repre
sentative a"b" or c,. In other words, nontrivial left coset 
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representatives correlate CG vectors which belong to differ
ent triplets, namely such ones which belong to (a,a' ,a ") with 
such ones which belong to (a,(a),a,(a'),a,(a")), or 
(a,a',b,(a")) or (c,(a),c,(a'),a"). 

4. SYMMETRY RELATIONS FOR CG VECTORS OF G 

Starting from the basic equations (2.1) for the definition 
of CG vectors of G, the crucial point is that 

Dao'(a(g))Cja';u"w = ID%;'(a(g))C%u';u"w 
k 

for all aEA (G) (4.1) 

must remain valid in any case. Inserting (1.5) for the respec
tive unirreps, Eqs. (4.1) become 

Z aa'(a)D alal,ala'I(g)Z aa'(a)+c;m';a"w 

= I(za"(a)D ala"l(g)za"(a)+)kjqa';a"w, (4.2) 
k 

wherethenotationZaa'(a) = za(a) ®za'(a),aEA (G ),isused. 
A simple manipulation yields 

D alal,ala'l(a) IZ :r (a)Z aa' (a) + Cfa ' ;a" w 
i 

= ID~)a"J(g)IZf~'(a)zua'(a)+Cfa';a"w, (4.3) 
k 

Finally Schur's lemma with respect to G requires 

IZij"(a)zaa'(a)+Cfc<,;a"w 
i 

= IBvw (a) +Cjlal,ala');ala"),v for all aEA (G), (4.4) 

where CG vectors of G, which belong to the triplet (a(a), 
a(a'),a(a")) are denoted correspondingly and where, for the 
moment, B (a), aEA (G), represent arbitrary m(a,a';a")-di
mensional unitary matrices. 

Since we are interested in "symmetry" relations for CG 
vectors of G, we restrict for a given triplet (a ,a' ,a") the group 
elements of A (G) to those of the corresponding triple inter
section group A (G )aa·a". Provided that this is done, Eqs, 
(4.4) become by definition symmetry relations 

Z aa'(a)Caa';a"w = "B (a)" Z a"(a)cau';a"p 
) ~ vw ~ ~ k 

(1 k 

for all aEA (G t a'''' (4,5) 

since ala) = a,a(a') = a', and a(a") = a" must be valid for 
all aEA (G )aa'a". Assuming not only that the set 
[C;m';u"w:w = 1,2, ... ,m(a,a';a");j= 1,2, ... ,na") ofCG 
vectors of G are known, but also that the unitary matrices 
ZU(a), za'(a), and Zu"(a), aEA (G to'o", are given, the 
m(a,a';a")-dimensional unitary matrices B (a), aEA (G ta'a", 
are then uniquely determined. Therefore, CG vectors of G 
likewise transform according to the direct matrix product 
representation B (a) ® za"(a), aEA (G )ua'a". As zau'(a), 

aEA (G t a'a", can be interpreted as the Kronecker product of 
the projective unirreps ZU(a) and za'(a), aEA (G )aa'a", the 
matrices B (a), aEA (G t a'a", likewise constitute a projective 
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representation of A (G ta'a". A simple calculation yields 

B (a)B (a') = P(a,a')B (aa') for all a,a'EA (G ta'a", 
(4.6) 

P(a,a') = Qa(a,a')Qa'(a,a')Qa"(a,a')* 

for all a,a'EA (G )aa'a", (4.7) 

where the standard factor system Pis composed of the factor 
systems QO, Qa', and Qa", On account of 

(4.8) 

it follows immediately that 

(4.9) 

when (1.13) and (1.14) are used. Since A (G)i is a normal 
subgroup of A (G )aa'a", it suggests that B (a), aEA (G ta'a", 
forms a projective representation of the factor group 
A (G )oa'a" / A (G );. This requires that the factor system P is 
constant on left cosets of A (G )aa'a" with respect to A (G Ii' 
The proof of this conjecture is simple and therefore omitted, 

Utilizing the non uniqueness of CG vectors, Eqs. (4.5) 
may be transformed into 

Z aa' (a )caa';a" w(f3 ) 

= I(f3 + B (aJPLw IZ%;(a)qa';a"v(f3), (4.10) 
k 

where the new CG vectors c aa';a"w(f3), /3EU(m) [= unitary 
group in m(a,a';a") dimensions], are defined by 

c:'a';a"w(f3) = "\.'R c,:,a';a"v 
J LJ"'VW J • (4.11) 

Hence for suitably chosen /3 = /30 the projective representa
tionB(a), aEA (Gta'a" decomposes into a direct sum of its 
irreducible constituents. Therefore, also 
(f3 0+ B (a)/3o) ® za"(a), aEA (G )aa'a", decomposes into a direct 
sum, Clearly, ifB (a),aEA (G ta'a", contains a one-dimension
al projective unirrep Dr of A (G )aa'a", the corresponding re
presentation Dr(a) ®za"(a), aEA (G ta'a", forms a projective 
unirrep of the triple intersection group. Observe that this 
representation belongs to the factor system 
Q a(a,a')Q a' (a,a'), a,a'EA (G )aa'o", because the third factor 
Q a" (a,a') cancels. Hence in this case the vectors c;a';o"w(f3o) 
are CG vectors of G and A (G ta'o" simultaneously. 

Another interesting feature of B (a), aEA (G )ao'a", may 
be derived when complex conjugation is taken into account. 
Provided that a,a',a"EAllo)uAnlo) is satisfied, we derived in 
Ref. 9 the following identities: 

c:'a';a"w = "\.'1' uaa'''\.'(ua"caa';a''v)* 
J £,./vw L)k k , (4.12) 

k 

wherefis a uniquely fixed m(a,a';a")-dimensional unitary 
matrix.jis either symmetric or skew-symmetric in accor
dance with 

ff* = ( - 1 ria) + cia') + cla")l
m

, 

1939 

e(y) = {a, yEA l1o !, 

1, yEA nlo )' 
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(4.13) 

A simple manipulation of (4.5) yields 

B (a)* = fB (aif+ for all aEA (G ta'a", (4.14) 

where (4.12) is used, Therefrom it follows that the factor 
system (4.7) must be real. Combining (4.14) with such a uni
tary matrix /30 that decomposes B (a), aEA (G to'a", into a 
direct sum of its irreducible consitituents, Eqs. (4.14) trans
form into 

B '(a)* = foB '(aifo+, B '(a) = /3 0+ B (a lBo, 

fo = /3 'ofI30· (4.15) 

Note that this is in accordance with (IV. 16) of Ref. 9. There
fore, we obtain as a by-product that only for 
( - 1 )c(a) + cia') + c(a") = + 1 one-dimensional unirreps B (a), 
aEA (G ta'a', are possible. However, such ones are excluded, 
if the phase factor is - 1 since type II( *) unirreps must be 
even -dimensional. 

Finally let us turn to the second case, where at least one 
of the alphas of a given triplet (a,a',a") belongs to Amlo)' It 
has been shown in Ref. 9 that complex conjugation corre
lates CG vectors of G that belong to the triplets (a,a' ,a" ) and 
(a*,a*',a*"). On account of(1.27) it follows that 

A (G)aOao'a o' =A (G)aa'a". (4.16) 

Moreover, we may derive 

zaoaO'(a)crao';ao"w = IEvw(a)IZ~;"(a)CraO;ao"v 
v k 

for all aEA (G ta'a", (4.17) 

whereE (a), aEA (G ta'a", are well defined m(a,a';a")-dimen
sional unitary matrices. Now it follows immediately by 
means of(II.11) of Ref. 9 and (1.28) [or (1.25) if necessary] 
that we can choose E (a) = B (a)* for all aEA (G )aa'a" without 
any loss of generality. Note that for such cases we can define 

c;oao';ao"w = (uaa'IUjfqa';a"w)*, (4.18) 
k 

as has been extensively discussed in Refs. 7 and 9 and in 
many other places. According to our definitions, Eqs. (4.12) 
are symmetry and (4.18) generating relations for CG vectors 
of G that are generated by complex conjugation. 

5. GENERATING RELATIONS FOR CG VECTORS OF G 

Let us start from Eqs. (4.4), which can be rewritten as 
follows: 

Cjla),ala');ala"),v = IBwv (a)IZ f;'(a) 
w k 

Xzaa'(a)+Cfa';a"w. (5.1) 

In order to avoid conflicting relations and redundancies 
between CG vectors of G, we restrict the elements of A (G) to 
left coset representativesatEA (G):A (G ta'a", When now, for 
convenience, wechooseB(at) = 1m for all elements at of the 
set A (G):A (G ta'a", it does not imply a loss of generality. 
Certainly, we can do this, if only the CG vectors, which 
occur on the right-hand side of (5, 1) are given, By definition 
we call 

ca,(a),a,(Z');a,(a")", = "\.'za:'( )zaa'( )+caa';""v 
J L kJ a, at k 

k 

(5.2) 
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"generating" relations for CG vectors of G. The reason why 
we can choose B (a r) = 1m for all arEA (G)A (G )aa'a" is that 

(ar(a),ar(a'),ar(a"))#(as(a),a,(a'),a,(a"))<=>ar #a,. (5.3) 

When CG vectors for a given triplet (a,a' ,a") are known, CG 
vectors that belong to (ar(a), ar(a'),ar(a")) immediately can 
be calculated by means of(5.2). This assumes that the matri
ces Z"(ar), Za'(ar), and za"(ar) are known. On the other 
hand, when CG vectors that belong to (a,a',a") and 
(ar(a),ar(a'),ar(a")) have been determined independently the 
unitary matrix B (at) is uniquely fixed. Observe that then 
B (a r ) not necessarily is the m(a,a';a"]-dimensional unit ma
trix. Irrespective of this problem, the generating relations 
(5.2) constitute a useful and practical tool for the calculation 
of CG vectors. For, if CG vectors, which belong to a fixed 
triplet (a,a',a") are known [i.e., 
! Cjw':a""':w = 1,2, ." ,m(a,a',a");j = 1,2, ". ,na" l are taken 
for granted], corresponding CG vectors 
! C;,(a l.a,("'l:a ,(a"I'U':arEA (G)A (G )aa'a"; 

w = 1,2, ". ,m(a,a';a");j = 1,2, ". ,na" l are obtained from 
(5.2) by varying a r over the whole set A (G)A (G )aaa", Cer
tainly this approach is only then practical iffor a given group 
G the groups A (G), A (G )aa'a" and the matrices 
Z"(ar),Z"(ar),Za"(ar), a,EA (G)A (G )"a'a", can be deter
mined easily. Nevertheless, the generating relations (5.2) are 
[together with the symmetry relations (4.5)] important, since 
they reveal additional symmetries of CG coefficients. These 
relations can be used to calculate CG vectors out of known 
ones and to save space when CG coefficients are tabulated. 
Finally they can be utilized for additional crosschecks, pro
vided that CG vectors have been calculated independently. 
Assuming now that A (G), A (G ),w'a" and the respective ma
trices Z Y(a,), a,EA (G )aa'a", with y = a,a',a" are explicitly 
known, the computation ofCG vectors by means of(5.2) 
works as follows: At first compute for a given triplet 
(a,a',a") CG vectors and determine then by means of(5.2) 
for each element (a,(a),a,(a'),a,(a")), a,EA (G): A (G )aa'a", of 
the triplet orbit L1 (aa' a") the CG vectors. Provided that this 
has been done, choose a further triplet (j3,{3 ',(3 "), which does 
not belong to L1 (aa' a"). Compute CG vectors, which refer to 
(j3,{3 ',(3 ") as usual, and proceed then as before by calculating 
for each element (a s (j3 ),a,(j3'),a,(j3 ")), a,EA (G)A (G jl3fJ'fJ", 

the corresponding CG vectors. Continue in the same way 
until each element of the product setAG XAG XAG is taken 
into account. 

Let us now discuss briefly generating relations which 
refer to (3.9) and (3.12), respectively. By virtue of the defini
tions (3.8), Eq. (5.1) become 

C-:za':b,la"l.v = ",za:'(b )zan'(b )+caa':a"v 
} ~ k) t 1 k 

k 

(5.4) 

where only the CG vectors, which occur on the right-hand 
side are assumed to be known. The remaining CG vectors 

I ~a';b,(a"lv'b _ .. (G )aa'A (G )aa'a" 1 2 ('" j • tt::n . ; V = , , ... ,m a,a;a ); 
j = 1,2, '" ,na"l are defined by (5.4), since otherwise B (b,) 
cannot be chosen as the unit matrix 1 m • Hence nontrivial left 
coset representatives b,EA (G )aa'A (G )aa'a" correlate CG 
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vectors of a given Kronecker product D aa', which belong to 
inequivalent unirreps D b,la" I. 

For the other case, which is characterized by (3.12), 
Eqs.(5.1) become 

C(.',(a),c/(a'l;a",I' == ~za:'( )zaa'( )+CCla';a"I' 
; L.. k; Cr C, k 

k 

for all c,EA (G )a" A (G )ar,,", 

where we have chosen once again 

(5.5) 

B (c,) = 1m , c, EA (G )a" A (G )"a'a". This choice is allowed, if 
the CG vectors on the right-hand side of (5.5) are taken for 
granted and the remaining CG vectors are defined by (5.5). 
Accordingly, Eqs. (5.5) correlate CG vectors, which belong 
to inequivalent Kronecker products D aa' and D c,lal,e,!n'l, but 
transform according to the same unirrep, namely D a". 

Finally, one has to note that the three different sets of 
generating relations, which are defined by (5.2), (5.4), and 
(5.5), respectively, cannot be used in general simultaneously. 
The reason for it is that the special choices B (a,) = 1m , 

arEA (G)A (G)aa'a" andB(b,) = 1
m

, b,EA (G)aa'A (G)aa'a" 

and B (c,) = 1m , c,EA (G)"" A (G )aa'a" would lead in general 
to conflicting definitions of the corresponding CG vectors. 

6. SPECIAL SYMMETRIES FOR CG VECTORS OF G 

The results of the preceding sections suggest the ques
tion: Are the special symmetries of 3jm factors of Ref. 8 
involved in our automorphism approach? In order to get a 
better grip of these symmetries, let us start from equivalence 
relations of the type 

D Y(g)D a(g) = WY(a)D )1al(g) WY(a) + for all gEG, 
(6.1) 

where y labels a nontrivial one-dimensional unirrep of G and 
W Y(a) is an na -dimensional unitary matrix. W Y(a) is unique
ly defined (up to a phase factor) by D Y(g),D a(g), and 
D )1a)(g), gEG. Obviously two cases may occur, namely either 
a = y(a)EAG' ora#y(a)EAG' Since 

D Y(g)D Y'(g) = D Y"(g) for all gEG (6.2) 

always holds for one-dimensional unirreps D Y, D Y, and D y" 

of G, where D y" is uniquely determined by D Y and D y', we 
extend an arbitrary Kronecker product D aa'(g), gEG by 
D y" (g), gEG: 

D Y"(g)D aa'(g) = D Y(g)D "(g) ® D Y'(g)D a'(g) 

= LGlm(a,a';a")DY"(g)Da"(g). (6.3) 
a" 

Provided thatD y" is the trivial unirrepD l(g) = l,gEG, ofG, 
then D Y (g) = D Y(g)., gEG. Irrespective of this special case, 
four different situations may occur on the left-hand side of 
(6.3), namely, 

D J1al(g) ~ D a(g) and D Y'la'l(g) ~ D n' (g), (6.4) 

D )1nl(g) ~ D a(g) and D y(a'I(g) -I- D a' (g), (6.5) 

D J1al(g) -I-D a(g) and D Yla'l(g) ~ D n' (g), (6.6) 

D J1a l(g) -I- D a(g) and D Yla'l(g) -I-D a' (g), (6.7) 

whereas on the right-hand side either D Y"la"I(g)~D a" (g) or 
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D y"(a"l(g) ~ D a" (g), gEG, is realized. By using Schur's lemma 
with respect to G two different symmetries for CG vectors of 
G can be derived, which correspond to the special symme
tries of 3jm factors discussed in Ref. 8: 

WYr'(aa')Cja';a"W = IevwIW~(a")Ga';a"V, 
k 

C J1al.r'(a');y"(a"l,w 
] 

= IhvwIWr;(a")WYr'(aa,)+c~a';a"v. 
k 

(6.8) 

(6.9) 

Note that WYJ/(aa') = WY(a) ® WY'(a') and that CG vectors 
of G are denoted correspondingly. The m(a,a';a")-dimen
sional unitary matrix e is unique [for given (a,a',a")] if 
y(a) = a, r'(a') = a',and v"(a") = a", whereas the matrix h 
can be chosen arbitrary, ifat least one rIa) is different from a 
and if only the CG vectors on one side of (6.9) are given. 
Finally observe that in accordance with our definitions Eqs. 
(6.8) are symmetry and Eqs. (6.9) generating relations for CG 
vectors of G. 

The earlier raised question may now be asked as to 
whether the symmetries (6.8) and (6.9) for CG vectors of G 
can be explained by a particular aEA (G )aa'a" or 
a,EA (G):A (G ta'a". We show the answer is no after arguing 
generally and after inspecting some striking examples at the 
end of Sec. 7. One general argument for this conjecture is 
that the trivial unirrep D I of G is mapped by D Y on D Y, 

whereas each automorphism can only map D I on D I. A sec
ond argument is that the number of nontrivial one-dimen
sional unirreps of a given group G is in general different to 
the number of outer automorphisms. We conclude that (6.3) 
generates symmetries that are distinct from the automor
phism symmetries. 

7. APPLICATION TO SPACE GROUPS 

In order to show the utility of the automorphism ap
proach, we apply it to space group CG vectors in which we 
are primarily interested. Hereafter we denote a space group 
by G, its normal subgroup of translations by T, and its point 
group by P, which is isomorphic to the factor group G IT. It 
is well known 10.11 that the automorphism group A (G) of a 
given space group G is isomorphic to the factor group N (G )1 
C (G) of the affine normalizer N (G) with respect to the affine 
centralizer C (G). In order to simplify the following discus
sion, we assume in addition that Z (G) and C (G) are trivial. 
This means that A (G) = N (G ) and that G is a normal sub
group of A (G). Fortunately, this situation is realized for 
many space groups, as can be seen from Table 3 of Ref. 11. 
Accordingly, for such cases we are not forced to embed Gin 
the corresponding holomorph. But note, on the other hand, 
thatN(G) = A (G ) need not bea semidirect product ofGwith 
a group that is isomorphic to the factor group A (G )/G. 

By virtue of our assumptions, each automorphism 
aEA (G) can be identified with a particular element (Sa IVa) of 
the affine group A (R3

) of R3. Adopting the notation 
g = (R In(R) + t)forspacegroupelements, whereR denotes 
a point group element, t a primitive translation, and n(R ) a 
non primitive translation (characterizing screw axes or glide 
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planes), we have 

a(g) = a[(R In(R) + t)] = (Sa IVa)(R In(R) + t)(Sa IUa)-1 

= (SaRSa-IISa[n(R)+t] +Va -SaRSa-IVa)' (7.1) 

The presence of n(R ) is typical for nonsymmorphic space 
groups, whereas they can be chosen as zero vectors for sym
morphic space groups. Since each mapping a = (Sa IVa) of G 
onto Grequires thata(g) = (Sa IVa)(R In(R) + t)(Sa Iva)-IEG, 
we infer that SaRS a- I must belong to the point group P. 
Moreover, Sa t and Va - SaRS a- IVa must belong to the 
translation group Tand Sa n(R ) must be equal to n(Sa RS a- I) 
modulus a primitive lattice translation. Note in particular 
that the nonsingular matrices Sa and the vectors Va must not 
depend on the respective space group elements. In many 
cases the A (G ) are isomorphic to certain group of motions, 
whereas for some space groups their automorphism groups 
cannot be identified with groups of motions. 10 

In order to be able to go into further details, we recall 
that space group unirreps D K (g),gEG, are labeled by pairs 
K = (q,a). Thereby the vector q is an element of the "repre
sentation domain" Ll BZ of the Brillouin zone BZ of G and a 
labels unirreps of the corresponding "little cogroup" P (q). 
The unirreps of P (q) are projective if Gis nonsymmorphic. 2 

By definition P (q) consists of all elements of P that leave q 
invariant (up to reciprocal lattice vectors). 2 In order to be 
able to apply the automorphism approach, we need for each 
aEA (G) not only the mapping a:G--+G, but also the mapping 
a:AG--+AG and the matrices Z K (a), which satisfy 

D K (a(g)) = D K ((Sa IVa)(R In(R) + t)(Sa IVa)-I) 

= ZK(Sa Iva)Da(KI(R In(R) + t)ZK(Sa Iva )+. (7.2) 

Finally we need the corresponding little groups A (G )K 
which contain G as a normal subgroup, i.e., 
G<lA (G)K ~A (G). Provided that these tasks have been 
solved, one is in the position to apply the automorphism 
approach to space group CG vectors. 

Example: In the following we discuss briefly an exam
ple which demonstrates among others that the special sym
metries of 3jm factors and automorphism properties of CG 
coefficients are different in general. A detailed discussion of 
this and therewith related subjects will be published else
where. 12 

We consider the primitive cubic space group G = P23, 
whose automorphism group is given by A (G) = Im3m [see 
Table 3 of Ref. 11], which contains G as normal subgroup, 
since Z (G) is trivial. Both space groups are symmorphic and 
therefore can be written as a semidirect product of their 
translation and point groups. In our case we have 

G= Tpe(§)cr, 

A (G) = Tbcc (§)(} h' 

(7,3) 

(7.4) 

where T pc denotes the primitive cubic translation group, 
T bee the body-centered cubic translation group, Y the tetra
hedral group, and (} h the octahedral group including the 
inversion. By virtue of the left coset decompositions 

Tbee = Tpe + (Elbo)Tpc, 

(} h = Y + C2a Y + CTzY + CTdbY, 
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we arrive at 

A (G) = G + (C2a 10)G + (az 10)G + (adb 10)G 

+ (E Ibo)G + (C2a Ibo}G + (az Ibo)G + (adb Ibo)G, 
(7.7) 

where bo is a special element of T Ixc and C2a ,az,a db are spe
cial elements of tJ h' By definition, G must be a normal sub
group of A (G), since Z (G) is trivial. But note that the set 

A (G):G = !(E 10),(C2a 10),(az IO),(adb 10), 

(E Ibo),(C2a Ibo),(az Ibo),(a db Ibo) I (7.8) 

of left coset representatives does not form a group, i.e., A (G) 
cannot be written as a semidirect product of G with a group 
that is isomorphic to the factor group A (G)I G. Besides this, 
the index ofGwith respect toA (G) is eight, i.e., seven nontri
vial outer automorphisms (mod G ) exist. The representation 
domain.:1 BZ( G ) of G = P 23 consists roughly speaking of all 
elements of the union set13 f1ua.{luadb fluC2a fl, when fl 
denotes the representation domain of the simple cubic space 
group tJ h = Pm3m. A "general" point q of.:1 BZ(G) is de
fined by P (q) = i E I, when P (q) denotes the corresponding 
little cogroup. For each such case the corresponding space 
group unirrep D K must be 12-dimensional, since 
IG lilT pc 1= 12. Their matrix elements take the form1 

D Iq,l) (R It) - " e - jR 'q., R',R" -UR',RR" , 

R ',R "EY,REY,tETpc, (7.9) 

where the superscript 1 denotes the trivial unirrep of P (q) and 
OR ',RR" the usual Kronecker delta. Specializing (7.1) to the 
left coset representatives (S 10), (S I bo) withSE I E,Cza ,az,a db l. 
we obtain 

(S 10)(R It)(S 10)-1 = (SRS -liSt), (7.10) 

(E Ibo)(R It)(E Ibo)-I = (R It + bo - Rbo), (7,11) 

where the remaining conjugations are readily calculated by 
meansof(E Ibo)(S 10) = (S Ibo). Inserting(7.1O)and(7.II)into 
(7.9), we arrive immediately at the result that (E Ibo) maps 
(q,l) onto (q,I), whereas (SIO) maps (q,l) onto (S -lq,I). This 
means that 

a((q,l))= (q,l) for a=(Elbo), (7,12) 

a((q,I))=(S-lq,l) for a=(SIO), (7.13) 

A (Gt = G + (E Ibo)G = 123, K = (q,I). (7.14) 

Accordingly if q is a general point of.:1 BZ( G ) the correspond
ing little group A (G)K is the body-centered cubic space 
group 123. This means that there exists a unitary matrix 
Z K (E Ibo), which satisfies 

DK(a(g)) = DK(R It + bo - Rbo) 

= Z K (E I bolD K (R It)Z K (E Ibo)+, (7,15) 

A simple manipulation yields for the matrix elements 

Z K (Elb) " -jR'q'bo R',R" 0 =uR',R"e . (7.16) 

Z K ((E Ibo) forms, together with the 12-dimensional unit ma
trix, a projective representation of the factor group 
A (G )K I G - Sl' On the other hand, when we take a = (S 10), 
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Eq. (7.2) becomes 

DK(a(g)) =DK(SRS-IISt) 

= ZK (S I OlD IS - l
q' I )(R It)Z K (S 10), (7.17) 

where the matrix elements of Z K (S 10) turn out to be 

Z~'.R·(SIO)=DR',sR"s I, SEIE,Cza'O'z'O'dbl· (7.18) 

These four matrices do not depend on a particular q, pro
vided that q's of the boundary of.:1 BZ( G) are excluded. Be
cause of 

A (G) = A (G)K®I (E 10),(Cza 10),(O'z I 0), (O'db 10)] (7.19) 

the four 12-dimensional matrices 
Z K (S 10), SEi E,Cza ,00z'O'db I, form an ordinary representa
tion of the group I E,Cza ,00z,0' db l. as can be readily verified 
by means of (7.18). 

Since we want to compare the automorphism properties 
of CG coefficients with the special symmetries of corre
sponding 3jm factors, it sufficies to investigate the mappings 
L:AG--+AG that are generated by nontrivial one-dimensional 
unirreps D L of G. Adopting the notation D L, L = (q,y), for 
one-dimensional unirreps of G, the corresponding equiv
alence relations become 

DL(R It)DK(R It) = WL(K)DLIKI(R It)WL(K)+, 
(7.20) 

where L (K )EA G is the image of K EA G' A straightforward 
study of Table 5.7 (on p. 374) and Table 5.1 (on p. 230) of Ref. 
2 yields that G = P 23 possesses five nontrivial one-dimen
sional unirreps. Two belong to the r-point (i.e., q = 0) and 
three belong to the R-point [i.e., qR = (-ITla)(I,I,I), when a 
denotes the lattice constant]. Four of them are pairwise of 
type III( *), which means that they are pairwise complex con
jugate. The fifth unirrep is real and belongs to qR and to the 
trivial unirrep D I of P (qR) = Y. Adopting the same nota
tion as in Ref. 2, these unirreps take the form 

D'O.Jl(R It) = D j(R), j = 2,3, (7.21) 

D (qR·J\R It) = e -- iqR"D j(R), j = 1,2,3, (7.22) 

where e - jqR" is real due to the definition of qR and tETpc' 
Moreover, it holds thatD 2(R ) = D 3(R )*, REY. Besides this, 
be aware that the index R of qR never should be confused 
with the point group elements REY and that 
P (qr) = P (qR) = Y. According to our intentions, L has to 
vary over the set I (O,2),(0,3),(qR' I),(qR ,2),(qR ,3)]. 

We assume in the following that K belongs to a general 
point q [i.e., K = (q, 1), sinceP(q) = lEn. The character test 
shows that 

L (K) = K for L = (0,2),(0,3), K = (q,I), (7.23) 

where the similarity matrices W L (K) are given by 

W~'.~1 .(K) = OR',R·D J(R 'I, j = 2,3. (7.24) 

The remaining three cases [LEI (qR' 1),(qR ,2),(qR ,3)}] lead 
to 

L ((q, I)) = (Soq + qR + Q,I), (7.25) 

whereSoEY and Q ( = reciprocal lattice vector) are unique
ly defined by the constraint that Soq + qR + Q must belong 
to.:1 BZ(G).ObservethatSoq + qR + Qisageneralpointifq 
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is a general point and that they never coincide. Note in addi
tion that So does not depend on the particular j of (qR ,j), 
whereas W(QR.Jl(K), of course, depends on the corresponding 
j: 

W~~:{ (q,l) = DR ·.R ·SoD j(R '), j = 1,2,3. (7.26) 

Hence only two different situations may occur, namely ei
ther (7.23) or (7.25). In contrast thereto we obtained for the 
automorphism approach four different cases, namely (7.12) 
and (7.13). Therefrom, it follows that a = (E Ibo) and 
LE[ (0,2),(0,3) J define the same mapping, namely (q,l) onto 
(q, 1), but are presented by different similarity matrices 
Z K (E 1 bo) or W L (K ), respectively. Therefrom, we infer that 
different symmetry relations for corresponding CG vectors 
ofG are obtained, if either a = (E Ibo)EA (G) or LE [ (0,2),(0,3) J 
is taken. More drastic is the difference between (7.13) and 
(7.25), since for (7.13) three different nontrivial mappings are 
realized, whereas for (7.25) only one nontrivial mapping of 
AG onto AG occurs. This means for the latter case that it 
suffices to consider, e.g., L = (qR' 1), since the remaining 
LE[ (qR ,2),(qR ,3) J are redundant insofar as they lead to the 
same mapping. Besides this, none of the vectors 
S -lq, SE[ E,C2a 'Uz,Udb J, coincides with Soq + qR + Q, if 
only q is a general point of.:l BZ(G). Therefrom, it follows 
that a = (S 10), SE[ C2a,Uz,Udb J and L = (qR,I) give rise to 
different generating relations for corresponding CG vectors 
of G. Hence both approaches can be used simultaneously, 
since S - lq, SE [ C2a ,Uz ,U db J, and Soq + qR + Q are four dif
ferent elements of.:l BZ(G), which characterize four inequi
valent unirreps of G. 

Accordingly, both approaches present a useful tool for 
the computation of CG vectors and should therefore be em
ployed for practical calculations (e.g., crosschecks). The 
present example shows obviously the utility of both ap
proaches. The automorphism approach allows one to re
strict the calculations of CG vectors to q's of the subset 
.:l BZ( & h) = fl of.:l BZ( G ), since the remaining CG vectors 
are obtained by means of the corresponding generating rela
tions that are associated with a = (S 10),SE[ C2a,Uz,Udb J. The 
other approach leads to a similar reduction of the calcula
tions, since the mappingL = (qR,I):(q,I)-(Soq + qR + Q,I) 
also allows one to restrict to q's, which belong to a corre
sponding subset of.:l BZ(G). 

The preceding discussion also suggests consideration of 
complex conjugation in comparison to the other two ap
proaches. For simplicity, we assume once again that the un
irrep D K of G = P23 belongs to a general point of.:l BZ(G). 
Complex conjugation requires 

(7.27) 

where K * = (q, 1 )EAG labels the complex conjugate unirrep. 
Provided that q does not belong to the "surface" of.:l BZ(G), 
Eq. (7.9) yields to 

q* = -S*q, (7.28) 

whereq*E,.:l BZ(G landS *EYare uniquely defined. Provided 
that q* does not coincide with a particular S -lq, 
SE[E,C2a,uz,udb J, the corresponding generating relation 
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(4.18) is compatible with the generating relations that are 
generated by the automorphisms a = (S 10), 
SE[E,C2a,uz,udb J, and by L = (qR,I). Obviously, the vectors 
q* and Soq + qR + Q are always different, since their mag
nitude are different. Certainly, if, on the other hand, q would 
be identical with a particular S -lq, SE{ E,C2a ,uz,udb J, the 
corresponding generating relations cannot be used simulta
neously in the special form (4.18) and (5.2), since they would 
lead to conflicting defintions of CG vectors. 

CONCLUDING REMARKS 

This paper introduced a new class of symmetry and 
generating relations for CG vectors. These arose from the 
full automorphism group. We argued the utility of the auto
morphism approach for a practical and efficient computa
tion of CG coefficients with a particular interest in applica
tions to space groups. We showed, on hand of some striking 
examples, that symmetry and generating relations are differ
elit from those associated with automorphisms, from the 
multiplication by one-dimensional nontrivial unirreps, and 
from complex conjugation. Symmetry relations defined by 
(4.5), (4.12), and (6.8) can be used simultaneously, but one 
should be aware that the matrices B (a), aEA (G t a

'
a

' ,J, and e 
are (up to phase factors) unique for given unirreps and given 
CG vectors. They only can transformed simultaneously into 
{3B (a){3 +, {3f(J +, and {3e{3 + in accordance with (4.11). Cer
tainly this is the only freedom when the unirreps of G are 
given. Hence one cannot choose independently B (a), 
aEA (G )aa'a" ,J, and e in case of symmetry relations. Never
theless, symmetry relations are very useful and can be em
ployed to resolve the multiplicity problem, for instance, 
when B (a), aEA (G )aa'a", either defines a unirrep of the fac
tor group A (G )aa'a' / A (G), or is a reducible representation 
that decomposes into inequivalent unirreps only. For both 
cases the multiplicity index can be identified with the irrep 
label and row index of those unirreps of the factor group that 
are contained in B (a), aEA (G )aa·a·. Generating relations, 
which are defined by outer automorphisms 
[(a,a',a")-(a,(a),a,(a'),a,(a")), a,EA (G):A (G)aa'a"] were 
discussed and compared with those associated with complex 
conjugation [(a,a',a")-(a*,a*',a*")] and with themultipli
cation by one-dimensional nontrivial unirreps 
[(a,a',a")-(y(a),y'(a'),y"(a")), where (6.2) is now abbreviat
ed as y" = y.y']. In contrast to symmetry relations, it is ad
missible for generating relations to choose simultaneously 
B(a,) = 1m, a,EA (G):A (G)aa'a",J= lm,andh = 1m , if the 
triplets (a,(a),a,(a'),a,(a")), a,EA (G):A (G )aa'a', 
(a*,a*',a*"), and (y(a),y'(a'),y"(a")), are different, since oth
erwise conflicting CG vectors of G would be defined by (5.2), 
(4.18), and (6.9) (with hvw = Dvw)' Of course, it is also allowa
ble to combine the different sets of generating relations in a 
generic way in order to obtain further generating relations. 
In any case the automorphism approach presents a new way 
of computing and correlating sets of CG coefficients and 
therefore should be used in combination with the other ap
proaches for an efficient computation of CG coefficients. 
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Complex quaternions are investigated in detail, bringing out some new aspects of the relationship 
of the multiplicative group of unit complex quaternions (UCQ) with the proper Lorentz group 
SO(3, 1). Constructing the proper Lorentz transformation (PLT) corresponding to a given UCQ, 
the quatemion parameters ofa PLT are determined explicitly in terms of its element Lij , and this 
quatemion parametrization is then utilized to obtain an interesting geometrical interpretation of 
SO(3, 1) as the intersection of a hyperboloid with a cone in a real eight-dimensional Euclidean 
space Eg. The UCQ components are then related to the Lie-Cartan parameters ofSO(3, 1), leading 
to an identification of complex quantities which may be interpreted as the complex axis and angle 
of rotation. It is shown that any PLT admits a special type of Euler resolution which is at the same 
time a resolution into three Lorentz-Synge screws the two angles of which combine to form a 
complex Euler angle (or Euler-Brauer angle). It is also shown that on taking the rotation 
parameters in the formula for the Dj representation of SO(3) to be complex, one obtains the DJO 
representation of SO(3, 1), leading at once to its Djj' representation. Similarly, a formula for the 
character xJO of the DJO representation, having a complete analogy to the character formula for 
SO(3), but in terms of a complex angle w is obtained and this in turn yields a formula for the 
character Xii' in the [)if representation of SO(3, 1). 

P ACS numbers: 02.20. + b 

I. INTRODUCTION 

In an earlier paper, 1 PL T's were classified according to 
(i) the self-representation of the proper Lorentz group 
SO(3,1), (ii) the three-dimensional complex orthogonal re
presentation by the group SO(3,C) (iii) the two-dimensional 
complex unimodular representation by the group SL(2,C), 
and lastly (iv) the representation by the multiplicative group 
Q ofUCQ's. It was shown that a proper Lorentz transforma
tion L = (Lij) is characterized, in general, by two invariants 
Or and Ob (to be denoted by Wr and Wb in this paper) each of 
which is expressed explicitly in terms of Lij and a PLT for 
which both Or and Ob are nonzero was called screwlike be
cause such a transformation is equivalent, by a proper Lor
entz transformation, to what Synge2 has called a "4-screw." 
Since a screw with Ob = 0 is a pure rotation and one with 
Or = 0 is a pure boost, PL T's with Ob = 0, Or #0 were called 
rotation like and those for which Or = 0, Ob #0 were called 
boostlike. A PLT for which Or = Ob = 0 (with the exception 
of the trivial identity) is known as a null or singular transfor
mation, and such a PLT is not equivalent to a 4-screw. A 
rotation like PL T with Or = 1T was called exceptional and is 
the same as the involution of Wigner3 as it satisfies the alge
braicrelationL 2 = 1. Thecharacterx (L )ineachofthethree 
representations (i), (ii), and (iii) and the constant term q4 in 
the UCQ representation q = q·e + q4 essentially determine 
the classification. The constant q4 in (iv) and the characters 
X A (L ) and X dL ) in (ii) and (iii) are, in general, complex and 
have two degrees offreedom to provide a complete classifica
tion while, the X (L ) in (i) being real, it is necessary to invoke 
another real invariant 5, which turns out to be the sum of all 
principal minors of the second order in the determinant of L. 
The four classification schemes are displayed in Table I. 

.J Formerly Professor of Theoretical Physics, now retired from service. 

We explore in this paper this last U CQ representation Q 
ofSO(3, 1) morefully and show that it has all the advantages 
of the (real) unit quatemion representation of the rotation 
group SO(3) and establishes a complete parallelism between 
the results for the nonnull transformations ofSO(3, 1) and the 
whole ofSO(3) by means of an appropriate complexification, 
in addition to yielding other results for the null transforma
tions of SO(3, 1) which are the only ones that do not have 
SOl 3) analogs. 

In Sec. II, a PL T is expressed explicitly in terms of the 
UCQ components qi' yielding a relationship between the 
invariants of L and the U CQ components. Conversely, the qi 
are also expressed in terms of Lij for all types of L listed in 
Table I. A geometrical representation ofSO(3,1) in a real 
eight-dimensional Euclidean space Eg, which includes, as a 
particular case, the well-known interpretation ofSO(3) as a 
unit sphere in a E4 is also presented. 

In Sec. III, the parameters qi are related to the Lie
Cartan parameters ofSO(3, 1) obtaining two complex quanti
ties wand n, which are interpreted as the complex angle and 
axis corresponding to an L, using the three-dimensional 
complex orthogonal representation SO(3,C). 

Section IV is devoted to a discussion of special types of 
Euler resolution of a PL T which are also resolutions of the 
PLT into a product of three Lorentz-Synge screws. 

In Sec. V, using the known result that the DJO represen
tation of SL(2,C) may be obtained by replacing the Cayley
Klein parameters in the Dj representation of SU(2) by the 
generalized Cayley-Klein parameters, we obtain the Dil re
presentations ofSO(3, 1) in terms of complex quantities such 
as (w,n) introduced in Sec. III. By employing the Clebsch
Gordon theorem, the character formula for the Dil repre
sentation ofSO(3, 1) is then obtained in terms of the complex 
angle w. 
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TABLE I. Classification of proper Lorentz transformations in the various representations. 

Nonplanar Planar transformations Characterizing 
transfor· 
mations General 

tation condition Boostlike 

SO(3,1) I + ~S<X l+g=X 00>X>4 

SO(3,C) XA complex XA real 00>XA>3 
or and>-I 

XA real and 
< -I 

SL(2,C) Xc complex Xc real 00>Xc>2 
or 

-00<Xc<-2 

Q q. complex q. real 00 > q. > I 
or 

- 00 <q.< - I 

II. EXPLICIT CONSTRUCTION OF THE UNIT COMPLEX 
QUATERNION CORRESPONDING TO A PROPER 
LORENTZ TRANSFORMATION 

A complex quaternion a is defined by 

(2.1 ) 

where ai are any four complex numbers and ea are the qua· 
tern ion units satisfying 

eaefJ = - efJea = ey, a, f3,y cyclic, and e; = - 1. 
(2.2) 

(Throughout this paper, we use the Greek suffixes a, [J,y, 
etc., for the range 1,2,3 and the Latin suffixes i,j,k etc., for 
the range 1,2,3,4. Unless otherwise stated, we employ the 
summation convention of summing over repeated suffixes. 
In the Minkowski space-time, we use coordinates with 
X 4 ict). The Hamiltonian conjugate a of a complex quater
nion a is defined as 

a= -aaea +a4 =(-a)·e+a4 , (2.3) 

and is to be contrasted with the ordinary complex conjugate 

a* = a~ea + at = a*·e* + at, (2.4) 

where ar is the complex conjugate of ai • The (quaternion) 
product and the scalar product of two quaternions a and bare 
respectively given by 

ab = (a 4b4 - a"b) + (a 4b + b4a + axb)"e#ba (2.5) 

and 

(2.6) 

From the scalar product, it follows that the norm Iia II of a 
quaternion is given by 

II II - - 2 2 2 2 a =aa=aa=a l +a2 +a3 +a4 , (2.7) 

and quaternions with unit norm are called unit complex qua
tern ions (UCQ). 

In a paper by Synge4 dedicated to the memory of A. W. 
Conway (1875-1950), who first introduced quaternions into 
special relativity, it is shown that, with each proper Lorentz 
transformation (PL T), one can associate a pair of UCQ's 
which differ only in an overall sign. In that paper, each 4-
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interger (dimen· 
sion of the 

Null Rotationlike Exceptional representation) 

X=4 0<X<4 X=O 4 

XA = 3 -1<XA<3 XA = -1 3 

Xc = ±2 0<Xc<2 Xc =0 2 
or 

0>Xc>-2 

q. = ± I O<q. < I q. = 0 
or 

O>q.> - I 

vector X -(Xi)' belonging to the Minkowski world, is 
mapped into the quaternion 

x = X·e + X4 , (2.8) 

called a minquat which satisfies 

x +x* = 0, (2.9) 

in view of the fact that Xu are real and X4 is pure imaginary. 
Then it is shown that under the quaternion transformation 

x-+x' = axa*, aa = 1, (2.10) 

minquats are transformed into minquats, with norms unal· 
tered, i.e., 

x + x* = OqX' + x'* = 0, (2.11 ) 

and 

xx = x'x'. (2.12) 

From these two properties (2.11) and (2.12), it is then inferred 
that Eq. (2.10) implies the proper Lorentz transformation 

X:=Lij~' (2.13) 

and in turn the mapping 

X ........ x, L ........ ± a, L =(L ij ), (2.14) 

between 4-vectors and minquats on the one hand and proper 
Lorentz transformations and UCQ's on the other. 

It is to be noticed, however, that if one considers the 
complex conjugate of Eq. (2.10), i.e., 

x*-+x'* = a*x*a, a*a* = 1, (2.15) 

then one is led exactly to the same PL T as in Eq. (2.13), but 
with the different mapping 

X ........ x*, L ........ ± a*. (2.16) 

This, together with Eq. (2.14), shows that, with each proper 
Lorentz transformation L, one can associate anyone of the 
pairs of unit complex quaternions ± a or ± a*. Thus, the 
UCQ corresponding to a given PL T is indeterminate not 
only with regard to an overall sign, but also with regard to 
complex conjugation. In fact, as we shall see in Sec. Y, the 
two different mappings yield the mutually inequivalent re
presentationsD a 1/2 andD 1/2 0 ofSO(3, 1). Therefore, for the 
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purpose of constructing the PLT corresponding to a UCQ, 
one may use either of the two mappings in Eqs. (2.14) and 
(2.16); if Eq. (2.14) yields an L expressed in terms of a, Eq. 
(2.16) yields the same L expressed in terms of a*. In this 
paper, we choose for convenience Eq. (2.16) with the 
changed notation 

a*=q, x=X-e - X4, 

so that Eqs. (2.15) and (2.16) become 

x' = qxq*, X' = LX, 

X ........ x, L ........ ±q. 
(2.17) 

On writing q = q-e + q4 in the above equation and ex
panding, we obtain an equation corresponding to X' = LX 
from which the elements of the matrix L may be easily iden
tified as 

LaP = (q4q! - q-q*)oaP + (qaqt + qpq!) 

- Ea{3I' (qyq! + q4q~), 
La4 = (q4q! - qaq!) + Ea{3yq{3q~, 
L 4a = (qaq! - q4q!) + EapyqfJq~, 
L44 = q;qr, 

(2.18) 

where EafJ)' is the usual antisymmetric permutation symbol. 
These equations give Lij as explicit functions of the UCQ 
components qj. When the qj are real, Eq. (2.18) reduces to 
the rotation matrix formula (see, for example, Synge5

) in the 
sense that 

LafJ=RafJ = 2qaqfJ - oafJ(I - 2q~) - 2EafJy qyq4' 
(2.19) 

where we have used q;q; = I, in rewriting the coefficient of 
oafJ in LafJ · This result is also evident from the prescriptions 
in Eqs. (2.10) and (2.15) as they both reduce to the rotation
quatemion relation5 

(2.20) 

when the qj are real. 
Equations (2.18) maybe inverted to obtainq; in terms of 

Lij also. To do this, we first express the two (real) invariants X 
and S of the matrix L appearing in its charcteristic equation, I 
i.e., 

(2.21) 

in terms of q;. We may note that the invariants X and S are, 
respectively, the trace and the sum of all second-order prin
cipal minors of L. A direct evaluation using Eq. (2.18) yields 

X = 4q4q!, 

1 + E = 2(q~ + q!2). 

(2.22) 

(2.23) 

On introducing the two 3-vectors IF and % of the antisym
metric part of L, i.e., 

IF a=O - i(La4 - L4a)l2 = i(qaqt - q4q!), 

%a=EafJ)'LfJ)'/2 = - (qaq! + q4q!), 

we obtain another useful invariant of L, namely 

IF-£" = i(q~ _ q!2). 
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(2.24) 

(2.25) 

This invariant vanishes for all planar PL T's as q4 is then real 
(see Table I). For pure rotations, i.e., when the q; are all real, 
IF = O. Also, wheneitherqa = O(a = 1,2,3), orq4 = 0, both 
the vectors IF and £" vanish. The former corresponds to the 
trivial identity transformation whereas the latter, i.e., 
q4 = 0, corresponds to the exceptional PLT (see Table I). 

Now, on solving Eqs. (2.23) and (2.25) for q4' we get 

q4 = ± [(t + 2 - i41F -Jf}/8] 1/2, (2.26) 

thus yielding q4 in terms of the invariants of L. On eliminat
ing q4 between Eqs. (2.22) and (2.26), we obtain, incidentally, 

X = Hit + 2)2 + 16(1F-Jf}2]1/2, (2.27) 

which is a relation connecting the three invariants of L intro
duced above. This is to be expected since L has only two 
algebraically independent invariants. In order to obtain the 
remaining UCQ components qa' we use the relation 

(2.28) 

implied by Eq. (2.24). This, together with Eq. (2.26) yields, 
when q4"# 0, the UCQ components corresponding to nonex
ceptional PL T as 

qa + [(t + 2 + i41F-Jf}/2] -1/2(d¥"a + i'C a), 
(2.29) 

q4 = ± [(s + 2 - i4'C-Jf}/8]I!2. 

In the case of (the nonexceptional) planar transformations, 
the above formulas may also be expressed as 

qa = + (r)-1/2(d¥"a + i'C a), q4 = ± (r/4) I 12, (2.30) 

as then 'C-d¥" = ° and t + 2 = 2X (see Table I). In particu
lar, for the (planar) null PL T's for which X = 4, the above 
formula further simplifies to 

qa = +(d¥"a +i'Ca )l2, q4= ± 1. (2.31) 

Equation (2.28) evidently fails to determine qa in the 
case of the exceptional PLT's for which q4 = 0, 'C = % = 0. 
However, in this case, we obtain, on using Eq. (2.18), the 
relation 

(2.32) 

As q;q; = 1 and q4 = 0, at least one of the three qa' say qll
must be nonzero for an excpetional PLT, and we may use it 
to determine the other two qa from Eq. (2.32). Thus we ob
tain 

q4 = 0, qa = (Lall- + L 440all- + EaI"VLv4 )/2q:, 

and (2.33) 

ql" = ± [(I +LI"Il-L44+Ll"vLp4 -Ll"pLv4 -L~4)12]1/2, 

where LI"Il- is the element of L occurring in the pth row and 
the pth column (the repeated index p does not indicate sum
mation) and p, v, p are cyclic. 

The above formulas yielding the UCQ components cor
responding to a PL T reduce to the corresponding ones for 
the rotation group on restricting the q; to be real. On recall
ing that 'C = ° when q; are real, we obtain from Eq. (2.30) 

- -1(1 + )-1/2 R qa - + ~ XR Ea{3y {3y' 

q4= ±!(1+XR)I/2, X=I+XR, (2.34) 

which corresponds to nonexceptional rotations. Here, we 
have written X = 1 + X R , where X R is the trace of the rota-
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tion matrixRa.B=La.B [see also Eq. (2.19)]. When q4 = 0, i.e., 
X = 0, and X R = - 1, which corresponds to the case of ex
ceptional rotations, 1,6 we obtain from Eq. (2.33) 

q4 = 0, qa = (RILa + Dpu )l2qf' , 

and (2.35) 

qp = ± [(1 + Rpp )12]1/2, 

where Rllf' '" - 1 is the element of R occurring in the ,uth 
row and,uth column and the repeated index,u does not indi
cate summation. 

Here, it is appropriate to mention the relation of the 
UCQ components qi to the complex parameters qi of 
SL(2,C) defined by7-9 

g=gJTi' gESL(2,C), (2.36) 

where (J a are the Pauli matrices 

(JI = [~ ~], (J2 = [~ - ~], (J3 = [~ _~] , 
(2.37) 

and (J4 is the 2 X 2 unit matrix. The condition det( g) = ± 1 
then implies 

(2.38) 

where 1]==(17.)) is the diagonal matrix diag( - 1, - 1, - 1,1). 
It is to be observed that there is a basic difference between the 
U CQ components q i and the similar looking g, , whereas the 
qi are defined with respect to the abstract hypercomplex 
system of the quaternions and hence are unique (except for 
the inherent ambiguity in sign), the gi are defined with re
spect to the specific representation chosen for the ea in terms 
of the Pauli matrices and hence are representation depen
dent. In fact, a change from a set (J, of Pauli matrices to 
another equivalent set (J; _7- 1(J,7, where T is any nonsingu
lar 2 X 2 matrix, is equivalent to changing from one set of 
parameters gi to another set g;, so that 

g = gi(Ji = g;(J; = g;(7- 1(J,T) = (Mp gn(Jj' 

where we have expressed (T-1(J,T) in the basis (J, as 
-I -T (J, T = M ij (Jj . 

Thus we obtain the transformation 

(2.39) 

where the complex 4 X 4 matrix M _(Mij) has to satisfy, in 
view ofEq. (2.38), 

M1]M = 1], (2.40) 

so that 1]ij g; g; = 1. 
We will now show that the UCQ representation leads to 

an interesting geometrical interpretation of the proper Lor
entz group in an eight-dimensional real Euclidean space E R• 

It is well known 10 that the rotation group SO(3) is topologi
cally equivalent to a unit sphere with diametrically opposite 
points identified, in a four-dimensional real Euclidean space 
E4 . This also follows immediately from the fact (see Synge5

) 

that the UCQ components q, =u, of a pure rotation are all 
real and satisfy the relation 

u~ + u~ + u~ + u~ = 1. (2.41) 

On the other hand, for a pure boost (see Mollerll) with veloc-
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ity w = (Wx ,Wy ,wz )' the UCQ components [obtained by us
ing Eq. (2.30)) are 

q4==U4 = [!(1 + y)]1/2, 

q,,=iva = -i[2(y+ 1)]-I12ywa /c 
= i[My -- 1)]1!2wa/w, 

where y=(1 - w2/cl- 1/2 and w=(w~ + w; + W;)1/2. 

These evidently satisfy 

u~ - vf - v~ - v~ = 1. 

(2.42) 

(2.43) 

showing that the set of all pure boosts lie on a hyperboloid of 
two sheets 12 in an E4 , again with diametrically opposite 
points identified since ± q yield the same PL T. 

On writing 

(2.44) 

the UCQ corresponding to a general PL T is split into two 
real quaternions u qnd v as 

L--. ± q = ± [(u a + iv" lea + (u 4 + iv4 )] 

± (u + iv), 

which satisfy the relations 

in view of q, q i = 1. This implies, in turn, 

(2.45) 

(2.46) 

u~ + u; + u~ + u~ - vi - v~ - v~ - v; = I (2.4 7) 

and 

(2.48) 

In a real Ex, Eq. (2.47) represents a central hyperboloid re
ferred to its principal axes and Eq. (2.48) a central cone l2 so 
that a general PLT represented as a point in E8 with coordi
nates (u, ,v,) lies on the intersection of the two surfaces given 
by Eqs. (2.47) and (2.48). Thus it follows that the proper Lor
entz group SO(3, 1) is geometrically represented in E8 by the 
surface of intersection of the hyperboloid ofEq. (2.47) with the 
cone in Eq. (2.48) with diametrically opposite points identi
fied. 

It may also be observed that only the general nonplanar 
PL T's need an E8 for a geometrical representation and the 
planar PLT's form surfaces in the subspaces of Ex. As al
ready seen, the subgroup of pure rotations is confined to a 
sphere in one four-dimensional subspace of E8 and the set of 
all pure boosts is confined to a hyperboloid in another four
dimensional subspace. Other planar transformations with 
V4 = ° and U4~ 1 are confined to a seven-dimensional sub
space of E8 . Exceptional transformation with U 4 = V4 = ° 
need only a six-dimensional subspace. Lastly, null transfor
mations with U4 = 1 and V4 = ° lie on a six-dimensional sub
space which is the intersection of the two surfaces 

u~ + u~ + u~ - vt - v~ - v~ = 0 

and 

UIV 1 + U 2V 2 + U 3V 3 = 0, 

which are both central cones. 12 
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III. RELATION BETWEEN THE UCQ COMPONENTS AND 
THE LIE-CARTAN PARAMETERS OF A PROPER 
LORENTZ TRANSFORMATION 

The proper Lorentz group SO(3,1) being a Lie group, 
we know that every LESO(3,1) may be expressed in a suffi
ciently small neighborhood of the identity in the form 

L = exp(I), (3.1) 

where 

IafJ = EafJyhy, Ia4 = - I4a = iea (3.2) 

are the elements of the antisymmetric matrix I. The six real 
parameters (h a ,ea ) may be called the Lie-Cartan parameters 
of L. If Ila!3) and Ila4) denote the matrices of the infinitesimal 
transformations (in Minkowski coordinates) in the respec
tive coordinate planes, then we have evidently 

a 

By introducing the two sets of matrices 

Ja = !(I(/3y) - iI la4 )), 

Ka = !(II!3Y) + iI la4 )), a,/3,y, cyclic, (3.4) 

as is done while showing l3 that the rotation group SO(4) is a 
direct product of two rotation groups each of which is iso
morphic to SO(3), we may also write 

I=Jawa +Kaw~-n+n', 

where the parameters Wa are defined by 

Wa ha +iea (w~==ha -iea ), 

(3.5) 

(3.6) 

and may be called the complex Lie-Cartan parameters of L. 
The elements of the skew-symmetric matrices nand n ' are 
given by 

na!3 = !Ea!3YWy = n ~~, n a4 = !wa = - n ~:, (3.7) 

and it is easy to verify that these matrices satisfy 

nn' = n 'n, n 2 = _! w2, n ,2 = -! W*2, (3.8) 

where 

w2 WaWa' (3.9) 

Thus we have, when w2 #0, 
2'=exp n = cos(w/2) + (2n /w) sin(w/2) (3.10) 

and 

2" exp n' = cos(w*/2) + (2n '/w*) sin(w*/2), 

(3.11) 

where W = Wr + iWb is a root of w2. Hence, 

L = exp(n + n ') = 2' 2" = 2"2', (3.12) 

from which we obtain on using Eqs. (3.7)-(3.11), 

LafJ = 8a!3(cc* - ro·ro*ss*/ww*) 

+ Ea!3Y(W yc*s/w + w~cs*/w*) 
+ ss*(wawb/ww* + w~wp/w*w), 

La4 = EaPy(Wpw~/ww*)ss* - cs*w~/w* + c*swa/w, 

L 4a = EaPy(Wpw~/ww*)ss* + cs*w~/w* - c*swa/w, 

L44 = cc* + ss*(ro'ro* /ww*), (3.13a) 
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wherec cos(w/2) ands=sin(w/2). Comparing this with Eq. 
(2.18), we obtain 

cos(w/2) = ± q4' (wa/w) sin(w/2) = +qa' (3.14a) 

On the other hand, if w 2 = 0, we have 

2' = E4 + nand 2" = E4 + n', 
where E4 is the 4 X 4 unit matrix. Thus we obtain, in this 
case, 

LaP = 8a !3(1 - !wro*) + !Ea!3y(W y + w~) 
+ !(wawb + w~w!3)' 

La4 = !Ea!3yW!3W~ + !(wa - w~), 

L 4a = !Ea!3yW!3W~ - ~(wa - w~), 

L44 = 1 + !(wro*). (3.13b) 

On comparing this with Eqs. (2.18) as before, we get 

q4= ± 1, qa = +wa/2· (3.14b) 

It may be observed that Eqs. (3.13b) and (3.14b) result 
respectively from Eqs. (3.13a) and (3.14a) on formally pass
ing to the limit w-<l. Also, from Eqs. (3. 14a,b) and Table I, it 
follows that a a general complex W corresponds to a non
planar PLT whereas a W which is real or purely imaginary 
corresponds to a planar one. Further, a planar PLT is seen to 
be rotationlike, null, boostlike, or exceptional according as W 
is real, zero, purely imaginary, or equal to ± 1T. 

The formulas of Eqs. (3. 14a,b) may be used together 
with Eqs. (2.26), (2.29)-(2.33) to express the Lie-Cartan pa
rameters ro of a PL T directly in terms of the invariants of L 
as follows: In the general non planar case, we get 

cos(w/2) = [(S' + 2 - i4~\~/8]-1/2, 

(wa/w) sin(w/2) = [(S' + 2 + i4lf·,Ji)/2]-1/2(J¥"a + ilf a). 
(3.15a) 

Although there is an apparent ambiguity of sign in determin
ing the Wa from these equations, we may note that the Wa 
are, nevertheless, uniquely determined by the PL T as it 
should be, since wand sin(w/2) change sign simultaneously. 
For planar PLT's, Eq. (3.15a) becomes 

cos(w/2) = !(r )1/2, 

(Wa/W) sin(w/2) = (r )-1/2(J¥"a + i'll a), (3.15b) 

which contains as a particular case the well-known relations 
for pure rotations, i.e., 

cos(w/2) = W + XR )1/2, 

(Wa/W) sin(w/2) = (1 + XR )-1/2J¥"a (3.15c) 

obtained by taking X = (1 + X R ), If = 0, and all the quanti
ties to be real. In the case of the exceptional PL T's, we get 

(3.15d) 

where the qa are determined (up to an ambiguity in sign) by 
Eq. (2.33). In this case, however, the ambiguity in the sign of 
Wa is non removable as, even for the subgroup SO(3) itself, the 
rotations corresponding to ± 1T lie at the (diametrically) op
posite ponits of the three-dimensional unit sphere in the 
well-known topological representation ofSO(3). This would 
also mean that the exceptional PL T's do not lie in a "suffi-
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ciently small" neighborhood of the identity and the one-one 
mapping implied by L = exp(I) is no longer valid. Lastly, 
Eqs. (3. 14b) and (2.31) imply that, in the null case, 

Wa =(diYa +i15'a), w2=wawa =0, (3.15e) 

where we may note that the Lie-Cartan parameters Wa are 
again uniquely determined by the null PLT. 

It may be observed that Eq. (3.12) incidentally shows 
that every PLT may be resolved into a commuting product 
of two unimodular complex orthogonal matrices. This may 
be contrasted with a similar resolution of a PL T into a com
muting product of two Lorentz transformations discussed 
elsewhere. 1 

We now proceed to give a geometrical interpretation of 
the complex quantities wand fi, where the complex unit vec
tor fi is defined by 

na = wa/w, w#O. (3.16) 

It is easy to see that the transformation 

x' = qxq (3.17) 

[and not x' = qxq* as in Eq. (2.17)] sends the complex "pure 
quaternion" 

x=xoe, 

into another complex pure quatemion x' and hence leads to 
the following 3 X 3 complex orthogonal matrix 

Aap = 2q"qp - 8ap (1 - 2q~) - 2Capyqyq4' (3.18) 

which corresponds to the given unit complex quatemion q, 
i.e., 

L- ± q_A. (3.19) 

Substituting for qi in Eq. (3.18) from Eq. (3.14a), we get (in 
the nonnull case) 

Aap = na np( 1 - cos w) + 8ap cos W + ca{3yny sin w, 
(3.20) 

which has precisely the same structure as a rotation matrix 1.9 

with, however, complex elements. Thus the complex unit 
vector fi (which is an eigenvector of A belonging to the eigen
value 1) may be interpreted as the "complex axis" of the 
"complex rotation" represented by A and the number W may 
be interpreted as the "complex angle a/rotation." One can 
also define, ab initio the angle of rotation e in the usual man
nerby 

(3.21) 

where i=(xa ) is a unit vector orthogonal to the axis fi, and 
from Eq. (3.20) it follows that e = w. When W = ± 1T, Eq. 
(3.20) reduces to 

Aap = 2nanp - 8ap , (3.22) 

corresponding to the (symmetric) exceptional complex rota
tion. The "null" complex rotation matrix is obtained by sub
stituting for qi from Eq. (3.14b) in Eq. (3.18); we gee 

Aap = 8ap + ~waw{3 + CapyWy. (3.23) 

This (null) complex orthogonal matrix is characterized com
pletely by the complex null vector ro, which is also an eigen
vector of A belonging to the eigenvalue + 1 [all the three 
eigenvalues of A given by Eq. (3.23) are equal to + 1]. Hence 
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we may interpret ro as the (complex-null) axis of this null 
rotation. From Eqs. (3.21) and (3.23) we get the "angle of 
rotation" to be 

W = o. (3.24) 

The relations in Eqs. (3.20), (3.22), and (3.23), on inver-
sion, respectively, yield the angle and axis of A as 

W = arccos~(xA - 1), n" = ~ capyApy/sin W, 

tA -tr(A ), (3.25a) 

W = ± 1T, n" = (A lla + 81la )/2nll' 

nil = ± [(Allll + 1)12]1/2, 

W = 0, wa = ~capyApy, 

(3.25b) 

(3.25c) 

where in (3.25b),u is a fixed index not to be summed upon and 
Alla are the elements of some row (the ,uth row) of A along 
which AIlIl # - 1. If so desired, the "angle" W in Eq. (3.25a) 
may be chosen such that Wr = Re(w) lies in the range 
O';;;w r < 1T and this fixes a particular "direction" for the 
(complex) axis fi. Also, this choice evidently conforms to the 
one usually adopted5 in the case of real nonexceptional rota
tions. In Eq. (3.25b), the ambiguous signs for the axis and 
angle is essential as already remarked. Regarding Eq. 
(3.25c), we may note that both the identity and null PL T's 
have W = O. However, while the identity corresponds to 
Wa =0, a null PLT haswa #0. The formulas in Eqs. (3.25a,b) 
are complexified versions of the corresponding rotation 
group formulas and reduce to the same when A is taken to be 
real. The formula in Eq. (3.25c) for null complex rotations 
has no analog in SO(3). 

Equation (3.18) may similarly be inverted to yield qi in 
terms of Aa{3; we obtain 

(3.26a) 

in the non exceptional case and in the exceptional case, 

q" = (A lla + 81la )!2qll' qll = ± [(AIlIl + 1)/2]112, 
(3.26b) 

where,u is not a dummy and Alla are the elements of any row 
of A along which the diagonal element AIlIl is not equal to 
- 1. It may similarly be seen that Eqs. (3.26a,b) are com

plexified versions of the rotation group formulas in Eqs. 
(2.34) and (2.35) (with the new notation Rap==Aap). 

In passing, we consider one interesting application of 
the representation L--+A, or more directly the pure-quater
nion transformation ofEq. (3.16), to the Lorentz transforma
tion of an electromagnetic field. The electromagnetic field 
tensor Fij may be represented by the (pure) field quatemion 

/ = (H + lE)oe Foe, (3.27) 

where Hand E are, respectively, the magnetic and electric 
field intensities. A general pure boost q represented by Eq. 
(2.42) sends/ to/', where 

/' = F'oe = q/q 
= [yF + w- 2(1 - y)(woF)w - (iy/c)(wxF)]oe, 

which yields immediately the well-known 11.14 transforma
tion formulas 
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H' = yH + w- 2(1 - y)(w-H)w + yc-l(wXE) 

for the field vectors under an arbitrary boost. 

(3.28) 

IV. THE RESOLUTION OF A PROPER LORENTZ 
TRANSFORMATION INTO A PRODUCT OF THREE 
LORENTZ-SYNGE SCREWS AND COMPLEX EULER
BRAUER ANGLES 

The complex orthogonal 3 X 3 matrix A corresponding 
to a proper Lorentz transformation L may be resolved into a 
product of three complex rotations in the coordinate planes 
as in the case of real rotations. 5 Here we may note, for future 
reference, that complex rotations in the three coordinate 
planes are given by 

and 

o 
cos e A,IO) ~ [~ 

- sin e 
Si~ e] , 
cos e 

A
2
(e) = [Co~ e 0 

sin e 0 

- sin e] 
o , 

cos e 

sin e 
cos e 

o 
(4.1) 

However, unlike real rotations, it is not possible (this would 
be evident from the discussion to follow) to cover the entire 
group SO(3,C) by a single factorization scheme like the fa
miliar Euler product A 3(a)A2( P )A3(y), and we need a mini
mum of three different factorization schemes to cover the 
entire group. In view of its obvious advantage in yielding a 
complexified version of the Wigner formula 13 for a subclass 
of Lorentz transformations (to be derived in the next sec
tion), we retain the above-mentioned Euler product and use 
in addition the Euler-Brauer products (see, for example, 
Murnaghan 15)A3(a)A2( P)A dy) andA3(a)A I( P )A2(y) forcov
ering the entire group. 

By an extension of the well-known procedure 15 adopted 
for real rotations to complex A, we observe that it is always 
possible to choose three complex angles (a, p,y) such that A 
is factorizable into at least one of the three products men
tioned above. More explicitly, we have the following results 
expressing (a, p,y) in terms of the elementsAl'v of the matrix 
A: 

Case (i) A~3 "'" 1 or ~ + q! "'" 1 or 0 

In this case, the Euler product resolution 

A = A3(a)A2( P )A3(y) (4.2) 

is certainly possible, and by a straightforward calculation we 
obtain 

cOSP=A 33, sinp=(I-A~3)1/2, 

cosa=A13(1-A~3)-1/2, sina= -A23(I-A~3)-1/2, 
(4.3) 

COSy=A31(1-A~3)-1/2, siny=Adl-A~3)-1/2, 
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where anyone particular branch of the function (1 - A ~J ) 1 /2 

may be used. Using these formulas, it is not difficult to see 
that it is always possible to choose the complex Euler angles 
a = a r + ia h , P = Pr + iPb' and y = Yr + iYb to lie in the 
ranges 

O<:;;ar < 21T, O<:;;ab < 00, 

O<:;;Pr <:;; 1T, - 00 <:;;Ph < 00, (4.4) 

O<:;;1'r <21T, O<1'b < 00. 

These particular ranges have been chosen for (a, P,1') so that 
when they are real, i.e., for real rotations, they reduce to the 
corresponding ranges of the real Euler angles. We also note 
for future reference that Eqs. (3.26) and (4.3) together imply 
the following relation between the UCQ components q; and 
the Euler angles (a, p,),): 

q4 = cost P /2) cos[(a + 1')/2], 

q3 = - cost P /2) sin[(a + ),)/2], 

q2 = - sin( P /2) cos[(a - 1')/2], 

q 1 = - sin( P /2) sin[(a - )')/2]. 

(4.5) 

When (a, P,1') are real, these are precisely the rotation-group 
formulas. 5 However, in the case of Lorentz transformations 
it must be observed that the above representation of q; in 
terms of Euler angles is possible only for such PL Ts for 
which (q~ + q~) is neither 0 nor 1. Secondly, given (a, P,1'), 
Eq. (4.5) determines q; to within an overall sign reflecting the 
nature of the correspondence L- ± q. However, in the ex
ceptional case corresponding to q4 = 0 (i.e., P = 1T or 
a + l' = 1T), the sign of qu is undetermined and both signs 
are to be admitted for qa in view of the fact that in the topo
logical representation of the rotation group by a sphere of 
radius 1T in E3 diametrically opposite points are to be identi
fied. 13 

Evidently the Euler angles are undefined when 
A33 = ± 1 [see Eq. (4.3)]. In the case of real orthogonal A, 
A33 = ± 1, and hencep = 0, would imply 
A 13 = A23 = A32 = 0, and an Euler resolution is possible, al
though the angles a and l' are not determined uniquely. 16 On 
the other hand, for a complex orthogonal A, A ~3 = 1 does 
not necessarily imply the vanishing of the elements A 13' A 31 , 
A 23, and A32 . For example, 

[

Ii - 1 

A= l+i -1 

l-i i+l 

1 + i] 
i-I 

1 

is one such complex orthogonal matrix and in such cases an 
Euler resolution in the form A = A~~3 is impossible. 

However, when A ~3 = 1, at least one of the two com
plex numbers A ~2 and A ~ I is not equal to 1 in view of the 
relation A L + A j2 + A ~3 = 1, and we thus consider separ
ately the following two cases: 

Case (iia):A;3 = 1, A~2#I;or(q3q2+qlq4)2#1, 
qj + q~ = 1, or 0; 

Case (iib): A ~3 = 1, A ~I # 1; or (q3ql - q2q4)2#1, 
qj + q~ = 1, or 0 

In these cases we have to adopt other resolution 
schemes. 

Rao, Rao, and Narahari 1951 



                                                                                                                                    

In case (iia), we use the Euler-Brauer schemel5 

A =A3(a)AI(p)A2(Y)' (4.6) 

and, as before, we find after some simple algebra 

sinp= -A32' cosP= (I-A ~2)1/2, 

sina=Adl-A~2)-1I2, cosa=Adl-AU-1/2 (4.7) 

siny= -A31(I-A~2)-1/2 cosy=A33(I-A~2)-1/2, 

and it is always possible to determine the branches of the 
square roots such that the complex Euler-Brauer angles 
(a, P,y) lie in the ranges 

O';;;a,';;;7T, - 00 <ab < 00, 

O.;;;P, <27T, O';;;Pb < 00, (4.S) 

O';;;Y, <27T, O';;;Yb < 00. 

In case (iib), we may use the other Euler-Brauer scheme 

(4.9) 

with the complex Euler-Brauer angles (a, P,y) determined 
from 

sinp=A31, cosP=(I-A~d1l2, 

sina= -A21(I-A~I)-1/2, cosa=All(1-A~I)-l/z, 
(4.10) 

siny= -Adl-A~I)-l/Z, cosy=An!I-AL)-I12, 

where, as before, it is always possible to choose the branches 
of the square-roots involved such that the angles (a, P,y) lie 
in the ranges given in Eq. (4.S). 

Having shown that it is always possible to resolve a 
3 X 3 complex orthogonal matrix A in at least one of the three 
factorization schemes discussed above, we now interpret 
these factorizations directly in terms of the (4 X 4) Lorentz 
matrix L that corresponds to A. The UCQ's corresponding 
to the special complex rotations of Eq. (4.1) are [see Eq. 
(3.26a)] given by 

q4 = cosIO 12), ql = - sin(O 12), qz = q3 = 0, 

q4 = cosIO 12), qz = - sin(O 12), ql = q3 = 0, (4.11) 

q4 = cosIO 12), q3 = - sin(O 12), ql = qz = O. 

Using these in Eq. (2.IS), we get the corresponding PL T's to 
be, respectively, 

SI(O, ,Ob) = L (l 41(Ob)L (231(0,) = L (Z31(e,)L (l41(Ob)' 

SZ(O"Ob) = L (Z41(Ob)L (311(e,) = L (30(O,)L (241(Ob)' (4.12) 

S3(O"eb) = L (341(Ob)L (12)(0,) = L (lZ)(O,)L (34)(Ob)' 

whereL lap) (e,) is a pure rotation [see Eq. (2.19)] through 0, 
in the x a -x P plane and L la4) (e b) is a pure boost along the x a 

direction with velocity w = c tanh(eb ). The proper Lorentz 
transformation Sa (e"eb ) is a Lorentz-Synge 4-screw along 
the x a direction (see SyngeZ). Equations (3.26), (4.11), and 
(4.12) imply, for example, for the screw 

[ =0, 
sin 0, 0 

imnLl - sine, cos Or 0 
S3(e"eb) = ~ 0 cosh eb 

0 - i sinheb cosh Ob 

(4.13) 
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the mappings 

S3(0"Ob)~ ± [cosIO 12) - e3 sin(O 12)]~A3(Or + iOb ),(4.14) 

where 

sinter + iOb ) 

coster + iOb ) 

o ~l 
(4.15) 

Thus the three factorization schemes of A given in Eq. (4.2), 
(4.6), and (4.9) correspond to the following screw-resolution 
schemes of the corresponding proper Lorentz transforma
tion L. 

(i) Screw resolution in the Euler scheme: 

L = S3(a"ab )S2( P,,{Jb )S3(Y"Yb) (4. 16a) 
= L (341(ab)L (l2)(ar )L (Z4)( Pb)L (31)( P,)L (34)(Yb)L (lZ)(Yr)' 

(4.16b) 

(ii) Screw resolutions in the Euler-Brauer scheme: 

L = S3(a"ab )SI( P" Pb )SZ(Y"Yb) (4.17a) 
= L (34)(ab)L (l2)(ar )L (l4)(f3b)L (Z3)( Pr)L (Z4)(Yb)L (31)(Yr), 

(4.17b) 

L =S3(a"ab)Sz(p"Pb)SI(Yr'Yb) (4.1Sa) 
= L (34)(ab)L (lZ)(ar)L (Z4)(Pb)L (31)(Pr)L (l4)(Yb)L (23)(Yr)' 

(4.1Sb) 

We may note that the screw resolution in Eq. (4.16a) involves 
screws in two coordinate directions only whereas those in 
Eqs. (4.17a) and (4.ISa) involve screws in all the three coordi
nate directions. It is also interesting to note the particular 
ordering of the six planar Lorentz transformations in Eqs. 
(4.16b), (4.17b), and (4.1Sb). A direct proof of these Euler 
resolutions appears to be difficult. 

V. THE CHARACTER FORMULA FOR SO(3,1) IN ITS fYi' 
REPRESENTATION IN TERMS OF THE COMPLEX 
ANGLE (U 

It is well known9
•
17 that the Dfil repreentation of the 

complex unimodular group SL{2,C) can be obtained formal
ly from the Dj representation of the special unitary group 
SU(2), namely, 13 

D~'m(a,b) 

_ [(j + m)!(j - m)!(j + m')!(j - m')!] 1/2 

- ~ (j +m -n)!(j -m' - n)!(m' - m + n)! 

(5.1) 

by simply replacingtheSU(2) matrix (Q_ b. ~.) bytheSL(2,C) 
matrix (~ ~). We thus have 

D';,'m(a,b,c,d) 

[(j + m)!(j - m)!(j + m')!(j - m')!] 1/2 

= ~ (j + m - n)!(j - m' - n)!(m' - m + n)! 

xaj+m- nbncm' -m - nd j- m'-n (5.2) 

in terms of the four complex SL(2,C) parameters a, b, e and d 
[satisfying (ad - be) = 1] also known as the generalized 
Cayley-Klein parameters. IS We also know that, on express
ing the Cayley-Klein parameters (a,b lin terms of the (real) 
Euler angles (a, P,y) by 
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a = cost f3 12) exp[i(a + y)/2], 
(5.3) 

b = sin( f3 12) exp[i(a - y)/2], 

Eq. (5.1) becomes the Wigner formula 13 for theDj represen
tation ofSO(3). Similarly by expressing (a,b) in terms of the 
axis n and angle w of rotation by 

a = cos(wI2) + in3 sin(wI2) 

= cos(wI2) + i cos (J sin(w/2), (5.4) 
b = (n2 + in d sin(wI2) = i sin (J sin(wI2) exp( - it/J ), 

Eq. (5.1) becomes the Carmeliformula9 for theDj represen
tation ofSO(3), where n = (n l,n2,n3) = (sin (J cos t/J, 
sin (J sin t/J,cos (J ). These results suggest that we may similar
ly obtain formulas analogous to those ofWigner and Car
meli for the proper Lorentz group SO(3, 1), by expressing the 
generalized Cayley-Klein parameters (a,b,c,d) in Eq. (5.2) in 
terms of the complex Euler angles and the complex angle
axis parameters obtained in the previous sections. 

On using the two-dimensional irreducible representa
tion ea~ - iaa , for the quaternion units ea (generating the 
quaternion ring) in terms of the Pauli matrices given by Eq. 
(2.37), we obtain the D 112 0 or SL(2,C) representation of 
SO(3,1), namely, 

L+-+ ± q~ ± ( - iaaqa + q4) 

± M = ± [q4 - ~q3 - q2 ~ iql] . (5.5) 
q2 - lql q4 + Iq3 

We also observe that the mapping L~ ± q*; on the other 
hand, yields the matrix 

M' = (- iaaq: + qt) = a2M*a2-
1 

so that the latter mapping yields the in equivalent complex 
conjugate DO 1/2 representation. From Eq. (5.5) we may now 
identity the generalized Cayley-Klein parameters as 

a = q4 - iq3' b = - q2 - iql' C = q2 - iql' 

d = q4 + iq3' (5.6) 

Using the expressions for qj given by Eqs. (3.14a) and (3.16) 
in these, we obtain for nonnull PL T's the following relations 
between (a,b,c,d) and the complex axis-angle parameters 
(n,w) : 

a = cos(wI2) + in3 sin(wI2), b = (n2 + in d sin(wI2), 
(5.7) 

c = - (n2 - in I) sin(wI2), d = cos(wI2) - in3 sin(wI2). 

For null PLT's, we have similarly, from Eqs. (3.14b) and 
(5.6), 

a = (1 + ! i(3), b = !(W2 + iw I)' 

c = - !(w2 - iw d, d = (1 - ! i(3 ), (5.8) 

where we recall thatwisanull vector, i.e., wow = O. We may 
also note here that when (n,w) are real, i.e., for pure rotations, 
Eq. (5.8) reduces to a = 1 = d, b = c = 0 corresponding to 
the identity whereas Eq. (5.7) reduces to Eq. (5.4) of pure 
rotations. 

Since the D OJ, representation ofSL(2,C) is equivalent to 
the complex conjugate representation Dj,o· of Dj,O and 
since Dj, j, = Dj,O X D OJ,, we have (see, for example, 
Schwartz 19) 
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(5.9) 

where the rows and columns of the (Konecker product) ma
trix Dj, j, are labelled by pairs of indices so that, for example, 
D j~, , is the element of Dj, j, occurring in the (m; m; )th 

m)m2,m]m2 

row and the (m 1m 2)th column. Substituting Eqs. (5.7) and 
(5.8) in Eq. (5.2) yields the Dj,O (and Dj,O) representation of 
SO(3, 1) respectively for the nonnull and null PLT's. Using 
the Dj,O and Dj,O so obtained in Eq. (5.9) then yields the 
desired Dj,j, representation ofSO(3, 1) expressed in terms of 
the complex axis-angle parameter (n,w) for nonnull PLT's 
and in terms of the complex null axis w for null PL T's. While 
the representation formula for nonnull PL T's obtained in 
this manner involves a DjO given by the complexified version 
of the Carmeli formula ofSO(3), the formula for null PL T's 
has no analog in SO(3). Further, as is done with real rotations 
(see Carmeli9

), we may introduce a pair of complex angles 
((J,t/J ) to represent the complex unit vector n by 
n = (n l,n 2,n3) = (sin (J cos t/J, sin (J sin t/J,cos (J) thus bringing 
the formula for the DjO representation for non null PL T's to 
a form which is identical to the Dj representation formula of 
Carmeli9 except that now the angles ((J,t/J ) are complex in
stead of being real. Similarly, it is possible to represent a null 
w by a pair of complex angles, but this representation is not 
very convenient as a single set of complex angles giving all 
the null complex vectors w does not exist. 

Similarly, on expressing (a,b,c,d) in terms of the com
plex Euler angles (a, f3,y), using Eqs. (4.5) and (5.6), we ob
tain 

a = cost f3 12) exp[i(a + y)/2], 

b = sin( f3 12) exp[i(a - y)/2], 

c = - sin( f3 12) exp[ - ita - y)/2], 

d = cost f3 12) exp[ - ita + y)/2], 

(5.10) 

which through Eqs. (5.2) and (5.9) leads to a formula for the 
Dj, j, representation ofSO(3, 1) involving only a complexified 
version of the Wigner formula for the Dj representation of 
SO(3). Evidently, thisformula alone does not cover the entire 
group SO (3, 1) as the complex Euler angles given by Eq. (4.5) 
can be defined only for a subclass of PL T's. Moreover, this 
formula, unlike the one involving the complexified Carmeli 
formula ofSO(3), does not completely cover even the non
null PL T's in toto. And, as it is necessary to use the other two 
Euler-Brauer schemes in addition, to cover the entire group 
(see Sec. IV), the advantage of using the diagonal representa
tion matrices for two Z rotations is now not available. It thus 
appears that a single formula for the Dil representation cov
ering the entire group SOt 3,1) would only be in terms of the 
quaternion parameters which are explicitly expressed in 
terms of the elements Lij of L as in Sec. II. 

We next proceed to obtain the character formula for the 
proper Lorentz group in its Dii' representation. First, we 
prove that in the case of nonnull PL T's 

X ii'(L) = Xii'(w) = sin[(j + !)w] sin[(f + !)w*] 
sin(w/2) sin(w* 12) 

(5.11) 

The proof is by induction. In the first place, we note that the 
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above formula yields X 00 = 1, as it ought to, for the trivial 
identity representation D oo . Secondly, it gives X 1/2 ° 
= sin w/sin(w/2) = 2 cos(w/2), which we know is also cor

rect by virtue of Eq. (5.7) yielding the D 1/2 ° representation 
(~ ~). We now assume the formula (5.11) to be true for the 
Dj - 1/2,0 and DjO representations and prove its validity for 
the Dj + 1/2,0 representation. From the Clebsch-Gordon 
theorem,1O we have 

D jOxD 1/2 ° = D j+ 112,0 + D j-1I2.0, 

so that we must have 

xj + 112,0 = XjOX I12 0_ X j ~ 1/2,0 

sin[(j + !)wj2 cos(w/2) 

sin(w/2) 
sin [(j + l)w j 

sin(w/2) 

sin(jw) 

sin(w/2) 

(5.12) 

(5.13) 

The result of Eq. (5.11) is thus true for Dj+ 112,0 and by in
duction the assertion is proved. Since D°j' is merely equiva
lent to the complex conjugate of Dj'o and Djj' = DjO XD°j' , 
the result of Eq. (5.11) now follows for all nonnull PL T's. It 
may be observed that the character formula xjO for the DjO 
representation of the nonnull PLT's is obtained by a formal 
complexification of the character formula for the Dj repre
sentation of SO(3). 

Clearly the character formula of Eq. (5.11) yields on 
passing to the limit w-G 

XJI (L) = (2j + 1)(2j' + 1), (5.14) 

which is the character formula for null PL T's in the DJI 
representation. This result, as in the non null case, may also 
be proved independently by induction. 

Note added in proof To avoid misunderstanding, we 
wish to state that the proper Lorentz group SO(3, 1) is identi
cal with the proper orthochronous Lorentz group. 
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The Clebsch-Gordan coefficients are calculated for the following tensor products ofSU(5) 
representations: 5 ® 5, 5 ® 10, 5 ® 10, 15 ® 5, 15 ® 5, 10 ® 10, 5 ® 5, 10 ® 10, 5 ® 24, and 10 ® 24. 
Each case is calculated twice: once in a weight vector basis independent of any semisimple 
subgroup, the second time in a basis which refers to SU(3)XSU(2)XU(I)CSU(5). 

PACS numbers: 02.20. + b, 11.30.Ly, 12.90. + b 

1. INTRODUCTION 

The purpose of this paper is to provide the Clebsch
Gordan coefficients (CGq frequently needed in models of 
unification of the weak and electromagnetic interactions 
with the strong ones based on the group-subgroup pair 
SU(5PSU(3)XSU(2)XU(I). More precisely, we consider 
the products ofSU(5) representations shown in Table I. Stan
dard notations for the representations and their reductions 
(branching rules) to representations of the subgroup are 
shown in Table II. 

During the last 20 years many papers were devoted to 
CGC for finite-dimensional representations of semisimple 
Lie groups (cf. Ref. 1 and references therein). In connection 
with developing the SU(5PSU(3)XSU(2) XU(I) model a 
few CGC were calculated in the original papers. 2 A critical 
review of the literature is a major task, which we do not 
undertake here. Nevertheless, one hardly avoids the conclu
sion that there are no satisfactory methods for the needs, for 
instance, of particle physics with its ever changing emphasis 
on different groups, subgroups, and representations.3 Our 
aim here is more than just to recalculate the old CGC and to 
find some new ones. By this computation we would like to 
demonstrate a method that is both practical and versatile. It 
hinges on the known fact that each representation space can 
be generated from the highest weight vector by successive 
application of generators of the Lie algebra. 

In this article we choose an important particular case 
instead of dealing with the method in its full generality. It 
allows us to point out general properties as observations 
made on specific cases without providing abstract proofs. 
The general properties underlying our computations are de
scribed elsewhere.4

•
5 An earlier version of the method is in 

Ref. 6. 
There are three problems one faces when computing 

CGe. The first is the choice of the basis for each space. Al
though we consider only a particular case, our method is 

a) Work supported in part by the National Research Council of Canada, 
Ministere de l'Education du Quebec and by the Korea Trader's Founda
tion and the Korea Science and Engineering Foundation. 

b) Permanent address: Dept. of Physics, Sogang University, Seoul, C.P.O. 
Box 1142, Korea. 

<) Present address: Caltech, Pasadena, California 91125. 
d) Dept. de Mathematiques, Universite de Montreal, Montreal, Quebec, 
Canada. 

applicable to representations of any semisimple or reductive 
Lie group-subgroup pair, which is clear already from the 
context of this paper and which will be illustrated also by 
subsequent papers. The choice made here involves a stan
dard set of generators for each Lie algebra related to the 
roots of the algebra. Each representation space is viewed as a 
direct sum of mutually orthogonal subspaces labeled by 
weights (additive quantum numbers) of the representation. 
There exists a unique highest weight for each irreducible 
representation. It is used to identify the representation. The 
weight subspaces of the simplest representations are all one
dimensional so that weights specify orthonormal basis vec
tors. This is the case, for instance, for all irreducible repre
sentations ofSU(2) or the fundamental representations of 
SU(5) of dimension 5 and 10 and also for all SU(5) representa
tions with the highest weight (k,O,O,O), k = 1,2,00' . Starting 
from products of these representations, we define complete 
bases in spaces of higher representations as products of basis 
vectors from the simplest ones and their linear combina
tions. It turns out to be a satisfactory procedure for all cases 
of practical interest at present, not only those considered 
here. Practically, we rarely need to use this construction ex
plicitly; its purpose is to provide a well-defined basis in each 
space. The overall phases in irreducible subspaces are chosen 
by simplicity only. 

The second problem one faces is due to the frequent 
preference in physics given to a particular subgroup of the 

TABLE I. Identification of tables ofSU(5) Clebsch-Gordan coefficients 
and tensor products of representations. For further properties of these re
presentations, see also Table II. 

Tensor product 
ofSU(5) Reduction of 
representations the product 

5 ® 5 
5® 10 
5® To 

15® 5 
15® 5 
1O®1O 
5® 5 

IO®W 
5®24 

1O®24 

15 Ell 10 
40EIlW 
45 Ell 5 
35 Ell 40 
70Ell 5 
50 Ell 45 Ell 5 
24 Ell 1 
75 Ell 24 Ell 1 
70Ell 45 Ell 5 

175 Ell 40 Ell 15 Ell 10 

Table of CG coefficients 
SU(5)-basis Subgroup 

basis 

Table IV Table IV' 
Table V Table V' 
Table VI Table VI' 
Table VII Table VII' 
Table VIII Table VIII' 
Table IX Table IX' 
Table X Table X' 
Table XI Table XI' 
Table XII Table XII' 
Table XIII Table XIII' 
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TABLE II. Relevant irreducible representations of SU(5) and their reduction to representations ofSU(3) X SU(2) X U(I). Analogous results for SU(5) 
representations 5, 10, 15, 35, 40, 45, 50, 70, and 175 are obtained by (i) permuting the SU(5) representation labels (a bed) -+(d c b a), (ii) permuting the 
SU(3) labels (p q) --+(q pI, and (iii) changing the sign of the U(I) label. 

Highest 
Dimension weight 

5 (1000) 
10 (0100) 
15 (2000) 

Reduction to SU(3)X SU(2)X U(I) representation. 

(10)(0)(2) (jj (00)(1)(3) 
(10)(1)(1) (jj (01)(0)(4) (jj (00)(0)(6) 
(20)(0)(4) (jj (10)(1)(1) (jj (00)(2)(6) 

24 
35 

(1001) 
(3000) 

(11)(0)(0) (jj (10)(1)(1) (jj (01)(1)(1) (jj (00)(2)(0) (jj (00)(0)(0) 
(30)(0)(6) (jj (20)(1)(1) (jj (10)(2)(4) (jj (00)(3)(9) 

40 (1100) (20)(1)(1) (jj (11)(0)(6) (jj (10)(2)(4) (jj (01)(1)(1) (jj (10)(0)(4) (jj (00)(1)(9) 
45 
50 

(1010) 
(0200) 

(11)(1)(3) (jj (20)(0)(2) (jj (01)(2)(2) (jj (10)(1)(7) (jj (10)(0)(8) (jj (01)(0)(2) (jj (00)(1)(3) 
(20)(2)(2) (jj (11)(1)(3) (jj (02)(0)(8) (jj (10)(1)(7) (jj (01)(0)(2) (jj (00)(0)( TI) 

70 (2001) (21)(0)(2) (jj (20)(1)(7) (jj (11)(1)(3) (jj (01)(2)(8) (jj (10)(2)(2) (jj (00)(3)(3) (jj (10)(0)(2) (jj (00)(1)(3) 
75 (0110) (11)(2)(0) (jj (02)(1)(5) (jj (20)(1)(5) (jj (11)(0)(0) (jj (01)(1)(5) (jj (10)(1)(5) (jj (10)(0)( TO) (jj (01)(0)(10) (jj (00)(0)(0) 

175 (1101) (21)(1)(1) (jj (20)(2)(4) (jj (12)(0)(4) (jj (11)(2)(6) (jj (11)(1)(9) (jj (10)(3)(1) (jj (02)(1)(1) (jj (20)(0)(4) (jj (01)(2)(4) (jj (11)(0)(6) (jj (01)(1)( TI) 
(jj 2(10)(1)(1) (jj (00)(2)(6) (jj (01)(0)(4) (jj (00)(0)(6) 

given group, for instance, SU(3)XSU(2)XU(I) in SU(S). The 
weights (quantum numbers) used to specify basis vectors 
should be those related to the subgroup rather than the 
group. In principle, a subgroup can be inserted in the group 
in many equivalent ways. However, for simplicity of our 
computation, a particular insertion is an imperative. Name
ly, all generators of the subgroup which lower (raise) the 
weights of a weight vector must be linear combinations of 
group generators which lower (raise) to group weights. Prac
tically, the insertion is specified by a projection matrix trans
forming any group weight into a subgroup weight. A con
struction of these matrices is described in Ref. 7, and many of 
them are listed in Table IV of Ref. 8. 

The last (not least) problem is that of the large number 
of CGC. The CGC corresponding to the tensor product 

A®A'= ® Ai 
i= 1 

(1 ) 

of representations A and A ' are merely transformation coef
ficients from the product basis to the basis in the reduced 
form. Instead of calculating and tabulating all the coeffi
cients, it suffices5 to find and list a small subset of them 

which is representative of all the others. More precisely, we 
use a finite subgroup N ofSU(S) or SU(3)XSU(2)XU(I) (de
pending on the actual basis) which permutes the weight sub
spaces, suitably chosen basis vectors, and also CGC, and 
which allows us to produce any other basis vector, or CGC, 
from those listed here. 

Section 2 contains preliminaries indispensable for the 
SU(S):)SU(3)XSU(2)XU(I) case. For a general case one 
should consult Refs. 4 and S. In Sec. 3, CGC tables are pre
sented. The coefficients here are calculated relative to a basis 
independent of the subgroup. Section 4 contains CGC calcu
lated in the subgroup basis. It is explained how to relate any 
particular CGC one may need to an entry in the tables. 

For convenience we adopt the convention of writing a 
minus sign as a bar over the corresponding integer in all 
matrixlike symbols. 

2. MATHEMATICAL PRELIMINARIES 

The immediate motivation for our own computation is 
the standard assignment of one family of IS fermions to a 
reducible representation ofSU(S). It is summarized in Table 

TABLE III. Assignment of basic fermions to SU(5) and SU(3) X SU(2) X U( 1) representation spaces. Each irreducible representation is denoted by its highest 
weight. The entries are ordered according to SU(5) weights. For convenience negative signs are shown as bars over the cipher. 

Electric SU(3)XSU(2)XU(I) SU(5) 

Fermion charge Weight Representation Weight Representation 

de 113 (01)(0)(2) (01)(0)(2) (0001) y 
v, 0 (00)(1)(3) (00)(1)(3) (0011) 
d' 113 (11)(0)(2) (01)(0)(2) (0110) 

b 

(0001) 

e -1 (00)(1)(3) (00)(1)(3) (1100) 

d: 113 (10)(0)(2) (01)(0)(2) (1000) 

u, 2/3 (10)(1)(1) (10)(1)(1) (0100) 
u' - 2/3 (01)(0)(4) (01)(0)(4) (1110) y 

(11)(1)(1) (10)(1)(1) (1010) Ub 2/3 
d, -1/3 (10)(1)(1) (10)(1)(1) (lOll) 

e' I (00)(0)(6) (00)(0)(6) (1111) 

u~ - 2/3 (11)(0)(4) (01)(0)(4) (1001) 

(0100) 

Uy 2/3 (01)(1)(1) (10)(1)(1) (1101) 

db - 113 (11)(1)(1) (10)(1)(1) (0101) 

U: - 2/3 (10)(0)(4) (01)(0)(4) (0111) 

dy - 113 (01)(1)(1) (10)(1)(1) (0010) 
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III. Note the one-to-one correspondence between weights 
and the fermions. 

A. SU(n) Lie algebras and roots 

Let us describe the Lie algebras ofSU(n), n = 2,3,5, in
volved in our computation and also their action on the fer
mions of Table III. 

An SU(n) has n2 
- 1 generators. For our purpose the 

following choice is by far the most convenient: 

e ±a,' haj , i = 1,2, ... ,n - 1, 

e±(aj+aj+,)' i= 1,2, ... ,n-2, (2) 

e ± (a, + ." + an _ ,). 

Here ai' i = l, ... ,n - 1, are vectors (simple roots of the alge
bra) of a real Euclidean space. Their lengths and relative 
angles are given by the scalar products 

(a i ,aj )=20ij-8I ,li_il' i,j=I,2, ... ,n-1. (3) 

The sUbscripts; of e ± ~ in (2) taken with positive sign 
form the set n of positive roots of the algebra. The n - 1 
generators ha, have the following linearity property: 

haa + ba = aha + bha , a,bER.. (4) 
'J I j 

The nonzero commutation relations ofSU(n) generators are: 

[ea ,ep ] = Napea +13 if a, {j, and a + {jEll or 
-a -PEll, 

[ea,e -a] = ha if aEfI, (5) 

[ha,e ±a] = ± 2e ±a ifaEfI, 

where NaP are constants usually chosen equalto ± 1. We fix 
them subsequently only as far as some of the generators 
ea + P are needed. One notices that from the 2n - 2 genera
tors e ± aj one obtains all the others by commutation. There
fore, it suffices to consider only the action of those genera
tors in any representation. 

Let us point out that the generators (2) can be associated 
with the n X n matrices Eij with 1 at the intersection of ith 
row andjth column and 0 elsewhere as follows: 

eaj + ... + ak = Ei,k + 1 } 
_ E ,i<k, i,k = 1, ... ,n, 

e ~ a, - ... _ Ok. - k + 1.; 

ha
j 
= Eii - Ei+ I,i+ I' i = 1,2, ... ,n - 1. 

B. Weights and representations 

Every irreducible representation space we consider 
here is built out of the weight vectors (fermions) of Table III. 
Denoting each fermion by its SU(5) weight 
W = (W 1,W2,W3,W4) and ha

j 
and e ± a

j
' respectively, by hi and 

e ± i, one can write the action of the SU(5) generators on the 
fermions as follows: 

1957 J, Math. Phys., Vol. 24, No.8, August 1983 

(7) 

Here all upper (lower) signs and inequalities have to be taken 
simultaneously in each equality. Let us point out that an 
element X of the SU(5) Lie algebra acts on a product of two 
fermions as a derivation, i.e., 

X (w)(w') = (X (w))(w') + (w)(X(w')), (8) 

The coordinates Wi of a weight W are equal to the inte-
gers 

Wi = 2(w,a i )/(ai ,ai ), i= 1,2, ... ,n - 1. (9) 

In particular, taking for w one of the positive roots, one finds 
its coordinates (9) using (3). An irreducible representation is 
specified conveniently by the highest weight. Coordinates (9) 
of a highest weight are nonnegative integers. For examples, 
see Table II. 

There exists a standard algorithm for computing all 
weights of a representation starting from the highest one (cf. 
Refs. 4 and 8 and references therein). 

Let us underline the difference between a weight wand 
the weight vector (w). The weight vector belongs to a repre
sentation space, i.e., it is transformed by elements of the re
presentation of the group, weight w is just the set of integer 
labels ("quantum numbers") used to denote the weight vec
tor. The group representation does not act on it. 

c. SU(3) X SU(2) X U(1) in SU(5) 

Generators of the subgroup SU(3)xSU(2)XU(I) are 
linear combinations ofSU(5)-generators. The projection ma
trix 

o 
o 

o 

o 

(10) 

acting from the right on every SU(5)-weight w transforms it 
into wP, a weight ofSU(3)xSU(2)XU(I). In particular, it 
projects the SU(5) simple roots into those of the subgroup. 
That can be used to find the subgroup generators compatible 
with the projection matrix (10). Thus one finds the SU(3) 
generators as 

e ± /3, = e ± (a, + a2) = [e ± I ,e ± 2 ], 

(11) 
e ± /32 = e ± (a, + a4) = [e ± 3 ,e ± 4 ] , 

those ofSU(2) as 

e ± r = e ± (a2 + a,) = [e ± 2 ,e ± 3 ] , (12) 

and the one of U( 1) as 

h = 2h I - h2 + h3 - 2h4 • (13) 

Note that the electric charge operator Q, whose eigenvalues 
are listed in the second column of Table III, is 

Q=!(h2+h3)-~h. (14) 

The U(l) component of an SU(3)XSU(2)XU(I) weight 
does not vary within an irreducible representation. There-
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fore, we do not need to use it in the computation of CGC 
besides what is shown in Table II. Consequently, it suffices 
to consider only the left three columns of the matrix P, i.e., 
the projection matrix for SU(SPSU(3)XSU(2). The U(I) 
weights associated with any representation other than those 
in Table II are readily found from Ref. 9. 

D. Finite groups Wand N 

In order to find a desired CGC or a basis vector from 
those listed in our tables below, one has to use two finite 
groups related to the problem. The group W permutes the 
weights of a representation, without changing the whole 
weight system. It is generated by reflections rj in planes or
thogonal to simple roots a j • An SU(n) weight 
W = (wH""wn _ I ) is transformed as follows: 

(15) 

All weights which are obtained from a given one by the ac
tion of the Weyl group belong to the same W-orbit. It is 
known that each W-orbit contains precisely one weight with 
all components nonnegative (dominant weight). Thus, for 
instance, all weights of the SU(S) representation S are in the 
same W-orbit. The same is true for the weights of the repre
sentation 10. 

The Weyl group acts in the space spanned by simple 
roots. Similar action in the representation space is provided 
by the group N generated by the operators5 

R; = exp(e _ ; ) exp( - e;) exp(e _; ) 

= (1 + e _; + ···)(1 - e; + ... )(1 + e _; + ... ). (16) 

Applications of (IS) and (16) are shown in subsequent sec
tions. 

The group Wacts in the weight space. The group 
NC SU(S); therefore, it acts in the representation space. W 
and N are not isomorphic as groups: If (w) denotes a weight 
vector of weight w, and r;w is given by (IS), then5 

R;(w) = ± !r;w), when r;w#w. (17) 

The relation ( 17) allows one to reduce the number of 
CGC which have to be listed in our tables. Suppose that w is 
the dominant weight on an orbit of W (such a weight is al
ways unique) and that the weight subspace V ~ of a represen
tation space VA has dim V ~ > 1. Suppose further that a 
complete basis in the subspace V~ has been already con
structed in some way. Then (17) allows one to translate that 
basis to any other subspace V ~w' rj E W. Hence it suffices to 
construct the basis only once in V ~ instead of in each sub
space corresponding to the same W-orbit. 

The actual sign in (17) has to be determined either by 
direct computation or from the general prescription of Ref. 
S. For the SU(S) weight vectors from representation spaces of 
(0001) and (0100) shown in Table III, the action (17) of Ru;, 
where a j is any of the simple roots of SU(S), is given by 

Ra,(w) = (w) if rjW = w, 

(18) 
Ra,(w) = (w,aj)(rjw) if rjw¥=w, i= 1,2,3, and 4, 

where (w,~) is the scalar product of the weight w with the 
positive root~. In particular, RaJ (0001) = RU2 (0001) 
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= Ra3 (0001) = (0001), Ra.!OOOI) = (001 I), RaJ (001 I) 
= Ra2 (00II) = (0011), and Ra,(OOII) = (0110), Ra.(OOII) 
= - (000 I), etc. Let us get the last equality in all details: 

Ra.!OOII) 
= (I + e_ 4 + .. ·)(1 - e4 + .. ·)(1 + e_ 4 + ... )(0011) 

= (I + e_ 4 + .. ·)(1 - e4 + · .. )(0011) 

= (I + e_ 4 + ... )1(0011) - (OOOI)J 

= (0011) - (0001) - (0011) 

= - (0001). 

Here we used repeatedly Eqs. (7). 
The operators R; represent elements of the group 

SU(n); hence, they act on the tensor product oftwo weight 
vectors according to 

R;(w)(w') = (R;(w))(R;(w')). (19) 

Subsequently, we consider only weight vectors, not the 
weights. 

3. SU(5) CLEBSCH-GORDAN COEFFICIENTS 

In this section we describe CGC related to the tensor 
products listed in Table I. No reference is made here to any 
subgroup. We comment separately on each table starting 
from the simplest one, introducing some conventions, pro
viding examples, and pointing out important aspects of the 
derivation as they arise. 

A. CGC for 5 ® 5, Table IV 

Multiplicity of each weight in (1000) is one. Hence we 
can use the weights of this representation to denote orth
onormal basis vectors of the representation space without 
ambiguity. Relevant transformation properties are given in 
(6) and (7). As an illustration let us rewrite the content of 
Table IV as follows: 

G:) = (1000)(1000), (20) 

(~:) = ~ (1000)(1100) + ~ (1100)(1000), (21) 

(
0100) I - 1-
0100 = v2 (1000)(1100) - v2 (1100)(1000). (22) 

Here on the left we write the highest weight above the 
weight, thus underlining the irreducible subspace to which 
the vector belongs. On the right side the weights of the repre
sentation (1000) denote the basis vectors ofthe product 
space. Using Table III, the right side can be read as a combi
nation of two-fermion states. 

Equation (21) is obtained from (20) by the action of e _ I 
accordiong to (7) and (8). One could also describe indepen
dently the action of the generators on the left side. However, 
for our limited purposes it is simpler to define the left side by 
the right one. Namely, 
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e_l(~:) 

= (e_dlOOO))(IOOO) + (IOOO)(e_l(IOOO))-(~:) 

= _I (1100)(1000) + _I (1000)(1100). 
v'2 v'2 

Here 11v'2 is just the normalization coefficient. The highest 
weight vector (g:~) does not belong to the subspace which is 
generated from (~~); hence, it is orthogonal to (~~). Choos
ing conveniently its phase, one gets (22). 

One can continue applying generators e_ i and thus 
construct further basis vectors for both irreducible sub
spaces. Some examples are: 

(
2000) (2000) - -

e _Ie -I 2000 - 2200 = (1100)( 11(0), 

e_2(~:)-G:) 
=_1 (0110)(1000)+ _1_(1000)(0110), 

v'2 v'2 

LIG:)-(~:) 
= ~ (0110)(1100) + ~ (1100)(0110)-e_2(~:). 

e-3G:)-(~~) 
= _1 (0011)(1000) + _I (1000)(0011), (23) 

v'2 v'2 

(
0100) (0100) 

e -2 0100 - 1100 

= _1_ (1000)(0110) __ 1_ (0110)(1000), 
v'2 v'2 

etc. These computations are easy in a simple case as this one. 
They quickly become prohibitively long when considering 
higher representations and/or higher rank groups. 

An important observation can already be made here: 
There is considerable repetition of cac values. The coeffi
cients take only two nonzero values, 1 and 11v'2, in the repre
sentation space (2000), and ± 11v'2 in (0100). The explana
tion lies in relation (17). Indeed, one has 

(~:) = R a , G:) 
= R a , (( 1(00)( 1(00)) = (1100)(1100), 

(~:) = RazRa, G:), (24) 

(
2000) _ R R (2000) 
0022 - Ra) az a, 2000 ' 

(
2000) (2000) - =R R R R . 0002 a. a, a. a, 2000 

1960 J. Math. Phys., Vol. 24, No.8, August 1983 

Similarly, 

G:) = R a, (~:), 
(
2000)_R R (2000) 
1010 - ", a, 0100 ' (25) 

(~~~~) = R u ,Ra2 (~:), etc. 

The application of the operators Raj according to (17) 
using also (16) is much faster than the computation as in (23). 
The cac corresponding to all nonzero vectors 

(
2000) R · .. R 

a" "'k 2000 
(26) 

are equal to 1, those in 

Raj,'··Ra" (~:) (27) 

are all 11v'2, and in 

(
0100) R · .. R 

a" a,w 0100 (28) 

are ± 11v'2, where the sign is decided using (22). 

B. CGC for 5 x 10, Table V 

Comments similar to those in the previous case can be 
made about Table V. The new feature here is the presence of 
two weight vectors (b6r6 hand (b6r6 bin the (11 OO)-representa
tion space. They are obtained from the highest one as fol
lows: 

( 
II (0) ( 11 (0) 

e_ I e_ 2 1100 - 0010 I 

= _1_ (1000)(1010) + _1_ (1100)(1110) 
v'2 v'2 

(29) 

( 
11 (0) ( 11 (0) e_ze_1 1100 - 0010 2 

= _1_ (1100)(1110) + _1_ (0110)(0100). 
v'2 v'2 

(30) 

The product basis vectors in the first column are pairwise 
orthogonal. Their linear combinations (29) and (30) are not. 
The vector (~:g) of the last column is orthogonal to (29) and 
(30). An application of the operator Raj to the four-vectors of 
Table V according to (17) and (16) produces the rest of the 
basis in the reduced space and thus also all the cae. 

C. CGC for 5 X 10, Table VI 

Table VI is similar to Table V. There are five dominant 
vectors, four in the (10 1O)-space: ng:g) and three others of the 
same weight: (~~ )1' (~~ lz, (~~ b· In the (OOOI)-space there is 
only one dominant vector, (~: ). The subscript i at (~~)i 
indicates that e _ i was the last generator of the three needed 
to get to the (000 1 I-subspace from the highest weight one. 
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TABLES XI-XIII. SU(5) Clebsch-Gordan coefficients. 

5x24 I (ZOOl) (ZOOI) (0101 ) 

1(1000)(1001) I (0101 ) (0101 ) 

1(1000)(1101 ) 11"/2 1//2 

(1100)(1001) l/Vz .I/Vz 

(0101) 1(2001) 

(1OOO)zl (1000)31 (1000). 1 (1000)11 (1000 

(1000)(0000)1 
1M I I ,-llv) 

1M I 1/-12 
(1 000)(0000) Z 

(1000)( 0000) 3 

(1000)( 0000). 

(1100)(2;00) 

(0110)(1110) 

(0011 )(1011) 

(0001)(1001) 

.1/Z 

.1/2 

'(i";O'ij 
lOx24 (1101 ) 

1(0100)(1001) 1 

(1110)(1101) 

(1010) (1001) 

(1101 ) 

(0011) 

1/-12 

l/Vi 

11-12 

.1/Z 

.1/Z l.l/Z 

.1/Z 

(0011 )Z 

ltVi 

(0011 ) 

(0011 ) 

l/Y3 

·1/V) 

1M 

(1101 ) 

lIZ 

lIZ 

lOxlO 
~ 

(0110) (0110) 

L (0100)(0010) 1 (loo1)Z 

(0100)(1;01 ) IIV'!. 

(1110)(0111 ) IIV'!. 

(1011)(0010) 

(1000) 

)Z (1000)3 (1000). (1000) 

• ztv'l! 

3/z.1f! 

IIV'!. • lIv'1! 

IIV'!. l/z.1f! 

~/z-.f 

lIZ ~/z-.f 

lIZ lIZ If/zvr; 

lIZ .If/M 

(ZOOO) 

(0100)(0111 ) 1/-12 '1IY3 (ZOOO), (Zooo)l (2000), (Zooo) 

(0100)(z100) 1/-12 1/2 

(1110)(1110) IIV'!. 1/-12 ·l/Z 

(1001)(1001 ) 11-1'l ·1/2 (2000) 

(1011 )(l01T) 11-1'l IIV'!. lIZ (0100) 

(0100)(0000)1 1/2 

(Ol00)(oooo)Z 

(0100)(0000)3 

(0100)(0000). 

(1010)(1110) .1/"," 

(1101 )(1001) .1/'" 

(1110)(1210) .IM 

(1001 )(1101) .1/v1 

(1oi1)(i111 ) 1",," 

(i Ii 1 )(1011) 1",," 

(1001 ) 

(1001)3 (1001 ) 

.1/Y3 

IIV'!. l/Y3 (0110) (1001 ) (0000) 

1/-12 .1/Y3 (0000). (ooOO)b (0000>0 (OOOO)d (0000). (0000)1 (OOOO)Z (0000)3 (0000). (0000) 

(0100)(0100) 1/2 .1/Yr" 1/''TlI 

(1110)(1110) 1/2 lIZ ·1/"" .1/'" ·1/"" .1/~ 

(1010)(1010) lIZ lIZ .1/"" 11"" 1/~ 

(loll )(1011) 1/2 lIZ 11'" .1/"" .1/'" 1/~ 

(1111 )(1111) lIZ lIZ lIZ lIZ lIZ 11'" 11'" 11"" l/V6 .1/~ 

(1001 )(1001) 1/2 ·1/"" .1/V6 .1~ 

(1101 )(1101) lIZ lIZ .1/'" .1/'" 11'" 1/~ 

(0101 )(0101) lIZ lIZ 11'" .1/'" 1/~ 

(0111)(0111 ) lIZ lIZ .1/'" .1/'" .1/V6 .1/J1li 

(0010)(0010) lIZ .1/V6 11\"10 

(0011 ) (1101 ) (0100) 

(0100)3 (0100). (0100)21 (0100)31 (0100).1 (0100)2 (0100)3 (0100). (0100) 

1/.fi .1/~ 

Vv~ -I'llyr; 

.1/-ii llli .M/M 

.1/>i 11-1'l -I'lIM 

.1/vi lIZ 1/2 -./5/6 

.1/,.f 112 -./5" 

11"" lIZ 1/2 l/ij 1/2 .yr;/6 

11"" 112 lIZ .yr;" 

II'" lNi 1/2 lIZ lIZ lIZ yr;" 

.1"" ·lNt 1/2 lIZ .yr;" 



                                                                                                                                    

D. CGC in Tables VII-XI 

These tables are similar to the previous ones, Table XI 
being the most complicated of them all. Each of the five 
linearly independent vectors of the weight (0000) in (0110) in 
this Table can be obtained in many different ways. For in
stance, one way is as follows: 

E. CGC in Tables XII and XIII 

There is a new phenomenon in these tables. At least one 
of the representations in the product has some weights of 
multiplicity> 1. consequently, in the product there occur 
weight vectors with subscripts. In order to know correctly all 
the properties of such a basis vector, one has to use a corre
sponding earlier table, where such a vector is built ou t of the 
simple ones. 

Consider the vector 

(
0101) 
1000 2 

= !(11OO(21OO) + ~(01 10)(11 10) __ 1_ (looo)(OOOOlz 
vL 

of Table XII. Here (OOOOb stands for the vector (~lz given 
in Table X, or also for the same vector of the 12th column of 
Table XI. If some detailed properties of (OOOOb are needed 
one has to refer to one of these tables. Clearly, it is simpler to 
use Table X than Table XI. 

4. CLEBSCH-GORDAN COEFFICIENTS IN THE 
SUBGROUP BASIS 

In this section we require that each basis vector has a 
definite SU(3)XSU(2)XU(I)-weight and that it belongs en
tirely to one subspace irreducible with respect to the sub
group. These requirements are obviously satisfied by the fer
mions of Table III. Their subgroup weights are given in 
column 3, and the subgroup multiplets are identified in col
umn 4. However, for other SU(5) representations the situa
tion is generally more complicated. 

Every SU(5)-weight W = (WI W 2 W3 w4) corresponds to a 
definite subgroup weight v = (VI V2)(V3)(V4). The correspon
dence is made explicit by means of (10): 

v = wP = (WI + W 2,W3 + W4)(W2 + w3) 

X(2wI - W 2 + W} - 2w4 ), (31) 

where the parentheses indicate the SU(3), SU(2), and U(I) 
weights, respectively. 

1962 J. Math. Phys., Vol. 24, No.8, August 1983 

In order to assure that a subgroup weight vector be
longs to just one irreducible subspace, it has to be generated 
from the highest weight, as before, using the generators (11) 
and (12) only. Also the operators ri and Ri act in the same 
way, but now i stands for a root ofSU(3) or SU(2). The finite 
groups Wand N are smaller in the case of the subgroup than 
for SU(5). The subgroup weights which are dominant (all 
components;;;.O) are more numerous. Consequently, the ta
bles of previous section need not only reinterpretation of the 
weights using (31), but also refinement (they get bigger). 

The product space reduces first according to SU(S) and 
then each of the spaces reduces further according to the sub
group. The weight vectors with repeated subgroup weights 
referring to different SU(5) subs paces are automatically 
orthogonal, those referring to the same SU(5) subspace but 
different subgroup subspaces must be constructed to be orth
ogonal. 

For simplicity of notation the U( 1) part of each sub
group weight is omitted. It does not affect the CGC, and it is 
given in Table II. 

Example: CGC for 5 X 5 in the subgroup basis, Table IV' 

The Tables IV and IV' refer to the same tensor product 
of SU(5) representations. The product basis in both cases is 
the same. Table IV' is considerably bigger than Table IV 
because there are more subgroup weights which are domi
nant. The first line of each column of Table IV' indicates the 
SU(5)-irreducible subspace. The second line gives the highest 
weight of each subspace irreducible with respect to the sub
group. The third line gives the actual subgroup weight vec
tor. The three linear combinations of Table IV can easily be 
identified. For instance, (~~) of (20) becomes the highest 
weight vector (~g)(g )of the (2000) space, etc. The vector (~~ )(g) 
is obtained as follows: 

e -~1 G~)(~) = (e __ l e _2 - e_2e_I{~:) 
= (e_ Ie_ 2 - e_ 2e_d(I000)(1000) 

- e_ 2(1IOO)(IOOO) - e_ 2(IOOO)(1Ioo) 

- (0110)(1000) - (1000)(0110). 

Thus one has 

(~~)(~) = 
1 - I 

vL (0110)(1000) - v2 (1000)(0110). 

(32) 

The highest weight vector (g: )(g) from the SU(5)-sub
space (0100) is found by requiring its orthogonality to (~~)(g) 
of(32): 

(~~)(~) = ~ (1000)(0110) - ~ (0110)(1000), (33) 

where again the phase is chosen by convenience only. 
Since the subgroup weight (00)(2) is unique in the whole 

system, the highest weight vector (~)(~) of the (2ooo)-space is 
found in a different way. Using the projection matrix P of 
(10), one has to find among the product basis the one basis 
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TABLES VIII' and IX', SUIS) Clebsch-Gordan coefficients in the subgroup basis, 

~ 

15x5 (21)(0) (2001 ) 

(21)(0) (21)(0) (2001) 

r (2000)(0001) 1 (02)(0) (20)(1) (2901) 

1(1110)(0001 ) _1 (20)(1 ) (20)(1 ) (2001) 

1(2000)(0011) 1 (01)(1) (11)(1) (2001) 

I (1"0)(00'!) _1 (11)(1) (01)(2) (2001) 

I (0100)(0001) 1 (01 )(2) (01 )(2) (2001) 

I (~200)(0001) 1 (01 )(0) (10)(2) (2001) 

"'io2OOi' 
1(1111)(0001) _I (10)(Z) (OO)(]) 

1(0100)(0011) 1 (00)(3) 

10xl0 (20)(2) (0200) (1010) I (~200)(0011) 1 

(20)(2) (11)(1) (11)(1) (1110)(0110) 

1(0100)(0100) I (11 )(1) (11)(1) (0200) (1010) (1001)(0001) I (0100)(1110) 1/v'1 IIv'1 (20)(2) (01)(2) (2000)(1000) 

(1110)(0100) IIv'1 -IIv'1 (01 )(2) (01 )(2) (1010) (0200) (0100)(1100) I (0100)(1010) l/v'1 l/v'1 (20)(0) (20)(2) (1011)(0011) 

(1010)(0100) l/v'1 "Iv'1 (20)(0) (20)(0) (0200) 

1(0100)(1011 ) 11v'1 _ l/v'1 (OZ)(O) (OZOO) (1010) 

(1011)(0100) -lr1[ _11v'1 (OZ)(O) (10)(1) (10)(1) 

L(1110)(II10) I (10)(1 ) (10)(1) (1010) (0200) 

1(0100)(1111) l/v'1 1/v'1 (10)(0) (02)(0) 

(11")(0100) 1/v'1 -IIv'1 (10)(0) (10)(0) (0200) 

1('001)("'0) 1!v'1 -1/v'1 (2O)(Z) (01)(0) 

(1110)(1001) -1/v'1 -1/v'1 (01)(0) (01 )(0) 

(0100)(0101 ) III lMl 

(0101 )(0100) 1/2 1/v'fz 

(1010)(1011 ) -liZ l/v'fZ 

(1011)(1010) -lIZ 1/v'f1 

(1110)(1"1) "'" (1111 )(1110) IiV!' 

(2001 ) (1000) 

(21)(0) (10)(Z) (10)(0) (10)(0) 

(10) ,(0) (10) (0) (10)(0) (10)(0) (10)(0) 

llVi -Virli l/v12 1/~ 

-l/Vi 1/v12 I~ 

1/"'i 1/10{ 1/YJ (ZOOl) (1000) 

1M l/V) -1/~ (11)(1) (00)(3) (00)(1) (00)(1) 

-II>I'i 1/V) -1~ (00)1 11 ) (00),(1) (00)(1) (00)(1) (00)(1) 

(1010)(0110) -lr1[ lr1[ 11,,( 1/,,( 

(1101)(0001) -lr1[ INC' INC' 

(0100)(1000) lr1[ 1M lNr 

(1200)(1100) l/'1f l/'If -I/'If 

(1111)(0011) -v'1tVf lN1' -IN1' 

(1010) (0001) 

(20)(0) (01 )(Z) (01)(0) (01)(0) 

(01)(0) (01)(0) (01)(0) (01 )(0) 

-1/2 1/2 -1M 

1/Z -lIZ -1M 

1/2 liZ -INC' 

-1/2 -lIZ -1/,,( I i02001 (1010) (0001 ) 

1/v'1 1/,,( (11)(1) (11)(1) 
11001111 1(00)(11 

-11v'1 1M (00) (1) (00),(1) (00) (I) (00),(1) (00)(1) (00)(1) 

(0100)(0111) 1/2 liZ INC' 1M' 

(0111)(0100) III -1/2 -1M 1M 

(1001)(1010) -liZ .112 1/2 111 -INC' 1M 

(1010)(1001) -1/1 -1/1 -111 -111 11>4 1M 
: (OZOO) 

(1110)(1101) -111 III 1M -1M I (00)(0) 

(1101)(1110) -1/1 -liZ -1M -1M (00)(0) 

1(1111)(1111) 1 
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vector whose SU(5) weight is transformed into (00)(2). Clear
ly one has (00)(2) = (2200)P; hence 

(:)G) = (1100)(1100). (34) 

Similar comments apply to the rest of Table IV'. 
The coefficients in the eight linear combinations given 

in Table IV' represent all CGC in this problem. Applying the 
operators Rp" Rp2 , and Ry as presented by (17) to the entries 
in the table, one produces the rest of the space. For instance, 

Using (18), one has also 

Rp, (1000)(1000) 

= (Rp,(I000))(Rp,(I000)) = (0110)(0110). 

Combining (35) and (36), we get 

G~)(~) = (0110)(0110). 

5. CONCLUDING REMARKS 

(35) 

(36) 

(37) 

Let us point out several features of the method used in 
this paper. The first is its algorithmic nature: It allows one to 
calculate relatively easily by hand almost any CGC one may 
want. However, it provides no formulas for them. The sec
ond is the systematic use of relation (17) which generalizes 
the well-known symmetry relation of the SU(2) Clebsch
Gordan coefficients: 

C(il,i2,i;ml,m2,ml + m2) 

= (- 1)1-1,-12C(il,i2,i; - m l , - m2, - m l - m2)· 

The third distinctive feature is the systematic use of weight 
systems of representations. It provides the generality ofthe 
method with respect to the choice of the group, its represen
tation, and also the subgroup; Eqs. (16) and (17) are valid for 
any simple Lie group. 

Finally, let us point out that the economy in computing 
CGC using the property (17) of the operators defined by ( 16) 

1967 J. Math. Phys., Vol. 24, No.8, August 1983 

is approximately equal to the order I WI of the Weyl group 
W. One has I WI = n! for SU(n). 
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Tensorial analysis of the hyperfine interaction operator by extensive use of 
Racah algebra and of translational invariance 
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(Received 30 April 1982; accepted for publication 25 February 1983) 

Strict application of Racah algebra gives an efficient way of deriving the tensorial form of the 
hyperfine interaction one-electron operator involved in NMR spin coupling effects. In particular, 
this procedure avoids the use of classic explicit arguments of integration around the origin to find 
the Fermi-contact term. The linear momentum is retained in its explicit translationally invariant 
form as long as possible during the calculations. This allows the tensorial expansion of the 
operator to be obtained rapidly at any origin of coordinates. The reduced matrix elements of 
interest are given by new general closed expressions in thej - j coupling scheme. 

P ACS numbers: 02.20. + b, 33.1O.Cs, 33.25.Fs 

I. INTRODUCTION 

Standard Racah algebra methods I have long been used 
to solve problems of electronic spin-spin or spin-other-orbit 
interactions. 2-7 This procedure is suitable for studying inter
actions between nuclear and electronic moments in a molec
ular system. Weare going here to make systematic use of 
Racah algebra for an examination of the hyperfine interac
tion operator H involved in the coupling between nuclear 
spins.s According to the usual rules and notations of vector
ial calculus, the scalar interaction H may be writtenS

-
1O as 

the sum of a spin-dipolar term Hs and of an orbital term HI 

H=Hs +HI' 

where 

Hs = - s·(VX(VX~/r)), 

HI = p.(Vx~/r). 

(1 ) 

(2) 

(3) 

In tensorial notations, the resulting equations have been giv
en l •II ,12 as follows: 

H= IH.,uj, 

where 

H=H,+H I , 

H, = (817/3) sO (r) - v'iOr- 3(sC(2))(I), 

(4) 

(5) 

(6) 

with the prescription of deleting the r- 3 term for S-states, 
and 

HI = r- 3 1. (7) 

The factor 2{J (f3 being the Bohr magneton) has been 
omitted. In these equations, s stands for the electronic spin, 
p for the linear momentum, and 'V for the usual gradient 
operator. The electronic radius-vector r, the electronic angu
lar momentum I, and the spherical tensor of rank 2, C(2), are 
assumed to be relative to the same origin of coordinates, 
denoted by 0, where the nuclear spin,u is localized. The tridi
mensional Dirac delta distribution ~ (r) describes the Fermi
contact term 13 [so that the use of the term "spin-dipolar" in 
Eq. (2) is somewhat improper]. 

The systematic use of tensor algebra provides a most 
effective method for deducing Eq. (6) from Eq. (2), for exam
ple, and the Fermi-contact term may be obtained without 
classic explicit argument of infinitesimal integration around 

the origin. By further retaining the translationally invariant 
explicit form p as long as possible during the calculations, we 
have an immediate means of expanding Hs as the sum of 
operators relative to another arbitrary origin. The only ex
pansion required will be that of l/r in Legendre polynomi
als. Some developments are formally equivalent to those 
found in two-body studies,5,7 but, in this case, such an exten
sive use of the p operator invariance is excluded. 

IIA. THE Hs OPERATOR 

Equation (2) may be written in tensorial notations as 

(8) 

According to Racah, I simple recouplings with 6 - j Wigner 
coefficients allow the nuclear spin part to be separated from 
the rest and give the scalar product Hs = I Hs',u J with 

Hs = [- 2~ s(pp)(O) + I s(pp)(I) J (I) 

+ $-ls(pp)(2)r
n

] (+). (9) 

The general expression for (pp)lk) is given in Appendix A by 
Eq, (A6). We may now inspect the cases k = 0 or 1 and espe
cially the nontrivial case k = 2. The tables of Rotenberg et 
al. 14 and Edmonds' formulas 12 are used to evaluate some 
n - j Wigner coefficients occuring in Eq. (A6) for the differ
ent cases. 

1, The (pp/O) term 

The coefficients of(l/r)(alar) and of - a 21ar are easi
ly calculated from Eq. (A6). Using the identity (B2) and the 1-
commutation relation to evaluate the coefficient of - l/r 2, 

we find 

(10) 

As expected, this expression gives the Laplacian in spherical 
coordinates, thus 

(pp)(O) = (1/.13)..::1, (11 ) 
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2. The (pp) (1) term 

The coefficient of interest here is that of - 1/r. Using 
the identity (B 1) and the value of a special 9 - j Wigner coef
ficient, 

1 
= 18' 

we find the final result (PP)(I) to be zero, as expected from 
\7X\7 = o. 

3. The (ppjf2) term 

With the aid of the equality 

{ ~ ~} __ 1 fI 
2 2 2 - 30 \j 3' 

we obtain a preliminary expression: 

(pp)12) = _ ~ [~ 1(2) + Jf4 (CI2)IIZ»)IZ) 
r 2 3 3 

_ ~ C(2)(II)IO) + 2(CIZ)I)12)] 

+ ~ ~ [2(CI2)1)12) + ~ C(2)] 
r ar J6 

_ L~c(2) 
ar2 J6 ' (12) 

where the 1(2) notation is that given in Appendix B. Ifwe 

insert - (4/J6)CI2) as a multiplicative coefficient of (1/r) 
(alar), the Laplacian appears again, but associated this time 
with the spherical tensor C(2). Using the identity (B4), we 
obtain the final result 

If all the terms of this equation, which are defined from a 
given origin, are assumed to be relative to the same one, i.e., 
0, those including I give exactly zero when operating on 1/r. 

Using now the relation L1( 1/r)= - 4m5 (r) (this identity 
implicitly contains a result of integration theory), we find 
that the remaining terms in Eq. (14) are (81T13)8 (r) and - fiQ 
[ - (41T13)CI2)8(r) + C(2)r- 3

]. It is important here to discuss 
these terms because they have formed the subject oflengthy 
analyses,9.15.16 in connection with the theory of hyper fine 
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structure splitting. Complicated arguments involving inte
gration of infinitesimal spheres have been used, necessitating 
prescriptions to indicate the path for integrating around the 
origin. With our formulation, no explicit argument of this 
type is necessary. First, the term (81T13)8 (r) appears straight
forwardly, as being the Fermi-contact term. 13 Secondly, if 
spherically symmetrical wave functions (S-state electron) are 
involved, the problem of the indeterminate integral 
(S IC(2)r- 3IS), which has the form Ox 00, finds an immedi
ate solution. Mere inspection of the second term (multiplied 

by - fiQ) will give the appropriate mathematical prescrip
tion. Indeed, no experimental data have yet required the use 
of an additional contact term; therefore, 

(S IC~)r-3IS) = (41T13)89O (S 18(r)IS), (15) 

a result which previously demanded lengthy proof. 16 

liB. THE H~ DISPLACED OPERATOR 

Let us now suppose that the nuclear moment It' is given 
relative to an origin 0' different from O. We wish to expand 
the corresponding H~ operator as a sum of operators relative 
to the first origin 0 (primed quantities are taken with respect 
toO').Thus 

(16) 

The advantage ofEq. (14) is as follows. The complicated but 
translationally invariant tensor of rank 1 operating on 1/r' 
may be expressed in relation to any origin, especially that of 
interest, O. It only remains to expand 1/r' in Legendre poly
nomials. There is no need to expand higher powers 1/r,k, 
with k>2, as used in standard references. 11 

The notations used now will be more or less classic, but 
require some explanation. If 1 stands for the electron, we 
have 0'1 = r', 00' = d, r < = inf{r',d), r> = sup(r',d). Two 
spherical tensors will appear: C ~k 1(1) denoted by Clk) , and 
C~k)(O') by C'lk), with C ~Ik) = 090 if 0 = 0'. elk)is a kind of 
geometrical constant, but the meaning of ! Cls)c ,(1) 1 Ik I must 
be understood as a classic tensorial form. Expansion of 1/r' 
in Legendre polynomials may be given as 

(17) 

Now, if we take Eqs. (14) and (17), we must keep in mind the 
fact that the operator I acts on C. In terms of the form 
{C! ce J }, the usual recouplings between C have to be per
formed. Replacing Eq. (17) in (14) and using the result 
(11)1') IClk)C'lk) liD) 

= (_ 1)'(2k + 1)1/2[k(k + 1)] {~ k ~} 
!Clk)C'lk)llli, (18) 

we see that most of the detailed recouplings are formally 
equivalent to those of Horie,5 although we are concerned 
here with monoelectronic operators. As a result, a sum of 
two complementary operators is found, acting for radial in
tegrationfromOtod (whenr k is in numerator) and from d to 
00 (when r k is in denominator). We shall use this integration 
convention later. Thus 
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H; = [8; s + 4; JIQ(SCI21)(lI] o(r') 

_ i _1_ ( _ It [(2k + 5)! ] 112 

k = 0 2/3 (2k )! 

X [~ I (SC(kl)lk + IIC ,(k + 21}(l1 
d k + 3 

+ ~ I (SOk + 21)(k + l)C'(kl}(l)]. (19) 
rk + 3 

Equation (19) gives a quite clear means to understand 
the nil translation limit (d-o). Firstly, the angular integra
tion (in sin 0 dO difJ ) must be performed. This operation sets 
the k = 0 value if the apparently problematic S-states case is 
involved. Secondly, the radial integration sg (in r 2 dr) is per
formed on the only nonvanishing (lid 3)1 sC ,(2I}(l1 term and, 
thirdly, d is set equal to zero. The result cancels exactly with 
the (sC(2))(l)o (r') term. This correct procedure is not conflict
ing with Eq. (15), but agrees perfectly with it. 

The Dirac distribution can also be expanded using the 
relation 

o(r') = _1_ I (2k + 1) O(r ~ d) Pk (cos wI, (20) 
417" k r 

where Pk is a Legendre polynomial and w the angle between 
rand r'. Standard recouplings and some algebraic rearrang
ments lead to the final form for h:, defined in Eq. (16): 

h: = _1_ ( _ W o(r - d) 
/3 r 2 

X [I - (2k + 1)3/2(SC(k l )(k l C'(k l 

+ [(k + 2)(2k + 1)](2k + 3)-1/2(SOkl)lk+ IICt(kl 

+ [(k - 1)(2k + 1)](2k _1)-1/2 
X (SOk 1)lk - l)C t(k I) (II] 

+ _1_ ( _ l)k [ (2k + 5)! ] 112 

2/3 (2k)! 

X [[(2k + 3)-1 o(rr~ d) 

X !(SClk I)(k + IIC ,Ik + 21) (II 

+ [(2k + 3) - I o(r - d ) d
k

] 
r 2 rk + 3 

X !(SOk+2))lk+ I)C'(kl}(l)], (21) 

where if k = 0, some terms obviously have to be deleted. 
Given the usual normalized S-state wave functions, it can be 
further deduced from Eq. (21) (when k = 0 and d = 0) that 
the classic Fermi-contact term can be written for practical 
use as ~(o (r)/r)s. 

iliA. THE H, OPERATOR 

In order to obtain the full displaced H' hyperfine opera
tor, it is desirable to establish a similar formula for the orbital 
part HI' The presence of the angular momentum I precludes 
the crucial problems found in Sec. II for limiting cases. In 
contrast to Sec. II, we note that the translational invariance 
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property can no longer be used. In fact, in Eq. (3) the term 1/ r 
cannot be extracted and replaced at the right of a translation
ally invariant operator. As for Eq. (16), we write 

dO 

H; = I h7· (22) 
k=O 

From systematic recoup lings and with the radial integration 
convention used in Eq. (19), we obtain 

h7 = _1_ ( _ l)k 

/3 
X [{ [k + 2](2k + 3)1/2 r k - I (Ok+ 1)1)(k + l)C ,(k + II 

d k + 2 

k-I + [2k + 3 ](2k + 1)1/2 _r __ (Clk + 111)lk)C ,Ik + II 
d k + 2 

+ [(k + 1 )(k + 2)(2k + 3)] 1/2 ~ Ok + I)C ,(k + I) .!!...-}I 
d k + 2 ar 

+ {k(2k+ 1)1/2~Okll)lk)C'lk) 
rk + 3 

+ [2k + l](2k + 3)1/2 ~ (Ok)l)lk+ 1)C'lk) 
rk+3 

- [k (k + 1)(2k + 1)] 1/2 ~ ClklC'lkl.!!...-}II)]. (23) 
rk +2 ar 

Some terms clearly vanish if k = O. As expected, the nil 
translation limit (d = 0) gives Eq. (7): 

HI = r- 3 1. 

We shall now be able to show that the red uced matrix elements 
of interest can be expressed in a closed form if one special basis 
of eigenfunctions is used. 

IVA. GENERAL REDUCED MATRIX ELEMENTS IN THE 
J - J COUPLING SCHEME 

Formulas such as (19) or (21), and (23) are useful for the 
evaluation of molecular integrals, as already emphasized 16 
in the molecular physics domain. Moreover, the electronic 
operators (SCIS) )1'1 and (CIS) W) have explicit reduced matrix 
elements if we make use of the j - j coupling scheme. I This 
scheme is a useful framework for carrying out relativistic 
calculations,17-19 where each of the four components of the 
one-electron Dirac wave function includes standard coupled 
functions such as 11 ! JM) (the total angular momentum is 
denoted by J = I + s, and M is a value of Jz). Thus for elec
trons we need formulas for the reduced matrix elements 
(I V li(sCIS) )It) II/'V') and (I V II(OS) WI III 'V')· 

Separate formulas have already been given20 for 
(SCIS) )It I, but none for (CIS) W) . However, the formulas unfor
tunately conceal a general structure, which enables the 
twelve possible cases for I, J, s, t, /', J' to be grouped together 
and exhibits some quality of symmetry. Such new formulas 
will be given below. If we use standard techniques for decou
pling and recoupling, with the basic intention of exhibiting 
the fundamental selection rule by means of the 3 - jWigner 
coefficient 

(~ 
t 

o 
J') 
-~ 
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occurring in nuclear physics,21 the formulas can be obtained 
by straightforward deduction. 22 It should be pointed out 
here that, in the course of calculations, an additional er
ror23.24 was found in the Tables of Rotenberg et al. 14 The 
recursion relation on the magnetic numbers (Formula 1.48, 
p. 10) must be read as 

- [(J3 + m l + m2 + l)(j3 - m l - m2)]1/2 

X(jl j2 j3) 
m l m 2 - m3 + 1 

= [(J2 + m2 + l)(j2 - m2)]1/2 

X(jl j2 j3) 
m l m 2 + 1 - m3 

+ [(JI + m l + 1)(J1 - ml)] 1/2 

X( jl 
m l + 1 m 2 

(24) 

Our results giving the reduced matrix elements are the fol
lowing for s + t> 0: 

(I ~J II (SClSI)(t IIII V') 

= [8(2s + l)(s + t + 1)]-II2( - W+ 112 

X [(2J + 1)(2J' + 1)]1/2 

X H 1 + ( - 1)1 + s+ I'] [( _ 1)'+ 112+ I (2J + 1) 

+ ( - 1( + 1/2 + 1'(2J' + 1) + sIs + 1) - t (t + 1)] 

X (~ 0 ~). (25) 

(I ~J II(ClSII)ltl)111 V ') 
= ( - 1)S+ t [(1 - t + s)!(1 + t - s)!] -II2(2t + 1)1/2 

X [IS + t - I)!] 112 ( _ W+ 112[(2J + 1)(2J' + 1)]1/2 
(s + t + 2)! 

(
J t J' ) 

X HI + ( - 1)1 + s+ I'] ! 0 _ ! 
2 2 

xH [( - I)J+ 1/2+ 1(2J + 1) _ ( _ 1)'+ t 

X( - 1(+ 1/2+ 1'(2J' + 1)] 

X [( - 1)'+ 112 + I (2J + 1) + ( _ 1 ( + 112+ I' 

X(2J' + 1) + 2] - 4t (t + 1)]. (26) 

As initially anticipated, Formulas (25) and (26) display some 
analogy with the well-known equality 

(I ~J IIClslll1 V ') 
= ( _ 1)'+ 112[(2J + I)(2J' + I)]1/2H 1 + ( _ 1)/+ s+ I'] 

(
J 

X I 
:2 

S J'). 
o -! 

(27) 

In particular, Eq. (26) immediately leads to previously ob
tained results,7 e.g., the "proportionality" between the ten
sors (Cl k 

- 1I1)lk I and (Cl k + 1I1)lk I, and between the reduced ma
trix elements of (Clk 11)(k I and Clk I. 

v. CONCLUSION 

In a somewhat unconventional but systematic manner, 
we have used Racah algebra to inspect the usual hyperfine 
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interaction one-electron operator. The method offers a most 
effective means not only straightforwardly obtaining tensor
ial formulas at any origin of coordinates, but even of solving 
problems of infinitesimal analysis. This report concludes 
with new general formulas for reduced matrix elements of 
interest in thej - j coupling scheme. 

APPENDIX A: GENERAL EXPRESSION OF THE TENSOR 
(pp)(k) 

According to Innes and Ufford,7 the linear momentum 
p can be written 

p = i Ii (CoII)OI - i!...- COl, (AI) 
r Jr 

where I stands for the angular momentum and where Clml is 
the spherical tensor of rank m. Thus formally (dropping out 
the k tensor rank superscript) 

(pp) = - J.- [2((CII)I)(II(CII)I)(II) 
r2 

+ Ii(C'I)(C(lII)(I»)] 

+ v'1!...- [(C(lI(C(lII)(II) 
r Jr 

+ ((C(lII)(I)CIII)] 

- ~ (CII)C(lI). 
Jr 2 

(A2) 

Using standard recoupling techniques, and taking the 
necessary precautions when handling noncommutating op
erators, we find that all the tensors ( )Ik I can easily be ex
pressed as function of (CISI I)lk I and Ok I, except one: 
((C(I)I)(II(C(lII)(I))lk I, which is more difficult to reduce. If the 
operators CIII and I were commutating, the reduced matrix 
elements of the last mentioned tensor would be the follow-
ing: 

(III f; [(2) + 1)(2t + I)] '" {i 

I' 

(A3) 

To obtain Eq. (A3) we have used the identity of Arima et 
af.25 for the 9 - j coefficient on the left-hand side. Using a 
(corrected23

) formula given by de-Shalit and Talmi,26 we find 
that 

(/'11111/') {II" /' 
I /' 

= (- I)k [U' ~ I~'} {: 
__ 1_ [k (k + 1) _ 4] {I, 

2~ I 

I" 

1 

I 

l'} 
I" 

I~'} l 
Lionel Brehamet 

(A4) 
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Replacing Eq. (A4) in (A3) results in exhibiting expres
sions of the reduced matrix elements of ((C(i)I)(i)(C(i)I)(1I)lk I 
and of (C(1I(ClIII)(1I)k. The resulting equation may be written 

3 f.i [(2< + 11(2t + 111'1> {; : 

X ((C(IIC(I))ISI (11)11 I )Ik I 

= ( _ l)k [((C(III)II)(CIl11)IlI)lkl 

- ~ [k(k+l)-4](C(J)(CII11)(I))lk l]. (AS) 

Simple standard recouplings between spherical tensors and 
the use of Appendix B lead to the final result 

(pp)lk l = - r\ [( - l)k ~ 6(ls + 1) (~ 0 ~) 

X + (2t + 11'1> {: t iJ (0"(111'" I'" 

- (- W!(k - l)(k + 2) L .[6(2s + 1) 

(lOS) {kl s} ] X 0 0 1 1 (CISII)lk l 

+ + :r [(2k + 1)1/2 G 0 ~) [k (k + 1)] 1/2 

X (Cikll)lk I + Hk(k + 1) - 4] Clk l] 
_L(2k+l)1/2(1 1 k)Clkl (A6) ar 2 0 0 0 . 

APPENDIX B: IDENTITIES CONNECTING THE 
SPHERICAL TENSOR C(2) AND THE ANGULAR 
MOMENTUM I 

Starting from the relation defining I as the vector pro
ductofr and p, 1= - v'1r(Cl1lp)iII, and using Eq. (AI) as well 
as the commutation relation 1= - v'1(II)(II, we obtain 

(Bl) 

From this first identity, we can deduce three other relations 
by operating with I on the right ofEq. (Bl) and considering 
the parts of rank 0, 1, and 2, respectively. Recoupling the 
orbital terms leads to 
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(B2) 

where the definition ofRudzikas et al. 27 has been used for the 
"iterated" angular momentum of rank 2: (11)(2) = 1(2). Ex
pressed as a scalar product, Eq. (B2) becomes 

_ .[6(C(2).1(2») = 12. (B2') 

The tensors of rank 1 and 2 give us two more identities: 

- 2~(C(2)1121)1I) = ~I, (B3) 

vi42(C(211121)12) + 3~(C(2)II(2) - 2~CI21J2 = 2~1(21. (B4) 
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Maximal abelian subalgebras of real and complex symplectic Lie algebras8
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We provide guidelines for classifying maximal abelian subalgebras (MASA's) of the symplectic 
Lie algebras sp(2n, JR) and sp(2n, C) into conjugacy classes under the Lie groups Sp(2n, JR) and 
Sp(2n, C), respectively. The task of classifying all MASA's is reduced to the classification of 
orthogonally indecomposable (OlD) MASA's. Two types of orthogonally indecomposable 
MASA's of sp(2n, C) exist: 1. Indecomposable maximal abelian nilpotent subalgebras (MANS's). 
2. Decomposable MASA's [their classification reduces to a classification of MANS's of sl (n, C)]. 
Four types of orthogonally indecomposable MASA's of sp(2n, JR) exist: 1. Absolutely 
indecomposable MASA's (MANS's). 2. Relatively indecomposable MASA's [their classification 
reduces to a classification of MANS's ofsu(p, q) forp + q = n]. 3. Decomposable absolutely OlD 
MASA's [involving MANS's of sl (n,JR)]. 4. Decomposable relatively OlD MASA's [involving 
MANS'sofsl (nI2, C), for n even]. Low-dimensional cases ofsp(2n,F) (n = 1,2, 3,F = JR orC) are 
treated exhaustively. The algebras sp(2, JR), sp(4, JR), and sp(6, JR) have 3, 10, and 30 classes of 
MASA's, respectively; sp(2, C), sp(4, C), and sp(6, C) have 2, 5, and 14 classes of MASA's, 
respectively. For n>4 infinitely many classes of MAS A's exist. 

PACS numbers: 02.20.Sv 

1. INTRODUCTION 

The purpose of this paper is to provide a classification of 
the maximal abelian subalgebras (MASA's) of the real and 
complex symplectic Lie algebras sp(2n, JR) and sp(2n, C) into 
conjugacy classes under the action of the corresponding clas
sical Lie groups Sp(2n, JR) and Sp(2n, C), respectively. 

This study is part of a general program, the aim of 
which is to construct all Lie subalgebras of Lie algebras of 
interest in physics and, similarly, to construct all closed sub
groups of the corresponding Lie groups. Earlier articles have 
been devoted to all maximal solvable subgroups of semisim
pIe Lie groups, 1.2 to all subgroups of the conformal group of 
space-time and some of its interesting subgroups.3--{) For the 
motivation of our interest in subgroup classification, we re
fer to our previous articles: further references are listed, e.g., 
in Refs. 5 and 7. 

Applications include the systematic study of spontane
ous or explicit symmetry breaking,7-9 the construction of 
symmetry adapted wave functions, 10 the separation of varia
bles in partial differential equations, 11-14 the construction of 
solutions of Yang-Mills and other nonlinear equations in
variant under specific subgroups of the conformal group,9.15 
the derivation of nonlinear superposition principles for cer
tain systems of nonlinear equations l6 and many others. 

The problem of finding all maximal abelian subgroups 
of a given Lie group is of particular interest. They provide 
maximal sets of additive quantum numbers for quantum me
chanical systems, and the simplest integrals of motion in 
involution for classical ones. MASA's are related to the sim
plest types of separable coordinates for partial differential 

.) Supported in part by the National Research Council of Canada and the 
Ministere de I'Education du Quebec. 

b) Published with the help of a grant from the "Fonds FCAC pour L'aide et 
Ie soutien a la recherche." 

,) Permanent address: Department of Mathematics, Ohio State University, 
Columbus, Ohio, United States of America. 

equations ("ignorable coordinates" for which the corre
sponding solutions are exponentials). 12-14 Different MA
SA's of, e.g., sl (n, JR) provide different types of systems of 
nonlinear equaitons with superposition principles (matrix 
Riccati equations)16 and have many other applications. 

Mathematically, the classification of MASA's of the 
classical Lie algebras is the natural extension of the classifi
cation of individual elements into orbits and strata under the 
action of the corresponding classical Lie group--a matter of 
prime theoretical and practical importance. 17-21 The two 
classification problems do indeed have much in common. 

A large amount of literature has been devoted to the 
classification of MASA's of semisimple Lie algebras. A very 
important type of MASA's are Cartan subalgebras, which 
are maximal abelian and self-normalizing algebras, or equiv
alently MASA's having the property that for each of their 
elements X, adX is a semisimple linear matrix (in the adjoint 
representation). Over the field of complex numbers all Car
tan subalgebras of a given semisimple Lie algebra are conju
gate. Over the field of real numbers the number of conjugacy 
classes of Cart an subalgebras of a semisimple Lie algebra is 
finite, but not necessarily equal to one. The Cartan subalge
bras of the real simple Lie algebras have been classified by 
several authors. 22-24 

A further type of abelian subalgebras that has received 
much attention are maximal abelian nilpotent algebras 
(MANS's) of the associative algebras of all complex or real 
matrices of a given dimension. This work was largely done 
by Kravchuk and has been reviewed and further developed 
by Suprunenko and Tyshkevich. 25 A MANS of a semisimple 
Lie algebra is defined as a subalgebra that is maximal among 
the commutative sub algebras consisting entirely of elements 
with nilpotent adjoint action. A MANS consists entirely of 
nilpotent matrices in any representation of finite degree. 
Maltsev26 has constructed a certain subclass of the MANS's 
for all simple Lie algebras of finite dimension over the com-
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plex number field, namely the MANS's of maximal dimen
sion. 

In two recent research announcements27 and in a larger 
publication in preparation28 we have generalized Krav
chuk's results in such a manner as to provide methods of 
constructing MANS's and all other MASA's of an aribtrary 
classical Lie algebra. In this paper we specialize to the fields 
of real and complex numbers and apply the general meth
ods27

•
28 to construct MASA's of sp(2n, JR) and sp(2n, C). 

The symplectic Lie algebras have been singled out for 
two reasons in this article. The first is because of their impor
tance in applications. Indeed the group Sp(2n, JR) is the group 
of real linear canonical transformations of a classical or 
quantum mechanical system with n degrees offreedom?9 
Symplectic Lie groups and algebras underlie the Hamilton
ian formulations of the problems in the theory of dynamical 
systems, ranging from nuclear physics3o.31 to optimal con
trol theory.32 Hamiltonians and other integrals of motion 
that are quadratic polynomials in some dynamical variables 
(e.g., many particle coordinates and the conjugate momenta 
or creation and annihilation operators, etc.) play an impor
tant role in various fields of physics. They generate a sp(2n, 
JR) algebra and the Sp(2n, JR) group of canonical transforma
tions can be used to classify such Hamiltonians into orbits. 17 
Our study of MAS A's of sp(2n, JR) provides a classification of 
complete sets of commuting quadratic integrals of motion 
into orbits. The results have already been used to construct 
wave functions for arbitrary quadratic Hamiltonians. 33 

The symplectic Lie groups and Lie algebras also make 
their appearance in particle physics in the context of super
symmetric field theories and supergravity, where the ortho
symplectic supergroups appear, e.g., as gauge groupS.34-37 

The second reason for our interest in the MASA's of 
symplectic Lie algebras is a mathematical one, namely that 
in particular sp(2n, JR) is actually one of the most complicated 
cases and as such provides a good illustration of the general 
situation. Thus, sp(2n, JR) has four different types of ortho
gonally indecomposable MASA's, matching the four differ
ent types of orthogonally indecomposable elements. 21 The 
algebra sp(2n, q, on the other hand, has only two types of 
orthogonally indecomposable MASA's, again matching the 
two types of orthogonally indecomposable elements. 21 Each 
type will be treated separately below. 

In Sec. 2 we provide some general information on the 
symplectic Lie groups and Lie algebras. In Sec. 3 we present 
some decomposition theorems and general results on the 
MASA's ofsp(2n, JR) andsp(2n, q. Section 4 is devoted more 
specifically to MANS's and Sec. 5 to low dimensional exam
ples (n = 1,2,3). Section 6 contains the conclusions and a 
future outlook. 

2. THE SYMPLECTIC LIE ALGEBRAS AND LIE GROUPS 

We shall consider the Lie algebra sp(2n, F), where F is 
either JR or C, of 2n X 2n matrices X over F, satisfying 

XK+KXT=O, 

Where K is an antisymmetric nondegenerate matrix 

K= _KT, detK¥O 
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(1 ) 

(2) 

(the superscript T throughout denotes transposition). The 
symplectic group Sp(2n, F) is then realized by 2n X 2n matri
ces Gover F satisfying 

GKGT=K. (3) 

When classifying either elements of sp(2n, F) or subalge
bras, in particular MASA's, of sp(2n, F), it is useful to leave K 
flexible. Rather than fixing K and classifying matrices X un
der symplectic transformations G satisfying (3), we shall 
classify pairs of matrices (X, K ) under general linear transfor
mations. The pairs (X, K) and (X', K '), both satisfying (1) 
belong to the same conjugacy class if and only if there exists a 
matrix GoEGL(2n, F) such that 

GoXGo'=X', GoKG{;=K'. (4) 

When studying MANS's we find the following realizations 
of K particularly useful: 

HI-' 

-HI' 

...i + f-l = n, O<...i<n, O<f-l<n, (5) 

where...i and f-l are nonnegative integers, fA EFAXA is a unit 
matrix and HI-' EFl-'xl-' is 

.' 
(6) 

In particular we shall use 

KA =KAO = ( _ ~A ~A ). (7) 

When dealing with orthogonally decomposable elements of 
sp(2n, F) a useful realization is 

n, + ... + nk = n, (8) 

where each K Ap, has the form (5). 

When studying (absolutely) indecomposable elements 
we use 

-1 

(9) 

-1 

and for relatively indecomposable elements (see below) we 
put 

(10) 
for n = 2k, 

for n = 2k + 1. 

Other realizations of K also occur and will be specified be
low. 
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Let us now list without proof several known properties 
of symplectic Lie algebras sp(2n, F), and their elements 
xESp(2n, F). 

I. The real (complex) dimension of sp(2n, R ) [sp(2n, C)] 
is d = n(2n + I). 

2. The matrices X act on a 2n-dimensional real (com
plex) vector space V. A matrixXis decomposable if two non
zero subs paces VI and V2 of Vexist such that 

XVI~VI XV2~V2' VI + V2 = V, V,nV2=0.(11) 

The matrix X is orthogonally decomposable ifin addition to 
(11) we have 

(12) 

for allf,EV,,J2EV2. 
3. Every matrix XESp(2n , F) is conjugate under Sp(2n, F) 

to the block diagonal sum of orthogonally indecomposable 
elements. The classification of elements X into conjugacy 
classes under Sp(2n, F) thus reduces to a classification of 
orthogonally indecomposable elements. 

4. Two types of orthogonally indecomposable elements 
of sp(2n, q exist. 

a. Indecomposable elements; X has a single eigenvalue 0 
and (X, K ) can be represented by 

X=J2n , K=F2n , (13a) 

where 

J'.{ 0 J . . . (13b) 

is a Jordan matrix and F2n is given in (9). 
b. Decomposable elements; X has two complex eigenval

ues ± a and (X, K ) can be represented by 

X = (aIn + I n 0 ), K = ( 0 Ion) 
o -aIn -J~ -In 

(14) 

with aEC; for n even we must require a#O. 
5. Four types of orthogonally indecomposable elements 

of sp(2n, R) exist: 
a1. Absolutely indecomposable elements; X has a single 

eigenvalue 0 and (X, K ) can be represented by 

X=J2n , K = EF2n • E = ± 1. (15) 
a2. Relatively indecomposable elements; X has a pair of 

pure imaginary latent eigenvalues ± ib and (X. K) can be 
represented by 

X= (_ ~ ~)SIn + I 2 sJn, 

K = EKo S Fn , b > 0, E = ± I 

with Ko as in (10). 

(16) 

b I. Decomposable and absolutely orthogonally indecom
posable elements; X has a pair of real eigenvalues ± a and (X, 
K) can be represented by 

X = (aIn + I n 0), K = ( 0 
o - aIn - J~ - In 

1975 J. Math. Phys., Vol. 24, No.8, August 1983 

with aER, a #0 for n even. 
b2. Decomposable relatively orthogonally indecompos

able elements; these exist only for n even, X has four latent 
complex eigenvalues ± (a ± ib ) and (X, K) can be represent
ed by 

X=(~ (18) 

A=(a b) -b a sIn12 +I2 sJn12 , a,bER,a#O,b>O. 

Absolutely indecomposable elements remain indecompos
able after a field extension from R to C. Relatively indecom
posable elements become decomposable after such an exten
sion. Relatively orthogonally indecomposable elements 
become orthogonally decomposable after a field extension; 
they are orthogonally indecomposable over R. 

When classifying MANS's of sp(2n, F) we shall fix Kin 
the form (5) and classify up to conjugacy under Sp(2n. F) 
realized as the Lie group of2n X 2n matrices Gover Fsatisfy
ing (3) withK = K 21". We can write an element GESp(2n, F) 
as 

u" 
gl2 gl3 g,,) 

G= g21 g22 g23 g24 

g31 g32 g33 g34 • 

41 g42 g43 g44 

where gik are rectangular matrices: 

gll,g14,g41,g44EFA X\ 
g22,g23,g32,g33EF I" XI", 
g 12,g l3,g42,g43

EFAX
I", 

g21,g31,g24,g34EF I"XA. 

(19) 

(20) 

Equation (3) could be solved to yield all constraints on the 
matrices gik, however we shall only need to realize specific 
types ofSp(2n, F) matrices. They are 

(21) 

I 

H ~f,) g"eF' ". 123) 

I) g" ~ H gf, H. g"eF" ". 124) 
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Gv = (I 1 1 I)' g32 = H g~H, g32EF,lXll (25) 
g32 

[we have put H-H" as in (6)]. 

3. GENERAL PROPERTIES OF MAXIMAL ABELIAN 
SUBALGEBRAS OF sp(2n, F) 

In this section we shall state several decomposition and 
classification theorems that reduce the task of classifying 
MASA's of sp(2n, F) to that of classifying MANS of sp(2n, F), 
sl (n, F) and sur p, q). The theorems are special cases or adap
tations of more general theorems, valid for arbitrary classi
cal Lie algebras over division rings. 27

•
28 In this article we 

omit the proofs. 
Let us start with some necessary definitions. Similarly 

as an element of sp(2n, F), a MASA of sp(2n, F) will be called 
orthogonally decomposable if it can be represented by matri
cesXEF2nX2n satisfying (1) that are all simultaneously de
composable and correspond to the same orthogonal decom
position of the vector space V. Otherwise a MASA will be 
called orthogonally indecomposable (010). An orthogonally 
indecomposable MASA can be decomposable, if all of its 
elements are simultaneously decomposable and correspond 
to the same (nonorthogonal) decomposition of V. Otherwise 
it is indecomposable. We shall call an indecomposable 
MASA of sp(2n, R ) absolutely(relatively) indecomposable if it 
remains (does not remain) indecomposable after an exten
sion ofthe ground field from R to C. A decomposable MASA 
of sp(2n, R) will be called a relatively orthogonally indecom
posable MASA if it becomes orthogonally decomposable 
after a field extension from R to C. 

The first theorem reduces the task of classifying all 
MASA's to that of classifying orthogonally indecomposable 
ones. 27

.
2K 

Theorem 1: An arbitrary orthogonally decomposable 
MASA of sp(2n, F) can be represented by a set of matrix pairs 
(X,K) 

XjK"f'j + K"f'jX r = 0, I <;J<;k, 2<;k<;n, 

Aj +!1j = nj , I<;n\<;···<;nk<;n - I, 

n\+n 2 +···+n k =n, 

where 

(26) 

(i) For each i the component matrices Xi form an ortho
gonally indecomposable MASA, say S" of sp(2n, F). The 
entries in Si run through all possible values independently 
for i = I, ... ,k. 

(ii) At most one of the algebras Si is a MANS. 
Conversely every such matrix pair (X, K) represents a 

conjugacy class of orthogonally decomposable MASA's of 
sp(2n, F). 0 
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Let us now turn to orthogonally indecomposable MA
SA's and consider the fields F = C and F = R separately. 

Theorem 2: Two types of orthogonally indecomposable 
MASA's of sp(2n, C) exist: 

(i) Indecomposable MASA's. They are by necessity 
MANS's, i.e., they consist entirely of nilpotent matrices. 
Conversely, every MANS is an indecomposable MASA. 

(ii) Decomposable MASA's. They can be represented by 
a set of matrix pairs (X, K) 

Or), K = (0 Ion), 
-A -In 

where the matrices AEgI (n, C) form an indecomposable 
MASA ofgl(n, C), i.e., 

(27) 

A = CIn Ell MANS of sl (n, q. (28) 

Conversely, every such set of pairs represents an 010 de-
composable MASA. 0 

The MANS's of sp(2n, C) occurring in the application of 
this theorem, are discussed in Sec. 4 below. The MANS's of 
sl (n, C) are treated elsewhere25

,27,28 and in the present context 
this is a lower-dimensional problem. 

Theorem 3: Four types of orthogonally indecomposable 
MASA's of sp(2n, R) exist 

(i) Absolutely indecomposable MASA's, These are 
MANS's of sp(2n, R) and upon field extension from R to C 
they become MANS's ofsp(2n, C), i.e., they remain indecom
posable. 

(ii) Relatively indecomposable MASA's. Such MASA's 
must contain an element representing the imaginary unit i, 
i.e., a matrix X oESp(2n, R) satisfying 

X ~ + 1 = 0, (29) 

such that after complexification Xo is diagonalizable and has 
n eigenvalues equal to i and n equal to ( - i). There exist [n/ 
2] + 1 conjugacy classes with respect to Sp(2n, R) of such 
elements21 of sp(2n, R) and they can be represented by the 
sets of matrix pairs (Xo, K) with 

Xo = K I ® In' K = K 1 ® (h Ell - In - k) 
(30) 

(n + 1)/2<;k<;n, kE'l, 

where KI is as in (7). The centralizer of Xo in sp(2n, JR) is 
isomorphic to u(k, n - k ). All relatively indecomposable 
MASA's of sp(2n, R) can be written in the form 

S=(~a ~)®In 
Ell MANS of su(k, n - k), (n + I )/2<;k<;n - 1. 

(31) 

Upon field extension these MASA's become decomposable. 
(iii) Decomposable and absolutely DID MASA's. These 

can be represented by a set of matrix pairs (X, K ) 

(32) 

where the matrices A together form the MASA of sl (n, R): 

fA 1 = RIn Ell MANS ofs/(n, R). (33) 

Upon field extension these MASA's remain 010. 
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(iv) Decomposable and relatively OlD MASA's. These 
exist only for n even and they can be represented by a set of 
pairs (32) where the matrices A form the MASA of gl (n/2, q: 

!A J =(_: !)®In/2E&MANSOfsl(nI2,C). (34) 

Conversely, any matrix pair of the type listed in (i)-(iv), rep
resents an OlD MASA of sp(2n, R). 0 

Comments on the proof and application of Theorem 3. 
Much of this theorem follows directly from the general the
ory, developed elsewhere27

,28 for all real classical quadratic 
Lie algebras [suI p, q), o( p, q), o*(2n), sp(2n, R) and sp( p, q)]. 
Thus, absolutely indecomposable MASA's are always 
MANS's, relatively indecomposable MASA's always con
tain an element Xo satisfying (29) and their classification re
duces to a classification of the MANS's of the centralizers of 
Xo in the corresponding classical Lie algebra. Decomposable 
OlD MASA's of both types are always decomposable into 
precisely two blocks, as in (32). 

In the sp(2n, R) case under consideration the centralizer 
of Xo in gl (2n, R) is isomorphic to gl (n, q and is realized by 
n X n matrices with real 2 X 2 matrices as entries 

(

All 

cent(Xo, gl (2n, R)) = : 

Anl 

(35) 

The matrices Aik provide a realization of the complex num
ber field C. Now let us restrict to the centralizer of Xo in 
sp(2n, R). For elements XEcent(Xo, gl (2n, R)) the symplectic 
condition (1) with K as in (30) translates into a condition on 
the matrices XEgI (n, q: 

xl' +l'X+ =0, l'= (~k o ) _ 
= -K+, 

- iIn _ k 

(36) 

where the superscript + denotes Hermitian conjugation, 
The matrices X are thus characterized as belonging to u(k, 
n - k) and we find that the centralizer of Xo in sp(2n, R) is 

cent(Xo, sp(2n, R)) = cent(Xo, gl (2n, R)mp(2n, R)):::::: u(k, 
n-k). (37) 

For k = n (we assme k>[(n + 1)/2]) we obtain u(n), i.e., the 
Lie algebra of the compact group U(n). Compact Lie alge
bras do not have any MANS's (up to conjugacy they each 
have a unique MASA, namely the Cartan subalgebra), hence 
the condition k<n - 1 in (31). 

The decomposable relatively OlD MASA's (34) involve 
MANS's of sl (nI2, q (n even) realized by real matrices of 
dimension n/2 X nl2, the entries of which are 2 X 2 matrices 
Aik as in (35). 

To summarize: a complete classification of the orthogo
nally indecomposable MASA's of sp(2n, R) into conjugacy 
classes under Sp(2n, R) has been reduced to the classification 
of four subtypes of MAS A's. The first type involves a classi
fication of MANS of sp(2n, R) under Sp(2n, R), the second a 
classification of MANS's of sulk, n - k ) under SUlk, n - k ) 
withIn + 1)/2<k<n - 1. The third and fourth types involve 
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classifications of MANS's of sl (n, R) under SL(n, R) and of 
sl (n/2, q under SL(nI2, q (for n even), respectively. 

The MANS's of sp(2n, R) and sp(2n, q are studied in 
Sec. 4, those of sl (n, R), sl (n, q and suI p, q) elsewhere.25

,27,28 

The Cartan subalgebras are a special case. All Cartan 
subalgebras of sp(2n, q are of course Sp(2n, q conjugate and 
are orthogonally decomposable according to the decomposi
tion n = 1 + 1 + ... + 1. 

The algebrasp(2n, R) has (n + 2)2/4 conjugacy classes 
of Cart an subalgebras for n even and (n + l)(n + 3)/4 for n 
odd. 24 For n > 3 they are all orthogonally decomposable. The 
algebra sp(2, R) has two orthogonally indecomposable Car
tan sub algebras, represented by 

S1 = (~ ~ J and S2 = ( ~ a ~), K = ( ~ 1 ~), 
(38a) 

respectively. The algebra sp(4, R) has just one class of ortho
gonally indecomposable (but decomposable) Cartan subalge
bras, represented by 

b J K~C"I, ~} a 

-a 

-b 
(38b) 

4. MAXIMAL ABELIAN NILPOTENT SUBALGEBRAS OF 
SYMPLECTIC LIE ALGEBRAS 

4.1 General theory 

In order to classify all MANS's of sp(2n, F) into Sp(2n, 
F) conjugacy classes we make use of the Kravchuk signa
ture. 25 For the algebra sl (N, F) the Kravchuk signature is a 
triplet of nonnegative integers (A, p, v), satisfying 

A + P + v = N, A> 1, v> 1. (39) 

Here A is invariantly characterized as theF dimension of the 
linear subspace of all N-columns that are simultaneously an
nihilated upon multiplication from the left by all elements of 
the given MANS and v is the codimension of the F linear 
subspace generated by the images of the MANS acting on 
the N-column space. 

For sp(2n, F) the condition (1) implies A = v and we 
adopt the Kravchuk signature to be the triplet 

(A2JlA), A +Jl=n, I<A<n, O<Jl<n-l. (40) 

Let us first state some general results on the MANS of 
sp(2n, F) that are proven elsewhere. 28 

Theorem 4: 1. The elements X of a MANS of sp(2n, F) 
with Kravchuk signature (A, 2Jl, A ) can be simultaneously 
transformed into the form 

X~(~ 
B D 

Y ) R S HDT 

0 -HRTH _:BT ' 
0 0 

B,DEF). XI", R,SEFI"XI", YEF). x). 

(41) 
Y= yT, S=HSTH, 

where H HI" is given by (6), X satisfies (1) with K as in (5) 
and R is a nilpotent matrix. 
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2. The matrices D, R, and S all depend linearly on the 
elements of B. From here on we consider the special case 
when B, D, R, and S all depend linearly on the elements 

(42) 

of a single row of B; let this be the first row. The matrices in 
(41) then can be written as 

_ (!Q2) _ (!~:) B-. ,D-. , . . . . 
bQJ. bPJ. 

R = (RIb T, ... , R!-,b T), S = (U!-'b T, ... , U,b T), (43) 

where Qj! Pj! R j and Uj are fixed F!-'x!-, matrices and R j are 
such that all entries in the rows i, i + 1, ... ,jl vanish. 

3. The elements b j (l .;;;i';;;jl) of the row b are assumed to 
be free. The elements of the symmetric matrix Y = Y Tare 
arbitrary. Therefore the F-dimension of a MANS of sp(2n, F) 
of Kravchuk signature (A, 2jl, A ) thus obtained is 

dnJ. = n + A (A - 1)/2. (44) 

The maximal and minimal possible dimensions of these 
MANS's are obtained for A = n and A = 1, respectively; and 
are equal to 

dmax = dnn = n(n + 1)/2, dmin = dn, = n, (4S) 

i.e., for sp(2n, F) the minimal dimension of such a MANS is 
equal to the rank (the dimension of a Cartan MASA). 

4. The commutativity relation [X, X'] = ° for two ma
trices of the type (41) implies the following constraints on the 
matrices Qj! Pj! R j , and U; (QI=I): 

Pk = HPrH, QjPkH -PkHQ! =PjHQr - QkPjH, 

R~=Ra' U~=U, l.;;;i,k,;;;A, l.;;;a';;;jl (46) 

and we can put 

PI = 0, TrQj = 0. (47) 

The conditions U ~ = Ua and S = HS TH together imply 

(Ua)bc =Sbac' (48) 

where Sbac is a completely symmetric three component ten
sor in jl variables. 0 

Comments on the proof of Theorem 4. Statement 1 is a 
direct consequence ofthe symplectic character of X, and of X 
being nilpotent with Kravchuk signature (A, 2jl, A ). The spe
cial case considered from Eq. (42) on is the case when the 
matrix B is "one rowed" (depends linearly on one row only). 
This special case covers completely the Kravchuk signature 
(A,2jl,A ) with u = 0, l,or2. TheformofD, R andSis then an 
elementary consequence of commutativity. Statement 3 is 
elementary. Relations (46) and (48) can be obtained in a 
straightforward manner from commutativity and (47) is a 
result of normalization (conjugacy) by suitably chosen 
Sp(2n, R) transformations of the type (24) and (21). 

The general theory could be developed further, i.e., 
further consequences of commutativity could be analyzed 
and further simplifying transformations performed for arbi
trary Kravchuk signatures. Such a study, involving an anal
ysis of relations (46) would take us into the domain of alge
braic geometry. 
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Instead we now turn to specific Kravchuk signatures. 
4.2 The signature (n, 0, n) 

In this case the result is trivial. There exists precisely 
one such MANS, its dimension is d max = n(n + 1 )/2 and it 
can be written as 

(49) 

This is the type of MANS's studied by Maltsev for all classi
cal Lie algebras over C (MANS's of maximal dimension).26 

4.3 The signature (n - 1, 2, n - 1) 

In this casejl = I, so that Qj, Pj! R j andSin (43), (46)-
(48) are just numbers. Since the Qj are traceless we have: 

Qj = 0, Pj = jlj' PI = 0, 2.;;;i';;;n - I, 

R = 0, S = Kb l , b = b" (SO) 

A transformation GxG - I with G of type (21), can be 
found that will take K into K = ° or K = 1. Using transforma
tions (21 )-(23) we obtain precisely two representative MANS 
of signature (n - 2, 2, n - 2). In the first case the matrices 
X = XI are obtained by substituting 

Qj =0, 

Pk =0, 

R =0, S=b 

2.;;;i';;;n - 1, 

l.;;;k';;;n - 1, 

into (43), and in the second case we substitute 

Qi = 0, 2.;;;i';;;n - 1, 

P2 = I, Pk = 0 3.;;;k.;;;n - 1, 

R=S=O 

(Sl) 

(S2) 

into (43) in order to obtain the matrices X = X 2 • Finally we 
have 

/ b ° 0 0 
On_I y 

XI = 0 0 

° b 0 0 0 
0 0 -b 0 0 

On _ I 

Y = yTEFln-IIxln-ll, bEF (S3) 

and 

I b 0 , 
0 b 

On _ I 0 0 Y 

X 2 = 
0 0 

° 0 0 b 0 

° 0 -b 0 ° On - I 

y = yTEFln -llxln -II, bEF (S4) 

Both types of MANS's exist for F = Rand F = C. 
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4.4 The signature (n - 2, 4, n - 2) 

A. General pattern 

In this case we have E, D, R, and S as in (43) with 

Pk =~: 
R =(~ 

where 

U
I 

= (Sill 
\s21l 

V
k
), 2<k<n - 2 

11k 

UJb l
) S = (U bTu b T) 0' 2' I , 

SIl2), 
S212 

U
2 

= (S121 
\s221 

and UJ can be chosen to be either UJ = 0 or UJ = 1. 

(55) 

(56) 

In addition, commutativity implies that Qk and Pj sa
tisfy (46) and 

(57) 

(58) 

Furthermore, if UJ = 1, we have 

(59) 

SI = (~ ~), Sjjk = 0, 

B. Simplification of the symmetric tensor Siik 

We use the symplectic transformation (21) with gil = I 
to transform the general matrix X into X' = GxG - I, 

having the same structure as X. The row vector b is replaced 
byb' = bg22 I, the matrices Qj andPj undergo some transfor
mation (not changing their structure) and the matrix S 
changes to 

(60) 

which implies 

(61) 

The problem is thus to classify symmetric three component 
tensors in two variables under the action of the general linear 
group GL(2, F). This is a well known problem38 directly re
lated to the classification of homogeneous cubic polynomials 
in two real or complex variables 

2 

C (x) = I SjjkXjXjXk , 
j.j,k ~ I 

(62) 

The result is that a real polynomial (62) can be carried by a 
linear substitution to one of 5 standard forms: 

(63) 

corresponding to the following forms of S 

SII = (~ bl
) 

o ' Sill = 1, S122 = SI12 = S222 = 0, 

(b l 
Sm = 0 b2) 

b
l 

' 
SI12 = 1, Sill = SI22 = S222 = 0, 

S _ (b l + b2 
IY -

bl 

b2 ) 

bl + b2 ' 
S 112 = S 122 = 1, SIll =S222 =0, 

Sy = (b 2 

bl 

b l
) 

b2 ' 
slll=sI22=1, SI12=S222=0. 

For F = C (complex polynomials) the last two are equiva
lent, so one of them, say Sy, must be omitted. For 
UJ = 0 all of the above forms are allowed. For UJ = 1, the 
commutativity relations imply S122 = S222 = 0 so that only 
SI ,SII or SIll survive. A further simplification is possible for 
UJ = 1. The transformation GXG - I where G is of the form 
(25) will transform R into 

R ' = R - Sg32 = 0 for S = (~I 
Thus for S = SIll> the case UJ = 1 can be disregarded. 

Finally, the cases to be considered for F = Rare 

UJ = 0: SI , ... ,Sy 

UJ = 1: SI' Sn . 
(65) 

For F = C, Sy should be omitted. 

1979 J. Math. Phys., Vol. 24, No.8, August 1983 

I 
C Simplification of the matrices Pi 

So far we have completely classified and standardized 
the matrices Rand S in the matrix (41). Now we wish to 
simplify further by transformations carrying X to GXG - I, 
GESp(2n, F), where G is so chosen as not to change the parts 
of X that we have already simplified. 

Each of the cases (65) must be treated separately. Let us 
first consider the matrices Pj • They form a bundle of 2 X 2 
real H symmetric matrices, (Le., Pj = HP JH). The dimen
sion dB of such a bundle can be dB = 0,1,2, or 3. A matrix of 
the form (21) with g22 so chosen as to stabilize Rand S can be 
used to standardize this bundle of matrices Pj • Thus, in case I 
we have S = SI = O. For UJ = 0, g22 is arbitrary. the case dB 
= 0 is excluded. since the algebra would have the wrong 
Kravchuk signature. If dB = 1 we can transform the bundle 
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into a form, where Pk = 0, 3<.k<.n - 2 and 

P2 = (~ ~), (~ ~) or (~ ~) for F= R (66a) 

P2=(~ ~) or (~ ~) for F= C. (66b) 

In each case the last matrix corresponds to the wrong Krav
chuk signature and must be omitted. If dB = 2 we can ar
range that Pk = ° for 4<.k<.n - 2 and the couple P2, P3 takes 
one of the following forms 

or 

{(~ ~). (~ ~)} for F= R (67a) 

and 

{(~ ~), (~ ~)} or {(~ ~), (~ ~)} for F= C. 

(67b) 

For dB = 3 we have Pk = ° for 5<.k<.n - 2 and 

For S = SI = 0, (i) = 1 we have 

Vk) (x 
11k ' g22 = ° 

In this case we can have dB = 0, 1, or 2. Again dB = ° leads 
to the wrong Kravchuk signature; dB = 1 leads to P2 = (6 ~) 
and dB = 2 to P2 = (6 ~), P3 = (g 6) (all other Pk = 0). 

For S = SII we first use G in the form (22) to transform 

all Pk to the form Pk = (~: ~J Taking G as in (21) with 
gil = I, g22 = (6 ;) we can change the basis for the bundle 
!Pk J. Wethenuse(21)withg IIEGL(n - 2,F) to standardize 
the bundle to one of the forms 

P2 = {(~ ~) }, P2 = {(~ ~) }, 

P2 = {(~ ~)}, P3 = {(~ ~)} 
(all other Pk = 0). 

Similarly, using (21) and (22) type transformations for 
Sm, SIV and Sv we can standardize the bundles of matrices 
Pk to several specific forms. These are all listed in the second 
column of Table I. 

D. Simplification of the matrices Qj 

Having already fixed the form of S, R, and ~ we now 
proceed to establish all mutually nonconjugate allowed 
forms of the set of matrices Qj. We already know that they 
have the form 

(69) 

and that for (i) = 1 we have rk = 0. For each set of matrices 
S, Rand P k we must satisfy the commutativity relations (57), 
(58), and (46). The relations (57) and (58) are easy to satisfy. 

1980 J. Math. Phys .• Vol. 24. No.8. August 1983 

TABLE 1. Maximal abelian subalgebras of sp(2nlR) of nilpotent matrices 
with Kravchuk signature (n - 2 4 n - 2). classified into Sp (2n. R) conju
gacy classes. Each class is given in the form (41) as a set of2n X 2n matrices 
X ~''". A particular class is specified by a choice of standard form of matrices 
S. B. D. and R of(41). The superscript ZEI. II ..... Vindicates the form Sz of 
(64) of the matrix S; (iJ = 0 or 1 indicates the form (55) of R; the matrices B 
and D are given by the entries Pk and Qk of the corresponding row of the 
Table and by (43). Throughout PI = O. QI = I,. Qk = Pk = 0 for 
4<k<n - 2. The corresponding table for sp(2n. q is obtained by omitting 
the 10 entires X ...... X •• XII' X 12• and X". X". X 30• 

Algebras °4 
------+-~------------+---------------------n 6) 0 

xl •O 
8 

(~~) 0 

(~~) 0 

(6~) 0 

(6?) 0 

(6 n 0 

(6 V 0 

(6~) 0 

(~ 6) 
,~ 6) 
(~ 6) 
(~ 6) 

-----. ------1------------- .------
xl,o 
9 

XI.O 
10 

(~ 6) (~ 6) 
(~ 6) (~ 6) 

G n (-~ nL:J~o ---~o ----0-1 
x~20 (6 n C~ 6) 0 0 0 (-~ 6) i 
-- ---------~- .------.. -_._-------------------

x~ jO G n (~ 6) 0 ' 0 

xl,o I (1 0) (0 1) 0 
14 ! 0 1 0 0 

-----'1--.---------------1---------------------

x~ 50 I (6 n (~ D (~ 6 ~ 0 

~--~-~'--I 

xl •1 
16 I (6 n 0 0 

XI,I 
17 I (6 V 0 0 

-------- --~.-
xLI 

18 i (6 n (~ 6) 0 

xl,l (6 ~) (~ 6) 0 
19 

XI,I I (6 n (~ 6) 0 
20 I 

I 

X ll,O 

I 
(6 ~) 0 0 

21 

XII,O (6 ~) 0 0 
22 

xI 1,O 
23 (~ ~) 0 0 

xll,o 
24 (~ V 0 0 

x~; ,0 G ~) (~ ~) 
____ ~ ___________ _L __ _ 

Patera, Winternitz, and Zassenhaus 1980 



                                                                                                                                    

TABLE I (continued). 

XII ,I 
26 (~ n 0 0 0 0 0 

Xl I ,I 
27 (6 n 0 0 0 (g 6) 0 

X II I ,0 
28 

0 0 0 0 0 0 

xl I I ,0 
29 0 0 0 (~ 6) 0 0 

xl I I ,0 
30 (~ g) 0 0 0 0 0 

-----
xlV,o 

31 0 0 0 0 0 0 

xlV,o 
32 0 0 0 C -2) 2 -1 0 0 

------
xlV,o 
33 (~ 6) 0 0 0 0 0 

---~ 

xV,o 
34 0 0 0 0 0 0 

XV,o 
35 0 0 0 (~ 6) 0 0 

xV,o 
36 (~ 6) 0 0 0 0 0 

Indeed, for S = S, they are always satisfied. For S = S" and 
(J) = 0 we find Yk = O. For S = S" and (J) = 1 relation (58) 
can only be satisfied if P2 = (6 ~) and Pk = 0, 3<k<n - 2. 
ForS = Sill' weobtainak = Yk = 0, forS = SIV wehavef3k 
= - 2ak, Yk = 2ab and for S = Sv we obtain a k = 0, Yk 

=f3k' 
Finally, we must impose the commutativity relations 

(46) and use all transformations stabilizing S, R, and Pj to 
simplify the bundle of matrices Qk' As an example let us 
consider the case when 

S = SI = (~ ~). R = (~ ~). 
P2 = (~ ~). Pk = 0, 3<k<n - 2. (70) 

Relation (46)forj = 2, k>2 implies Qk = Q r. Now take Gin 
the form (25). The matrixD, in (41), i.e., the bundle ofmatri
ces Pi' is not affected, however the choice 

(
a 2 

g32 = f3
2 

transforms Q2 into Q; = O. Choosing a further G in the form 
(21) we can now rearrange the bundle of matrices Qj without 
changing the matrices Pj • Three possibilities occur in the 
dimension dQ of the bundle I Qj J which can be dQ = 0, lor 
2. Thus we obtain the bundles 

{Qk = 0, 2<k<n - 2J, 

{Q3 = (~ ~ J, Qk = 0, k = 2, 4<k<n - 2} (71) 

and 

{ Q3 = (~ ~ J Q4 = (~ ~). 
Qk = 0, k = 2, 5<k<n - 2}, (72) 

1981 J. Math. Phys., Vol. 24, No.8, August 1983 

respectively. 
All other sets of S, R and Pi can be treated similarly. 

The results for F = JR are presented in Table I. A symbol for 
each algebra is given in the first column: X 1'''). The subscript 
i simply enumerates all (n - 2,4,n - 2) type MANS's and 
there are precisely 36 Sp(2n, JR) conjugacy classes of such 
subalgebras. The superscript A can be I, II, III, IV or V and 
tells us the form of S = SA as listed in (64). The label (J) = 0 or 
1 tells us whether we have 

R = (~ ~) or R = (~ ~J 
The remaining columns give us the values of P2 , P3 , P4 and 
Q2' Q3' Q4' The matrices Pk and Qk for 5<k<n - 2 always 
vanish. These 36 different subalgebras exist if n>6. For 
n = 5 only 29 types exist, because all those with P4 =1-0 or 
Q4 =1-0 must be eliminated. For n = 4 only 14 survive, since 
those with Pk =1-0 or Qk =1-0 (k = 3, 4) must be eliminated. 
For n = 3 exactly 3 survive, namely those with Pi = Qi = 0 
for i = 2 (X~I~,O, X~i'o and Xj,n For n = 2 or 1 no such 
MANS exist. 

For F = C the results are simpler, namely the algebras 
X~o, ... , X~,o, X~'~, X~'f, Xj;.o, xjjO and xj;,O should be 
dropped. Forn>6, 26 MANS'S survive, for n = 5just21, for 
n = 4 precisely two (X ~~'.o and X ~i'O). 

We observe a phenomenon of saturation: all complica
tions that can arise do arise for n = 6 and nothing new hap
pens for n> 7. 

Kravchuk signatures (n - ft, 2ft, n - ft) for ft>3 are 
much harder to treat and for high enough values of nand ft 
there will exist infinitely many different mutually nonconju
gated MANS. Their classification will require the introduc
tion of continuous parameters. The principles of classifica
tion, including "saturation" will however be the same as in 
this section. 

5. LOW-DIMENSIONAL CASES 

In this section we will consider all MASA's of sp(2n, F) 
for n = I, 2, 3 since the theory developed in Sees. 3 and 4 
suffices completely in these cases. We shall denote the MA
SA's of sp(2n, H) and sp(2n, q as R ~n and C ~n, respectively; 
2n refers to the dimension, k = 1,2,3, ... enumerates the 
individual MASA's. Each MASA is represented by a matrix 
pair (X, K); the letters in X denote real or complex param
eters (a, b, .·.)EFwithF= R or F= C. 

5.1. The algebra sp(2, F) 

In this case n = 1 which is too low for the general the
ory to be of much use and in any case, the results are well 
known. 

For sp(2, JR) we obtain 3 MASA's, represented by 

2 (a 0) 2 ( 0 a) 2 (0 a) R I = 0 _ a' R 2 = _ a 0' R 3 = 0 0 (73) 

with K = (_ ~ 6) in all 3 cases. Here R i and R ~ are the 
noncompact and compact Cartan subalgebras, R ~ is a 
MANS with Kravchuk signature (1 0 1). For sp(2, q the first 
two above cases are mutually conjugate, so we are left with 
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two Sp(2, C) classes of MASA's: 

Ci-Ri, C~-RL (74) 

the first being the Cartan subalgebra, the second a MANS; 
we have K = K 2 • 

5.2 The algebra sp(4, F) 

In this case we apply the general theory and note that all 
types of MAS A's discussed in Sec. 3 exist. 

A. Orthogonally decomposable MASA' s 

The only admissible partition of n = 4 is 4 = 2 + 2. For 
F = C we obtain just two such MASA's, for F = R five. 

F=c:Ci=CiffiCi, Ci=CiffiC~, (75) 

F = JR: R i = R i ffi R L R i = R i ffi R ~, 

Rj=RiffiRL R1=R~ffiRL R~=R~ffiRj. 
(76) 

In all cases we have K = K2 Ell K2. 

B. Orthogonally indecomposable MASA 's 

Let us consider the case F = JR first. 
1. Absolutely indecomposable MASA's, i.e., MANS's. 

For Kravchuk signature (2 0 2) (49) reduces to 

o a 

o 
o 
o 

b 

o 
o 

and for (12 1), (53) reduces to 

r 
b 0 

~b) 4 0 0 b 
R7 = ~ 0 0 

0 0 

K~( ') -1 

-1 

and (54) is not realized in this low dimension. 

~) (77) 

(78) 

2. Relatively indecomposable MASA's. The only rel
evant matrix pair (30) is obtained for n = 2, k = 1. The corre
sponding MASA's will consist of the element Xo in (30) (for 
n = 2) plus a MANS of suI 1,1) where u( 1,1) is realized by the 
matrices 

(-~' 
b1 a 

D 
0 -c 

X= 
a -c 0 

c a - b2 

(-~ 0 -) K= 
0 

The algebra su( 1,1) has a single MANS so we obtain 
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. (-~-' b+c c 

~-) 0 0 
Rs= 

0 0 c 

0 c -b+c 

K~(-~ 
1 

-J 0 

0 
(79) 

3. Decomposable MASA's. In (32) we have AEgf (2, JR); 
sf (2, JR) has just one MANS, so we obtain 

b 

~2 ).(80) 
a 

-a 

-b 

4. Relatively orthogonally decomposable MASA's. 
Just one MASA of the type (34) can exist for n = 2, namely 

-b 

(

a 

Rio = ~ 

b 

a 

o 
o 

o 
o 

-a 
b 

~2). (81) 

The case F = C is somewhat simpler since no field extensions 
are involved. The orthogonally indecomposable MASA's of 
sp(4, C) are represented by two MANS's 

Cj -R~, C1-R j (82) 

and one decomposable MASA 

C1-R ~. (83) 

To summarize: Ten Sp(4, JR) conjugacy classes of MA
SA's ofsp(4, JR) exist, represented by R; (L;;i<lO). Among 
them, four, namely R i, R i, R !, and R io' are Cartan subal
gebras and two, namely, R ~ and R i are MANS's. Note that 
R io is an orthogonally indecomposable Cartan subalgebra 
and that orthogonally indecomposable Cartan subalgebras 
of sp(2n, JR) exist only for n = 1 and 2(R i, R ~, and R io ). The 
dimensions of the MASA's are d = 3 for R:, d = 2 for all 
other ones. Five Sp(4, C) conjugacy classes of MASA's of 
sp(4, C) exist, represented above by C; (1 <i<5). Among them 
C i is the Cartan subalgebra, two, namely C j and C 1 are 
MANS'S. The dimensions are d = 3 for C j , d = 2 for the 
rest. It is of course well known that any complex semisimple 
Lie algebra has a single conjugacy class of Cartan subalge
bras and that for sp(2n, C), n>2 these are orthogonally de
composable according to the pattern n = 1 + 1 + ... + 1. 

5.3. The algebra sp(6, F) 

In this case n = 3 is odd which eliminates certain types 
of MAS A's. 

A. Orthogonally decomposable MASA 's 

The possible partitions are 6 = 2 + 2 + 2 and 
6 = 2 + 4. For sp(2n, JR) we have 
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R~=RiGlRiGlRL R~=RiGlRiGlRL 

R ~ = R i GlR i GlR L R ~ = R i GlR ~ GlR L 
R~=RiGlR~GlR~ R~=R~GlR~GlRL 

R~ =R~ GlR~ GlR~ 

with K = K2 Gl K2 Gl K2 in all cases, and 

R La = R i GlR :+a' a = 0,1, ... ,4, 

R~3+a=R~GlR:+a' a =0,1, ... ,4, 

R~8 =R~ GlR!, 

R~o = R ~ GlR ~o, R ~9 = R ~ GlR~, 

with K = K2 Gl K4 in all cases. 
For sp(2n, C) we have 

C~ = Ci GlCi GlCL C~ = Ci GlCi GlC~ 

with K = K2 Gl K2, and 

C~ = Ci GlCj, C~ = Ci GlC!, 

C~=CiGlC~, C~=C~GlC~ 

with K = K2 Gl K4. 

B. Orthogonally indecomposable MASA 's 

Let us again consider F = R first 

(84) 

(85) 

(86) 

(87) 

1. Absolutely indecomposable MASA's, i.e., MANS's. 
The Kravchuk signature (303) provides a single MANS, 
namely 

6 (0 R21 = 0 ~), 13) o . 
(88) 

The signature (2 2 2) provides two further MANS's, corre
sponding to (53) and (54) 

0 0 b 0 c d 
0 0 0 0 d e 

R~2 = 
0 0 0 b 0 0 

0 0 0 0 -b 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 b 0 c d 
0 0 0 b d e 
0 0 0 0 0 b 

R~3 = 0 0 0 0 -b 0 
(89) 

0 0 0 0 0 0 

0 0 0 0 0 0 

with K = K 2•1 as in (5). The signature (14 l)leads to 3 more 
MANS's, namely those in Table I with Pj = Qj = 0 for i>2. 
(Entries X~~I.O, C~i'o, and Xj40). We denote them 
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r 
B 0 

-~~) 6 0 0 Sa 
R 24 + a = ~ 0 0 

0 0 

B= (b l , b2), a = 0,1,2, 

(90) 

and use K = K1.2' 
2. Relatively indecomposable MASA's. The only rel

evant matrix pair (30) in this case is obtained for n = 3, 
k = 2. The centralizer of the element Xo (30) in this case is 
u(2, 1) and we must find all MANS's of su(2, 1). This is a 
simple task since su(2, 1) allows only one Kravchuk signa
ture (1 1 1) corresponding to one single MANS. Writing this 
MANS of su(2, 1) as a 6 X 6 real symplectic matrix we obtain 

0 a b 0 0 c 
-a 0 0 b -c 0 

R~7 = 
0 a 0 b 

-a 0 -b 0 

0 a 

-a 0 

K-( K2 
I,) 

(91) 

-12 
(we use a realization of sp(6, R) adapted to the MANS's of 
su(2,1). 

3. Decomposable MASA's. In (32) we have AE'gl (3, R); 
we must find all MASA's ofsl (3, R). Just three of these exist, 
corresponding to Kravchuk signature (2 01), (1 02) and 
(1 1 1). We obtain 3 more MASA's of sp(6, R) 

o T ), a=0,1,2, 
- A 28+a 

K=( 0 
-13 

~3) (92) 

with 

A,,~G 
0 

:} A,,~G 
b 

~} a a 

0 0 

AM~G 
b 

D a 

0 
(93) 

4. Relatively orthogonally decomposable MASA's. 
Since n = 3 is odd no such MASA's exist for sp(6, R). 

Let us now consider the simpler case of sp(6, C).The 
orthogonally decomposable MASA's have already been list
ed in (86) and (87). Just 5 MANS's exist: 
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c ~ ~ R ~ I, C ~ ~ R ~2' C ~ ~ R ~3 , 

C~() ~R ~4' C~I ~R ~5 

as do three decomposable MASA's 

(94) 

(95) 

To summarize: 30 Sp(6, IR) conjugacy classes ofMA
SA's of sp(6, IR) exist, represented above by R~, 1.;;;i.;;;30. 
Among them six, namely, R ~,R~, R~, R~, R ~2' R ~7 are 
Cartan subalgebras (R ~ , R ~ , R ~, R ~ correspond to the de
composition 6 = 2 + 2 + 2, R ~2 and R ~7 to 6 = 4 + 2). Six 
of the MASA's are MANS's, namely R ~I' ... , R ~6' The di
mensions of the MASA's are d = 6 for R ~ I , d = 4 for R ~ , 
R ~ 3' R ~ 2 , R ~3 and d = 3 for all the rest. 

Altogether 14 Sp(6, q conjugacy classes of MAS A's of 
sp(6, q exist. The only Cartan subalgebra is C~, the 
MANS's are C $, ... , C ~ I . The dimensions are d = 6 for C ~, 
d = 4 for C ~, C ~, C ~, and d = 3 for all the rest. 

6. CONCLUSIONS 

The main conclusion of this article is that it is possible 
to proceed quite far in the classification of maximal abelian 
subalgebras of sp(2n, F) and that a close parallelism exists 
between a classification of these MASA's and the classifica
tion of individual elements of sp(2n, F). This parallelism is 
brought out particularly clearly by the theorems of Sec. 3. 

Theorem 1 reduces the task of classifying all MASA's 
to that of classifying the orthogonally indecomposable ones. 
The same holds for the classification of elements. Theorem 2 
states that two types of orthogonally indecomposable MA
SA's of sp(2n, q exist: MANS's, corresponding to indecom
posable (nilpotent) elements (13) and decomposable MA
SA's, corresponding to decomposable elements (14). 
Theorem 3 states that four types of orthogonally indecom
posable MASA's of sp(2n, IR) exist: (i) MANS's, correspond
ing to absolutely indecomposable elements (15), (ii) Relative
ly indecomposable MASA's corresponding to relatively 
indecomposable elements (16). (iii) Decomposable MASA's, 
corresponding to decomposable elements (17), and (iv) rela
tively orthogonally decomposable MASA's, corresponding 
to relatively orthogonally decomposable elements (18). The 
crux of the matter is a classification of maximal abelian nil
potent subalgebras. To classify MASA's of sp(2n, R) we need 
a classification of the MANS's of sp(2n, lR), but also of suI p, 
q)(p + q = n),sl (n, R)andsl (n/2, q (forn even). InSec.4we 
have outlined a method for classifying MANS's of sp(2n, F) 
for all Kravchuk signatures (n - J1-, 2J1-, n - J1-). The method 
is developed in complete detail for J1- = 0, 1 and 2. The COII'

putational details for J1->3 remain a formidable task. The 
results for J1->2 have made it possible to classify all MASA's 
ofsp(2, F), sp(4, F), and sp(6, F). The algebrasp(8, F) would 
already involve the Kravchuk signature (1 6 1). 

In a forthcoming paper we shall supply the proof of 
Theorem 4 and a further analysis of other types of MANS's 
of sp(2n, F) that exist for n:>4. 
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Work is in progress on similar studies for all other clas
sical Lie algebras. 
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The structures of the exceptional Lie superalgebras G(3) and F(4) are expressed in terms of 
octonions. 

PACS numbers: 02.20.Sv, 02.10. Yr, 1l.30.Pb 

1. INTRODUCTION AND SUMMARY OF OCTONION 
ALGEBRA 

It is well known!-4 that the five exceptional Lie algebras 
can all be described in terms of the octonions, which, indeed, 
seem to underlie all exceptional structures in algebra and 
geometry.! In this paper we show that this is true of Lie 
superalgebras also. The list of simple Lie superalgebras5 con
tains ten countably infinite families, a one-parameter family, 
and two exceptional algebras G(3) and F(4). The last two 
have structures which appear very simple when expressed in 
terms of octonions; this description is the subject of this pa
per. An alternative description, without using octonions, has 
been given by DeWitt and van Nieuwenhuizen.o 

First we summarize those properties of octonions (the 
Cayley division algebra over H) that we will need; for a full 
treatment see Ref. 2 or Ref. 3. The octonions, which we will 
denote by 0, form an eight-dimensional real algebra with a 
multiplication which is not associative but alternative, i.e., 
the associator 

[x,y,z] = x(yz) - (xy)z (1 ) 

is a totally antisymmetric function ofx,y, Z t O. The algebra 
has an identity, which enables us to regard H as a subspace of 
o (the subspace spanned by the identity). Thus we can write 
o = HEllO', where 0 is a seven-dimensional subspace whose 
elements are called pure octonions. 0 has a conjugation 
Xf-+X defined by 

x = a + a~x = a - a (atH, atO'). (2) 

This is an anti-involution, i.e., x = x and 

xy =yx. (3) 

It follows that the function (x, y) defined by 

(x,y) = ~ (xy + yx) 
2 
1 _ _) 

= -(xy+yx 
2 

(4) 

always takes values in R; in fact this defines a positive defi
nite inner product on O. We denote the length of x in this 
inner product by Ix I, so that 

Ixl 2 = xx. (5) 

The real numbers in 0 commute and associate with all 
other elements, so it is only the pure octonion parts of ele
ments that contribute to commutators and associators. 
Hence 

[x,y] = - [x,y] (6) 

and 

[x,y,z] = - [x,y,z]. (7) 

The automorphism group of 0 is a Lie group whose Lie 
algebra is the compact form of the exceptional Lie algebra 
G2• This is the derivation algebra of 0, i.e., the set of maps 
D:O--+O satisfying 

D(xy) =x(Dy) + (Dx)y. (8) 

Every automorphism is orthogonal and every derivation is 
antisymmetric with respect to the inner product (4). The 
maps of left and right multiplication by elements of 0' are 
also antisymmetric. Thus if we define La and Ra by 

(9) 

and let L be the set of all La' R the set of all R a' then Land R 
are seven-dimensional subspaces of the Lie algebra 0(8) of all 
antisymmetric maps of O. In fact 0(8) is the direct sum of 
these two subs paces and the 14-dimensional derivation alge
bra G2 : 

(10) 

LetKa =La -Ra,sothatKa(x) = [a,x],andletKbetheset 
of all Ka with atO'. Then each Ka maps 0' to itself. The 
derivations in G2 have the sampe property, so the Lie algebra 
0(7) of antisymmetric maps of 0' is made up as 

0(7) = G2 E1lK. (11) 

Given x, ytO, let A (x, y) be the map obtained by taking 
the associator with x and y: 

A (x,y)z = [x,y,z]. (12) 

Then A (x,y) is antisymmetric and maps 0' to 0', so accord
ing to (11) it can be written as 

A (x,y) = D (x,y) + K a, (13) 

where D (x,y) is a derivation and a is some element of 0'. In 
fact a = - j [x,y], so the derivation D (x,y) is given by 

I 
D (x,y)z = [x,y,z] + - [[x,y],z]. 

3 
(14) 

This map D:O X 0--+G2 plays an important role in the struc
ture of exceptional Lie algebras and supera1gebras. It has the 
properties 

D (y,x) = - D (x,y) = D (x,y), 

[E,D (x,y)] = D (Ex,y) + D (x,Ey) 

for any EtG2 • 

( 15) 

( 16) 

One of the most remarkable properties of the octonions 
emerges from considering a generalization of the derivation 
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equation (S) in the form 

A (xy) = (A # xLY + x(A "y), (17) 

where A, A #, A " are antisymmetric maps. The principle of 
triality asserts that if AEO(S) is given, then there exist unique 
maps A#, A "EO(S) satisfying (17). It is easy to see that 
[A I ,A2 ]# = [A I #,A 2#] and [A I ,A2 ]" = [A." A2"], so the 
correspondences A~A #, A" define representations of o(S). 
These are not equivalent to the self-representation. A further 
representation, which is equivalent to the self-representa
tion, is given by A~A where 

Ax= (Ax). 

Another way of expressing this is to say that the correspon
dence A~A #, A ", A are automorphisms of o(S) of which 
only A~A is an inner automorphism. They generate a group 
of six automorphisms of o(S) which is isomorphic to SJ. 

If 

then 

Explicitly, A #, A ", and A are given as follows: 

A # =D+La +Ra_ b, 

A" = D - La _ b + R b , 

A =D-Lb -Ra' 

( IS) 

( 19) 

(20) 

(21) 

If AEO(7), then A = A and A # = ~. In that case, on 
calculating (A #)# and (A #)" we find tne following: 

A (xy) = (A #XLY + x(A "y), (22) 

A #(xy) = (AxLY + x(A #y), 

A "(xy) = (A "xLY + x(Ay). 

(23) 

(24) 

Note that the multiplication operators La form a repre
sentation of the Clifford algebra of the seven-dimensional 
orthogonal space 0', for it follows from the alternative law 
(1) that 

LaLb + LbLa = Lab + ba' 

and ifa, bEO', (14) gives 

ab+ba= -2(a,b). 

Now from (23) we have 

L Aa = [A #,La ]. 

It follows that A~A # is the spin representation of 0(7). 

(25) 

(26) 

(27) 

Most of this theory is also valid for the other alternative 
algebras R, C, and H.; the only change that has to be made is 
that the statement of uniqueness does not hold in the princi
ple oftriality. [This can be taken into account by considering 
the triality algebra, i.e., the Lie algebra of triples (A, A #, A ") 
satisfying (17), as the analog of o(S) in the other cases; see Ref. 
2.] 

2. CONSTRUCTION OF THE LIE SUPERALGEBRAS G(3) 
AND F(4) 

We recall that a Lie superalgebra L is a direct sum 
L = Lo ffi L I' in which Lo is a Lie algebra and L I is a vector 
space carrying a representation p of L o, which gives the 
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bracket between Lo and L.: 

[X,v] = p(X)v (XELo,VEL d. (28) 

The bracket between elements of L] is a symmetric bilinear 
map from L. X L I to Lo which is covariant in the sense that 

[X,[v,W]] = [P(X)v,w] + [v,p(X)w] (XELo,v,WELd (29) 

and which satisfies 

p([u,v])W + p([v,w])u + p([w,u])v = o. (30) 

The Lie algebraLo and the representationp for all simple Lie 
superalgebras are specified by Kac.5 It remains to construct 
the bracket on L] satisfying (24) and (30). 

In G(3) (more precisely, in a particular real form of it), 
Lo = sf (2,R) ffi G2 and L 1 = R ® V where Vis a seven-dimen
sional space carrying the fundamental representation of G2• 

Here, as in Sec. 3, G2 denotes the compact real form of the 
algebra which can be identified with the algebra of deriva
tions of 0; hence V can be identified with 0'. Thus L I can be 
regarded as the space of two-component vectors with entries 
from 0', with sl (2, R) acting as 2 X 2 matrices and G2 acting 
componentwise as derivations. 

Now suppose a = (:J, b = (!JEL •. We define the 

bracket [a, b] as 

[a,b] = (3D, - 4M), 

where DEG2 and MEsl (2,R) are given by 

D = D (a I ,b2 ) - D (a 2,b.) 

(31) 

= EijD (ai,bj ) (32) 

whereD (x,y) is defined in (14) and Eij is the two-dimensional 
antisymmetric symbol; and 

M=M(a,b) 

= (a],b2 ) + (az,b.) 
- 2(a2,bz) 

= Re (abt + bat)E, (33) 

where the dagger denotes the octonion conjugate transpose, 

Re denotes the real part of an octonion, and E = (0 1). 
-1 0 

The covariance equation (29) is quickly verified. When 
X = EEG2, (29) follows from (16) and the fact that E is anti
symmetric, so that (Eai>bj) + (ai,Eb) = O. When X = 

NEsl (2, R), (29) follows from the equation 

(34) 

To verify (30), consider the ith component (i = lor 2) of 
p([a,b])c + p([b,c])a + p([c,a])b: this is 

3EjkD(aj,bk)ci - 4(ai,b) + (bi>a))Ejkck 

+ terms obtained by cyclically permuting a, b, c. (35) 

Now (14) and (26) give 

3D (a,b)c = [a,b,c] + 4( (a,c)b - (b,c)a) (36) 

for a, b, CEO'. Using this, together with the identity 

EjkOi/ = EikOjl - EijOk1 , 

A. Sudbery 
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(35) can be written as 

€ij([ak,bjh] - [aj,bk,ck ]) 

+ 4€ij( (a k 'Ck )bj + (bk 'Ck )aj - 2(ak A )cj ) 

+ 4€ij( (aj,bk )ck - (aj,ck )bk + (bj,a k )ck - (bj,c k )ak ) 

+ cyclic permutations 

=0. 

This completes the verification that Eqs. (21 )-(23) define a 
Lie superalgebra. 

In F(4) the Lie algebra Lo is s! (2, H) tIl 0(7) and the repre
sentation p is the tensor product of the eponymous two-di
mensional representation of s! (2, H) with the spin representa
tion of 0(7). As explained in Sec. 2, the latter can be taken to 
act on 0, so in this case L I = 0 2

• 

Given x = (:J, Y = (~J € 0 2
, we define the bracket 

[x, y] as 

[x,y] = (C(x,y), - 3M (x,y)), (38) 

where M (x,y) is as in (33) and C (x,y)€0(7) is given by 

C (x,y)z = €d (zx;).Yj - X;LYjz) J (ztO). (39) 

That this defines an element of 0(7) can be seen by writing it 
as 

(40) 

With this definition of the bracket, (29) holds for 
XES! (2,H) in the same way as it does for G(3). For X = A€0(7) 
we have 

M (A #x,y) + M (x,A #y) = 0 (41) 

since A # is antisymmetric; and applying Eqs. (22)-(24) to 
(40) gives 

CIA #x,y) + C(x,A #y) = [A,C(x,y)]. (42) 

As pIA ) = A #, (41) and (42) are the same as (24) for this 
algebra. 

To verify (30), we need to find C (x, y)# . Use (14) to write 
(40) in the form (18) and apply (20): the result is 

C(x,y)#z= -€ij!(xj'j )z+2(zy)x;J. (43) 

Now from (40) it follows that C (x, y) = C (y, x); hence 
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C (x, Y)#Z + C (y, z)#x + C (Z, y)#x = ~! C (x,Y)#Z 

+ terms obtained from all permutations of x, y, z]. 

Let 

Pk = €ij(XiYj)Zk 
+ terms obtained from all permutations of x, y, Z, 

Qk = €ij(zdj)xi 

+ terms obtained from all permutations of x, y, z, 

so that 

C (X,y)#Zk + cyclic permutation terms 

=-!Pk-Qk' 

Writing 

€ijkl = !(€i/Djk + €IjDik + €ijDkl ), 

we find 

Pk = €ij{ (Yj,zk) + (Zj'Yk) }Xi 

+ cyclic permutation terms + !Qk' 

Qk = €ij{ (Yjh) + (Zj,Yk )}Xi 

+ cyclic permutation terms + !Pk • 

Hence, by (44), 

C(X,Y)#Zk + cyclic permutation terms 

= 3{ (Yk,Zj) + (Zk'Yj) }€jiXi + cyclic permutation 

terms 

(44) 

= 3M(y,Z)kiX; + cyclic permutation terms (45) 

which is the form taken by (30) for the bracket (38). This 
completes the verification that Eqs. (38)-(39) define a Lie 
superalgebra. 

'J. R. Faulkner and J. C. Ferrar, "Exceptional Lie algebras and related 
algebraic and geometric structures," Bull. London Math. Soc. 9, I (1977). 
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'R. D. Schafer, Introduction to Nonassociative Algebras (Academic, New 
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'V. G. Kac, "Lie superalgebras," Adv. Math. 26, 8 (1977). 
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On a new class of gradient formulas in the angular momentum theory 
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Recently B. F. Bayman has derived the formula for ~Jm (V)tP (r)~ LM(r), where ~Im (r) is a solid 
spherical harmonic, in terms of the derivatives of the function tP (r) by the scalar parameter r. This 
result is clarified and essentially generalized for the case of the tensor product 
{g-?(V) ®tP (r)g-dr)hp, where ~m(V) =..1 n~lm(V), in this paper. Applications to the Taylor 
series in the three-dimensional Euclidean space, as well as some other expansions, are discussed 
briefly. 

PACS numbers: 02.30.Bi, 03.65. - w 

1. INTRODUCTION 

In physical applications the necessity often arises of ex
panding the function/(r), specified in the three-dimensional 
Euclidean space, into the Taylor series or some other type of 
expansion. The corresponding formulas can be easily written 
down by using Cartesian coordinates of the vector r. The 
corresponding expression is, however, rather cumbersome 
and not appropriate for calculations and it also does not take 
into account the transformation properties which are usual
ly inherent in the functions relevant to physical applications. 
It is desirable to introduce these properties into expansion 
formulas, in an explicit form. 

The functions met in applications are usually trans
formed by irreducible representations of the rotation group. 
Such a function will be referred to as an irreducible spherical 
tensor (1ST). 

In the case of a function which is not 1ST the reduction 
of a problem to the 1ST case is reached via preliminary ex
pansion of/ (r) over the complete set of spherical functions 
(the Laplace series). Though a three-dimensional problem is 
essentially distinguished from a one-dimensional one, the 
1ST case bears some general resemblance with the one-di
mensional problem, since the coefficients in the Taylor ex
pansion are given here by differentiation of the "scalar part" 
of a tensor by one (radial) variable, the difference being that 
the differentiation operator is now not reduced to the n-or
der derivative, but it has more complicated structure. 

It is essential, however (and this is the main result of the 
present work), that the 1ST expansion problem is closely 
connected with the classical orthogonal polynomials theory. 
In the case of the Taylor series, for example, the differential 
operator turns out to have a form of the associated Laguerre 
polynomial. This conclusion provides a new formulation of 
expansion formulas which might lead to more profound in
sight into a formal background of the expansion theory. 

2. NOTATIONS 

Let Ylm (r) be the spherical function (of angular varia
bles e,,p of vector r) with the usual Condon and Shortley 
phase. 1.2 Let us introduce the uniform tensor polynomial (n 
is an integer) 

§11m (r) = r + 2n Ylm (r) = rn§l~m (r), 

where §I~m (r)=§llm (r) is the harmonic polynomial (the re
gular solid harmonic). An arbitrary 1ST ftm (r) is written as 

ftm (r) = /(r)§l7m (r). 

The notationft(r) means symbolically 21 + 1 components, 
ftm(r), -1'm'l. We use also the usual 1 definition of the irre
ducible tensor product (ITP): 

{t;(r)®,p,dq)}LM = L (Im,AJlILM)ftm(r)tPAp(q), 
m,p 

where (Im,AJlILM > is the Clebsch-Gordan coefficient. 1 

3. TAYLOR SERIES 

The Taylor series of an 1ST /LM(r) can be written as 

/LM(r + R) = L a(n,l)( - 1)/ 1T(A) 
n,I.A 1T(I,L ) 

X{§I?(R)®{§I?(V)®/L(r)hhM' (1) 

where1T(a,b,.··) = [(2a + 1)(2b + l) ••• ]l/Z,anda(n'/)istheco
efficient in the "plane wave" expansion 

exp(a·b) = La(n,l) {§l7(a) ® §l7(b)}oo' (2) 
n,l 

a(n,l) = ( - l)lffllZ 1T(l) , 
21+ zn - 1n!r(n + 1+3/2) 

where O,n < 00 in Eq. (1) and the summation over I,). is 
determined by usual triangle condition. 1 The dependence of 
the quantity §17m (V) in Eq. (1) on Cartesian components a I 
ax, a lay,a lazofthe gradient operator V = VIr), which com
mute one with another, is fairly similar as in the case of usual 
(nonoperator) vector argument. One should note that the 
quantities §I'l", (V) and §17m (r) are transformed under rota
tions in a similar way. The functions §17m (R) in Eq. (1) play 
the part of generalized powers, and the quantities 

/1:;L(r) = {§I?(V) ®h (r)hp 

have the meaning of generalized (tensor) derivatives of the 
function/(r) if one bears in mind the analogy with one-di
mensional Taylor series. 

4. THE GRADIENT FORMULA 

The following relations hold: 

{§l7(V) ®/(r)§I~(r)hp = §I~p(r)H(I,L')' )2vv!N~,,,,(rlf(r), 
(3) 
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N). (r)=L).+II2(- r §)§w § __ a_ (4) 
v,W v 2 ' a(rI2) , 

v = n + (l + L - A. )/2, OJ = n + (I + A. - L )/2, (5) 

H (a,b,c) = (41T)-1/21T(a,b ) (ao,bolco)hr(c), (6) 

where L ~ (x) is an associated Laguerre polynomial. 3 When 
using the explicit formula for the Laguerre polynomial in 
Eq. (4) or in any other algebraic transformation, the expres
sion Xk = ( - l)k K k § k should be considered as the "power" 
(or quasi power) of the quantity x = - K § (K ), K _r /2, 
i.e., the quantity § (K) should be considered as the differenti
ation operator (by r 12) for functionf only, and with respect 
to the multiplier r 12 the expression § (K ) should be consid
ered as a permutable symbol. Such a convention does not 
interfere, but, on the contrary, facilitates obtaining various 
analytical corollaries from the Eq. (3). 

Note that, since the quantity H(/,L,A.) in Eq. (3) is pro
portional to the Clebsch-Gordan coefficient with zero pro
jections of momenta [cf. Eq. (6)], then, in virtue of the known 
selection rule, the quantities I + L - A and I + A - L may 
assume only even values. Hencewith, the parameters v and OJ 

in Eqs. (3)-(5) are integers. 

5. AUXILIARY IDENTITIES 

To prove the central formula (3), we need some auxil
iary differential identities. 

Any function of the scalar argument, 
r = (x2 + y2 + Z2)112, has the following differentiation prop
erty (cf. Ref. 4): 

d n(x)f(r) = Mn (x,[§)f9nf(r), 

(7) 

d(x)=~, § =d(~), ax 2 

where Mn is the modified Hermite polynomial 

Mn (x) = ( - i)"Hn (ix), 

(8) 
Hn(x) = (- 1)"exp(x2/2)d n(x)exp( -x2/2). 

The Hermite polynomials Hn in Eq. (8) are normalized 
according to Ref. 5 (in a more usual convention the multipli
ers 1/2 in exponents are absent). The expression in the right
hand side of the Eq. (7) should be treated as an ordered one. 
Namely, when using the explicit polynomial expression for 
the differential operator in the right-hand side ofEq. (7), the 
operators § k (only integer "powers" k take place) should be 
placed in the right position, and the multipliers xq-in the 
left one [following Maslov6 notations, the operators § in 
Eq. (7) should be marked by the ordering index 1, and opera
tors x with index 2, that would correspond to explicit indica
tion of operators' positions]. 

Similar differential rules take place for y and z variables. 
Thus, for any polynomial P (r)=P (x,y,z) we have 

P(V)f(r) = P [M (xj9)j9,M (yj9)j9, 

XM(zj9)j91f(r), (9) 

where 
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(M(xf9)j9)i Mi(X~§)j9i. 

Using the integral representation of Hn polynomials,S 
one may easily obtain the integral representation of polyno
mials M n , 

Mn(x) = (21T)-1/2 J:= dX'(x+X')"exp( - ~x'2).(1O) 
Substituting Eq. (to) into Eq. (9), we have 

P(V)f(r) = (21T)-3/2 J dr' 

XP(r§ + r\(9)exp( - +r/2)r(r). (11) 

In order to transit from the integral representation (11) 
to an algebraic form, one should specify the type of the po
lynomial P and to use some addition theorem either for the 
polynomials P, or for the Gaussian exponent (after the sub

stitution r/ = r" - rf9) in the integrand (11). 
In the case under consideration, the function 

P (V) = '?Y7m (V) can be transformed with the help of the addi
tion theorem for polynomials '?Y (cf. Ref. 7 or 8), or, equiv
alently, we can use the Kumar expansion9 for the Gaussian 
exponent. After integration of the right-hand side ofEq. (11) 
in spherical coordinates we obtain 

'?Y7m (V)f(r) = 2nn!'?Y?m (r) 

X L ~ + II2( - +r § )§ n + fir). 

In the particular case n = 0, Eq. (12) gives 

'?Y?m (V)f(r) = '?Y?m (r)§ fir). 

6. PROOF OF FORMULA (3) 

(12) 

(13) 

To prove the gradient formula (3), it is sufficient to use 
relations (12) and (13). 

Let ¢ (r) be such a scalar function thatf(r) = §'¢ (r). 
Then, the 1ST '?Y~M(r)f(r) appearing in the left-hand side of 
Eq. (3) can be written, by means ofEq. (13), as '?Y~M(V)¢ (r). 
As a result, the irreducible tensor product in the left-hand 
side of Eq. (3) can be transformed, by placing the function 
¢ (r) outside of the sign of the tensor product, to the following 
form: 

{'?YZn (V) ® '?Y~ (r)f(r)};.!, = {'?Y7(V) ® '?Y~ (V)};.!, ¢ (r). 
(14) 

In the right-hand side ofEq. (14) we have now ITP offunc
tions of the same argument. Applying the addition theorem 
for spherical functions 1 

{Y,(r) ® YL(r)h!' = H(l,L,A. )Y).!'(r), 

we have 

{'?Y7(V)® '?Y~(V)h!' = H(I,L,A. )'?Y~!,+(/+L-).I/2(V).(15) 

Substituting Eq. (15) into Eq. (14) and applying relation 
(12) with due account of the identityf(r) = §'¢ (r), we, final
ly, get at the formula (3). 

7. NEW INTERPRETATION OF BAYMAN FORMULA 

The particular case of the general formula (3) yields a 
clear and compact alternative to the recent Bayman's re-
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sult.2 To this end, one should merely let n = 0 (the case con
sidered by Bayman) in the above formula. Ifwe use now 
explicit expressions for the resulting Laguerre polynomial3 

and the Clebsch-Gordan coefficientl participating in the de
finition of H (I,L,). ) then, applying an evident substitution of 
a summation variable, one may easily verify that the final 
expression for a tensor derivative in the case n = 0 is identi
cal to Bayman's2 result. 

Letting n = 0,/ = 1, one may easily transform Eq. (3) to 
the well-known Darwin's formulas. I 

8 .. GENERALIZED HYPERGEOMETRIC SERIES (GHS) 

In the case ofIST, the scalar part of which may be rep
resented by G HS 10 of the argument r (for brevity we call this 
function IST-GHS), 

Cs;ur/2) 00 k(aS
) 1 k f(r) = pFq = L pC q ,(u(r/2)) , 

, k~O p, k. 

cJas ) = (al)k· .. (ap)k 
p q\P, ~dk,,,(Pq)k 

[(a)n is the Pochhammer symbol], the following important 
relation 

= uW(A +~) pc~(as) 
v! 2 v \p, 

F (as + UJ,L + UJ + 3/2;ur /2) 
Xp+ I q+ I \p, + UJ,). + 3/2 (16) 

holds. This means that tensor differentiation of 1ST -GHS 
leads to the 1ST of the same class. If one of parameters in the 
initial GHS denominator is equal to L + 3/2 (the situation 
often met in applications), the differentiation does not lead to 
changing the number of parameters in the GHS. The 
straightforward substitution of relations (16) and (3) into Eq. 
( 1 ) gives the general formula of the Taylor expansion for 1ST -
GHS of arbitrary type. Since many physically important 
functions (such as 'Y'lm (r), spherical waves, isotropic oscilla
tor eigenfunctions, etc.) have IST-GHS form, such an ap
proach leads to unified treatment of different expansions (for 
example, of Friedman and Russak, II Nozawa, 12 Mo
shinsky,13 Kay, Todd, and Silverstone'? Smirnov,8 expan
sions, etc.) and provides a systematic background for obtain
ing new expansions as particular cases of the general 
formula. 

9. OTHER EXPANSIONS 

Formula (1) has been obtained by applying the plane 
wave expansion, Eq. (2), to the shift operator, exp(2RV) (with 
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the subsequent reassociation of the triple ITP by standard 
formulas of the angular momentum theoryl). 

If other types of the shift operator expansions are used, 
this results in 1ST expansions different from the Taylor se
ries. In this case, 'Y7m (V) in Eq. (1) is substituted by other 
differential operators which have, however, the form ofIST 
of the gradient operator V. The "scalar part" of such opera
tors is usually represented by an expansion in powers of the 
Laplace operator Ll, Le., the corresponding 1ST may be rep
resented as a series in gradient operators, 'Y'lm (V). Formula 
(3) gives an action of such operators on an arbitrary 1ST, 
fLM(r). In many cases, an analytical form of the resulting 
expressions allows one to sum up the arising operator series, 
thus connecting it with some special functions different from 
the Laguerre polynomials. This, in turn, results in compact 
formulas for 1ST expansion not exclusively of Taylor type, 
but of different types as welL 
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We suggest a proce~ure to evaluate matrix elements between hyperspherical harmonics of any 
order. The method IS based on the hyperspherical expansion of a Slater determinant constructed 
with oscillator wavefunctions. Explicit formulae are given for all matrix elements up to order 
Lm +2. 

PACS numbers: 02.30.Gp, 03.6S.Pd 

I. INTRODUCTION 

The hyperspherical harmonic method (HHM) has been 
applied in recent years to nuclear bound states. However, 
except for some few-bOdy problems, calculations have been 
only performed in the Lm approximation in which the hy
perspherical expansion of the wavefunction is restricted to 
those HH having the minimal degree Lm deduced from the 
Pauli principle. A detailed description of the method, as well 
as some L m calculations, can be found in Ref. 1, for instance. 

Basically the HHM uses internal coordinates consisting 
of an hyperradius r and a set.fJ of 3A - 4 angles; the internal 
wavefunction is expanded on a complete basis of angular 
functions, the so-called hyperspherical harmonics. Then the 
nonrelativistic Schrodinger equation is transformed into a 
system of coupled differential equations, the solutions of 
which give the hyperradial functions of the wavefunction 
expansion and the energies of the bound states. A prelimi
nary technical problem arises therefore with the evaluation 
of matrix elements of a translationally invariant operator on 
an HH basis. For instance, when this operator is the total 
potential energy, its matrix elements are the coupling coeffi
cients for the system of differential equations. This has been 
already worked out in the first-order approximation, by fol
lowing essentially two ways. In the first one, '.2 the square of 
HH of order Lm is integrated over a set of suitable 3A - 6 
internal variables, thus getting one- and two-body coeffi
cients, as an intermediate step of obtaining matrix elements 
of one- and two-body operators. In the second way3 a con
nection is established between hyperspherical matrix ele
ments and the matrix elements taken between Slater deter
minants constructed from harmonic oscillator 
wavefunctions (HO determinants henceforth), in which the 
order 

A 

L = L (2nj + IJ (1.1) 
;= 1 

is minimum (L m ). Here n; and Ij are, respectively, the usual 
radial and orbital quantum numbers of the ith nucleon. 

In this paper a generalization of this second way is giv
en, based on the result than an HO determinant of order L, 
can be written as a linear combination of a known function of 
the hyperradius times an HH. The orders of the HH appear-

alLaboratoire associe au C.N.R.S. 

ing in such a linear combination range from L m to L. In Ref. 
4 a generalization of the first way has been given. In the 
present work we use a direct connection with the shell model 
leading to a straightforward physical interpretation of the 
HH. 

The plan of this work is as follows. We discuss in Sec. II 
the hyperspherical expansion of an HO determinant. The 
coefficients are explicitly calculated up to the order Lm + 2 
for Ip-lh excitations over a closed-shell core. In Sec. III, a 
general procedure for evaluating hyperspherical matrix ele
ments is suggested. In particular, we find the result of Baz' 
and Zhukov for the order Lm . Explicit formulae for the ma
trix elements needed up to the order Lm + 2 are given. 

II. HYPERSPHERICAL EXPANSION OF AN HO 
DETERMINANT 

Let us first define the notations and recall some results 
derived in Ref. 1. 

Let (r" f 2, ••• ,fA ) be the coordinates of the nucleons. The 
center-of-mass 

1 A 
R = - L fj (2.1) 

A j=, 

will be eliminated by choosing the Jacobi coordinates 

~j = ~i/(i + 1) [f;+, - (lIi)±. rj ], i = 1, ... ,A - 1. 
J= , 

(2.2) 

Now, in the (3A - 3)-dimensional space spanned by these 
coordinates we define hyperspherical coordinates, consist
ing of a hyperradius 

A-' A 

r = L ~7= I (r; - R)2 (2.3) 
i= 1 ;= 1 

and a set .fJ of 3A - 4 hyperangles. The volume element is 
given by 

dT3A=d3r,d3r2 ... d3rA =A -3/2d3RdT3A_3, (2.4a) 

dT3A_3=d3S,d3S2 ... d3SA_' =~A-4drd.fJ, (2.4b) 

where d.fJ is the surface element over the unit hypersphere. 
The internal wavefunction is expanded on an HH basis 

as 

(2.S) 
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where D [L I (fl ) is a normalized HH of order L, including the 
full spin-isospin dependence, completely antisymmetric 
with respect to the exchange of any pair of nucleons. The 
symbol [L ] stands for a set of 3A - 4 quantum numbers, 
including the HH order L. The hyperradial functions are 
determined by the boundary conditions in the Schrodinger 
equation. They are solution of a system of coupled second
order differential equations, in which the coupling coeffi
cients are given by the potential matrix. 

A. The harmonic oscillator potentials 

Consider now the harmonic oscillator (HO) potential 

A fz2 A (r.)2 
V= !mui L 1=--2 L ~ . 

;~ I 2mb;~ I b 
(2.6) 

From the definition (2.3) of the hyperradius we immediately 
get another equivalent expression for the potential 

V--- - +A - , _ fz2 [( r )2 (R )2] 
2mb 2 b b 

(2.7) 

which also has an HO form for both internal and center-of
mass potentials. The potential (2.6) gives an IPM description 
of the system, where the eigenstates are described by a Slater 
determinant D[L ,(r,b ) constructed from the individual HO 
eigenfunctions 

(bl r _ n. ..!...- ymUJ 
[ 

2 , ] 1/2( )1 
(,6 nlm ( ) - b 3 r (n + I + ~) b d) 

(2.8) 

The potential (2.7) gives a collective description of the sys
tem, and the eigenstates are expressed in terms of functions 

(2.9) 

where D[L ,(fl ) is an HH and ",~.~, (r) is a hyperradial HO 
function given by 

r/Jb l (r)=r-(3A-4112[ 2n! ]1/2 
L.n br (n + v + 1) 

Xe-(rlb
I2/2(; r+ 1/2 L ~((; y) (2.10) 

with v = L + (3A - 5)12, and the notation g; =.JAR has 
been used. 

The same HO problem has been solved in the IPM and 
in the HHM. Therefore, the eigenfunctions of one model are 
linear combinations of the eigenfunctions of the other meth
od, provided that the total energy is preserved. We thus ob
tain the relation 

D[L )(r,b) = L C(n',n,/,m,[L ])(,6 ~/~(g;) 
n'nlm 

X"'~!,n,(r)D[L,,(fl ), 

with the following restriction in the sum: 
A 

L = L' + 2n' + 2n + 1= L (2n; + 1;), 
i= 1 

(2.11) 

(2.12) 

where n; and I; refer to the individual HO quantum numbers 
in the Slater determinant (2.13). Of course, the coefficients C 
of the linear combination are to be determined. 
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Equation (2.11) is still valid when D[L ,(r,b ) is replaced 
by a sum of Slater determinants with the same L (i.e., the 
same energy) but different individual configurations. For in
stance, the coefficients of such a sum can be determined in 
order to produce a linear combination of Slater determinants 
with definite total angular momentum J and isospin T. Then 
the HH of highest order L in (2.11) (i.e., for n = I = n' = 0) 
would exhibit the same definite quantum numbers J and T. 

In order to simplify the expressions below, we introduce 
the following quantities: 

and 

p (n) = 1 for n odd 

= 0 for n even, 

Fn,m(g;,b) = (,6 ~~(g;)I(,6 ~(g;) 

G (r,b) = "'~~.I (r)l"'~~.o(r), 

(2.13) 

(2.14) 

(2.15) 

where (,6 ~~ (g;) and "'~~.n (r) are given in (2.8) and (2.10). 

B. Calculation of the coefficients up to Lm + 2 

For the sake of simplicity we limit ourselves to the case 
of closed N = Z shell nuclei. Then the HO determinant of 
order Lm is a closed-shell core, denoted by Ib, L m), having 
quantum numbers J = T = O. Any HO determinant of order 
L > Lm can be obtained through particle-hole excitations on 
the core; the specific orbitals as well as the number of parti
cle-hole couples are both limited by the order ofthe determi
nant. The symbollbLJTa) will be used for a suitable linear 
combination of HO determinants of order L having well
defined quantum numbers J and T; the index a distinguishes 
between the various possible individual configurations in a 
determinant of order L. For instance, a determinant of order 
Lm + 1 is obtained by creating a hole in a state (i) of the last 
occupied shell of the core and creating a particle in a state (m) 
of the next unoccupied shell. In that case, the notation i-I m 
will substitute the symbol a. Finally, the symbol D t;JT)(fl) 
will stand for a completely antisymmetric HH of order L 
with quantum numbers JT associated with a specific con fig
urationa. Obviously, the superscript (aJT) will be omitted in 
the case L = Lm since we are dealing with closed shell nu
clei. 

Now, in order to expand a wavefunction IbLJTa) in 
terms of HH having well-defined quantum numbers, they 
must be suitably coupled with the center-of-mass angular 
momentum. This coupling obviously gives some restrictions 
on the coefficients which will be explained. The expansion 
(2.11) is written now up to the order Lm + 2: 

(2. 16a) 

(2.16b) 
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Ib L + 2 JTa) = B (aJT)"" (bl (g; ).,,(b l (r)D(aJTI (a) , m' I Of' 000 Of'Lm + 2,0 Lm + 2 

+ I B2(aJT{3J'M')¢J~IIM_M'( g;) 
PJ'M' 

X ",(b I (rjD (OJ'M'TI(a) Of'Lm+ 1,0 Lm+ I 

+ 8(J,2)8(T,O)B3(a,JT)¢J ~2~( g; )t/J12,o(r)DLJa), 

+ 8(J,O)8( T,O)B 4(a,JT)¢J \~ ( g; )t/J12,0 (r)D Lm (a ), 

+ 8(J,O)8( T,O)Bs(a,JT)¢J ~ ( g; )"'~2,1 (r)D Lm (a ). 
(2,I6c) 

This set of equations constitute eventually a method for gen
erating suitable HH in terms of HO determinants. 

Let us consider now (2.16b). The coefficientA 2 is identi
cally given by 

A2(a,JT) = (¢J ~I~ t/J12,oDLm Ib,Lm + 1, JTa) 

= (bLm 1F~IM(g;,b )lb,Lm + I,JTa). (2.17a) 

It is a one-body matrix element between the core and a 1 p-I h 
excitation. Using the conventions of Ref. 5 about time-rever
sal invariance, one finds 

'_1 (2j; + 1)112 .. 
A2(1 mJT) = - ~ p(/; + 1m lU; 11m; ~ 0 ~). 

X (n;f; Irlnm 1m )8(J, I)8(T,O), (2.17b) 

where (n/lrln'l ') is an HO matrix element with parameter 
b = 1. The notation i- 1m is substituted for the index a ac
cording to the comments above. A normalized HH of order 
Lm + 1 is obtained in (2.16b) taking 

A ~(i-lmJT) = 1 -A ~(i-lmJT). 

For the case Lm + 2, one similarly gets 

Bs(aJT) = (bLm IG (r,b )lb,Lm + 2,JTa), 

B4(aJT) = (bLm IFlOo(g;,b )lb,Lm + 2,JTa), 

(2.18) 

(2.19a) 

(2.19b) 

B3(aJT) = (bLm IF~2,M(g;,b )lb,Lm + 2,JTa), (2.19c) 

B2(aJT{3J'M') = 1 (b,Lm + I.J'M'T{31 
AI({3,J'M'T') 
XF~I M _ M' (g;,b )lb,Lm + 2,JTa) 

_A2({3.J'M'T)(bL IF* , 
A I({3,J'M'T) , m OIM-M 

X (g;,b )F~IM,(g;,b )lb,Lm + 2,JTa). 
(2.19d) 

The operators occurring in the matrix elements are one- and 
two-body operators. We restrict our calculations to the sim
plest case where we have to deal with the Ip-Ih excitations. 
We obtain therefore the following results: 

Bs(i-lmJT) = - (lIA) ~2(2j; + I)/(vm + 1) 

X 8(j j m )8(J,O)8( T,O) 

X [(A - I)(n;f; Irlnmlm )8(/Jm) 

+ 2 IF (I; + Ik ).p (/k + 1m )(nJ; Irlnklk) 
nk1k 

(2.20a) 
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B4(i-lmJT) = (2/A) ~(2j; + I)/38(j;jm)8(J,O)8(T,O) 

x[ - (n;f;lrlnmlm)8(/;fm) 

+ 2 I p (I; + Ik)· P (/k + 1m) 
nk'k 

X (nJ; Irlnklk) (nklk Irlnm 1m) ], (2.20b) 

B3(i-lmJT) = (8/15A) ~(2j; + 1)/2 p (I; + 1m + 1) 

X {j;2jm;! 0 !)8(J,2)8(T,O) 

X [(nJ;lrlnmlm ) +2Ip(/; +Ik) 
"k!k 

. P (/k + Im)(nJ; Ir Inklk ) (nklk Irlnmlm)], 

(2.2Oc) 

B2(i-
1mJT,k -Ip J 'M ') 

= ~2(2J' + I)/A [(IJ'J;M' - M,M')IAI(k -Ip J'M')] 

X [~2jp + I(jpljm;!O!)W(IjpJj;;jmJ') 

X p (1m + Ip )(np Ip Irlnmlm) 

+ ~2j; + 1(j; Ijk;! O!)( - )1+ J' - JW(IjkJjm ;iJ') 

X p(/; + Ik )(nJ; Irlnklk )] 
- [A 2(k -lp;J'M')IAI(k -~;J'M')] 

X [V2(112;M - M',M')B3(i-lm,JT) 

+ ( - )1 + M'.JI8(M,O)B4(i-ImJT)]. 
(2.20d) 

The sum over n k and I k refers to the quantum numbers of the 
core. The case of 2 p-2h can be treated using standard shell 
model techniques to obtain the 2 p-2h configurations as a 
linear combination of HO determinants with definite total 
angular momentum and isospin which allow us to calculate 
the expectation values given in the formulae (2.16). 

III. HYPERSPHERICAL MATRIX ELEMENTS 

The calculation of the matrix element 

(Dt'JTIIQ ID~'T'I) 

= fda Dt'JTI+(a )Q(~)D~'T'I(a) (3.1) 

can be performed using the Surkov theorem,6 which states 
that for any translationally invariant operator 0 (~) we have 
the identity 

fda 0 = (r/2~A - 5mr lIds e'':>S3/2 

X J dT3A exp( - s;tl ri )0 (~), (3.2) 

where the path C is along the imaginary axis. The integration 
over the variable s proceeds from an integral representation 
of the delta function, which enables one to exclude the hy
perradius in the integration over all the variables r;. In this 
respect, when the hyperradial dependence in 0 (~) is factor
ized, it can be obviously extracted out of the integral over 
T 3A . Indeed, the result of the integral (3.1) depends on the 
hyperradius only. 
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A. A procedure of calculation 

The matrix element (3.1) can be calculated using Sur
kov's theorem with 

(3.3) 

In order to emphasize the essential aspects of the procedure, 
let us particularize to with the case L = L / = Lm + 1. One 
can extract from (2.16b) the HH of order Lm + 1 

Dr~TJ I (n) = A 1- l(aJT) [¢~(&I)I/Jr2+ I.o(r)]-I 

X [lb,Lm + I,JTa) -A2(aJT)¢~~(&I) 

X I/Jr2,0(r)DLJn)], (3.4) 

where from (2.8) and (2.10) we have 

[ ¢ ~ (&I)tP12 + 1,0 (r) ] - I 

_[ff3/2r(Vm+l)]1/2bYm+7/2 (1 A r7) 
- exp - L -2 .(3,5) 

2 rLm + I 2 i ~ I b 

The left-hand side of (3.4) does not obviously depend on the 
center of mass, the hyperradius, and the HO parameter in 
spite of their occurrence at the right-hand side, We must 
keep in mind that (3.4) is an identity valid for any value ofR, 
r, and b. Therefore, the term exp( - s~1 ~ I r:J of the Surkov 
theorem can be eliminated by choosing b 2 = s- I as Baz' and 
Zhukov3 did for the case L = L / = Lm . The matrix element 
(3.1) can be obtained in two steps: First, one calculates all the 
matrix elements between HO determinants of order 
L m, Lm + 1 and, then, with b 2 = S-I, we perform an addi
tional integration over s. 

However, the operator occurring between the HO de
terminants is the original Q multiplied by some center-of
mass functions, which are included in the linear combination 
(3.4). For instance, in the case L = L / = Lm + 1 the follow
ing term is present: 

A2(aJT)(¢~~ I/J!£2,oDLJQlb,Lm + I,J'T'/3) 

= A2(aJT)(bLm IF~IM(&I,b)Q Ib,Lm + I,J'T'/3). 
(3.6) 

This event is avoided when L = L / = Lm , since, using 
(2. 16a) and the Surkov theorem, one gets 

(DLJQIDLJ 

which is the result of Baz' and Zhukov. At first sight, it 
seems that for L >Lm the calculation is much too cumber
some since we have to deal with anA-body operator between 
HO determinants. However, this difficulty can be overcome 
by noticing that the center of mass is factorized in both the 
volume element and the integrand, enabling one to perform 
the integration over the center of mass. For instance, the 
term (3.6) can be written as 

Az(aJT)A 1({3J'T/)(¢ ii'1~ I¢ ~) (1fJJ.2.oDL", IQ 11fJ1.2 + "oD 1f:.J;) 
+ A2(aJT)A2( /3J'T')(¢ ii'1~ I¢ ii'1~') 
X (tPJ.2,ODL", IQ ItPt,oDLm ) 

= A2(aJT)A2(/3J'T/)8(M,M')(bLm IQ IbLm)' (3.8) 

1995 J. Math. Phys., Vol. 24, No.8, August 1983 

This last expression exhibits the useful structure required to 
use the Surkov theorem as in (3.7). For larger L the situation 
is very similar but, of course, more complex. Once again, the 
choice b 2 = S-I enables one to eliminate the exponential of 
the Surkov theorem, and to perform the integration over the 
factorized center-of-mass functions. Finally, the hyperradial 
functions, which do not occur in the case L = L ' = L m + 1, 
can be isolated out of the integral, according to the remark 
given at the beginning of Sec. III. 

B. Hyperspherical matrix elements up to Lm + 2 

This procedure can be applied to any order L, but of 
course, the complexity of the formulae increases with the 
order. The matrix elements up to the order Lm + 2 are given 
below without details: 

(DL IQ IDrJ~I) = r(vm + l)~vm + 1 
m m 21TiA I(aJT)/v",+1 

X Jds._ft_?-
sY",+ 312 

X (s-1/2,Lm IQ IS-1/2,Lm + I,JTa), 

(D1aJT) IQ IDI{3,J'T') Lm + I Lm + I 

r(vm + 3) 

21TiA l(a,JT)A2( /3,J 'T')/v", + 2 

Xfds~ Jc sVm +2 

(3. lOa) 

X (s-1/2,Lm + I,JT,aIQ Is-1/2,Lm + 1,J'T', /3 > 
- A 2(a,JT)A 2( /3,J / T ')8(M,M') 

X (s-1I2,L m 1 Q IS-1/2,Lm ) ], 

(D IQ ID1a.JT) ) 
Lm Lm + 2 

r(Vm + 1)~(vm + l)(vm + 2) 

21TiB I(a,JT)/v", + 2 

(3. lOb) 

Xfds~(S-I/2L IQls- 1/2 L +2JTa) Jc SVm + 2 ' m 'm" 

- B5(a,JT)G(r,s-1/2j-(S-I12, Lm IQ Is- IIZ,Lm)], 

(D1aJT) IQ IDI{3J'T') Lm + I Lm + 2 

r(Vm + 2)~vm + 2 

21TiA I(a,JT)B I( /3,J'T,)/vm + 3 

X f ds ft? [(SI/2 L + I,JTaIQ Is-I/2 Jc SVm + 5/2 ' m , , 

XLm + 2,J'T',{3) -Bs({J,J'T')G(r,s-1I2) 
'(S-1I2,Lm + I,JT,aIQ Is-I/2,Lm > 
-A (a,JT) L B2(/3,J'T';y,J",M' -M) 

2 lyJ") A dy,J" T') 

(3.IIa) 

X (S-1/2,Lm IQ IS- 1I2,Lm + I,J"T~)]. (3.llb) 
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(D~·Jr)2IQ IDiLM~~') = r(vm + 3) idS~{(S~1/2,Lm + 2,JT,aIQ IS~I/2, 
m m 21TiB I(a,JT)B I({3,J'T'),zvm +4 c sVm +3 

XLm + 2,J'T',{J) - I 8(M -M",M' _ M",)B2(a,JT;y,J"M")B2({3,J'T';8,J"'M"') 
(yJ"M") A I(y,J"TjAI(8,J"'T') 
(,sJ"'Mm) 

X (s~1/2,Lm + 1,J" T,yIQ IS-1/2,Lm + I,J"'T',8) - G (r,s~ 1/2)[Bs(a, JT)(S~1/2, Lm IQ IS~ 1/2, Lm + 2,J'T', {3) 

+ BS({3,J'T')(S~1/2,Lm + 2,JT,aIQ Is~1/2,Lm) 1 - [B3(a,JT)B3({3,J'T')8(M,M') + B4(a,JT)B4({3,J'T') 

- G2(r,s~1/2) . Bs(a,JT)Bs({3,J'T) - I B2(a,JT;y,J" M ")B2( {3,J'T';8J"'M"') 

(yJ"M") 

(,sJ"') 

AI(y,J" TjA 1(8,J"'T') 

We have considered here a general translationally in
variant operator Q. Of course, some simplifications are ob
tained when Q has specific properties. For instance, the ma
trix elements (3.1Oa) and (3.11 b) vanish when Q is a 
parity-conserving operator. Also, when Q is a scalar (isosca
lar) the angular momentum (isospin) mus be conserved. 

IV. FINAL COMMENTS 

In our calculation we used systematic connections 
between HH and HO determinants. This procedure enables 
one to utilize standard techniques of the HO shell model. It is 
clear that the procedure is particularly suitable for operators 
Q leading to an analytical integrations over s = b ~2. In the 
various Lm calculations previously performed zero-range 
density dependent potentials and central potentials consist
ing of superposition of Gaussians have been used. All of 
them lead to analytical expressions in b which are easily inte
grated over s. The situation is similar for orders higher than 
Lm because the mathematical problem is essentially the 
same. 

We have only given explicit expressions for the hypers
pherical matrix elements in the cases Lm, Lm + 1, and 
Lm + 2. It is obvious that the procedure can be extended to 
higher orders, but it becomes rapidly tedious. The difficulty 
proceeds from the elimination of both the center-of-mass 
motion and the hyperradial excitations included in an HO 
determinant, which must be taken out in order to obtain a 
pure HH. Especially, the elimination of the center-of-mass 
motion cannot be accomplished using a standard prescrip
tion, but must be done case by case, leading to more compli
cated matrix elements. Anyway, the problem can be handled 
for the lowest orders as we did for Lm + 1 and Lm + 2. 
These orders include most of the Ip-lh and 2p-2h lowest 
nuclear excited states. 
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(3.11c) 

Let us say, finally, a few words about the internal mo
tion. Any determinantal wavefunction can be expressed as a 
linear combination of center-of-mass and internal motions 
(see, e.g., Refs. 7 and 8). In this respect the hyperspherical 
expansion (2.11) of an HO determinant is nothing more that 
a particular choice for the internal motion given in terms of 
hyperspherical coordinates. We have shown explicitly how 
the various center-of-mass states contribute to an HO deter
minant. It seems worthwhile to recall that in general a single 
HO determinant describing an excited state contains not 
only spurious center-of-mass motion but also hyperradial 
excitations. In Refs. 9 and 10 it has been shown that the 
hyperradial excitations are to be identified with the giant 
monopole resonances or breathing mode. These collective 
excitations described by the hyperradial functions must be 
eliminated in order to select pure internal excitations. 
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Perturbation theory for first-order nonlinear differential equations with source is developed in a 
new way, and associated with diagrams that we call star diagrams. In some cases the method 
allows one to express the n-point functions in explicit form. 

PACS numbers: 02.30.Hq 

1. INTRODUCTION 

The motions of dynamical systems submitted to exter
nal excitations are governed by differential equations involv
ing a forcing term (or source term). 1 When the source func
tion is considered as an arbitrary datum, the corresponding 
solutions are functionals of this source. As is well known, in 
the case of linear equations each of these functionals is ex
pressed with the help of an integral involving a Green func
tion. For nonlinear equations, this notion is generalized into 
that of n-point functions defined as the kernels of the func
tional Taylor expansion of the solutions with respect to the 
source. These n-point functions are, in particular, currently 
used in field theory, where they are related to the vacuum 
expectation values of the fields. 2 We intend studying here the 
structure of these functionals, that is to say to explain the 
relations between the different orders of the Taylor expan
sion. In a primary approach, we limit ourselves to first-order 
equations. 

More specifically, we are interested in the retarded so
lution of the equations of the following type: 

dx 
- = 17 + Prix), (E) 
dt 

where P, is a given polynomial, the coefficients of which 
depend on t: 

XV 
Prix) = Lav(t) - , 

v>1 v! 

the arbitrary source function 7] vanishing for negative t. The 
retarded solution is a functional of 7], which can be written in 
the form 

This expansion actually exists and converges for an interval 
O<J<T for some strictly positive T, if only 7] andav ' v> 1, are 
continuous functions in [0,00 [. This can be easily established 
by using the expressions of the Gn's, which result from the 
usual iterative process applied to (E). Our concern is to 
search for an explicit expression of the n-point functions G n' 
Such an expression was previously exhibited in the particu
lar case where P reduces to a monomial aft )(x" Iv!). 3 In this 
case, the n-point functions are all expressed as linear combi
nations of products only built with the help of the first of 
them, Gv ' This basic element will be termed a v-star, and 
graphically represented by the schema 

Tv 
I 
I 

I 
~

I ----

= 8(t - SUP(1'I''''1'v)) Lp{1"""'1"v} d1'a(1'). 

The n-point function is then represented by diagrams ob
tained by a juxtaposition of v-stars linked by their extrem
ities, its value Gn(t;1'I, ... ,1'n) being thus a polynomial in a 
primitive of a taken for various arguments. This result sug
gests looking for a generalization, in the case of any polyno
mial P, in which v-stars for different values of v would occur. 

In what follows, we show that this is indeed the case, 
provided that the functions a v , associated with each type of 
star, are replaced by modified functions. These functions are 
functionals of the a's, which represent a dressing of the basic 
stars. 

Section 2 introduces some functionalsXv (t,r), the deter
mination of which is equivalent to that of the solution x(t ). 
For comparison with our method, the usual Feynman ex
pansion is recalled in Sec. 3. In Sec. 4, the equations obtained 
in Sec. 2 are used to develop a perturbation theory for the 
functionals X"' in such a manner that the dressed stars natu
rally appear. Equations for the dressed stars, and their ex
pansions, are also derived. The result is a set of rules charac
terizing all the diagrams in our theory and giving their 
values. In Sec. 5, these rules are used to find the ones defining 
the solution x(t). In particular, the numerical coefficient of 
each diagram contains a factor depending on the whole to
pology of the diagram. Further properties of this factor are 
developed in the Appendix. Finally, Sec. 6 is devoted to a 
possible physical interpretation of perturbation theory based 
on our expansion, as compared to the Feynman one, and to a 
discussion of the occurrence of some simplifications when 
the av's are proportional. 

2. BASIC RELATIONS 

To the retarded solution x(t) ofEq. (E), one associates 
the functionals Xv (t,r) of 7] defined by 

Xv(t,r) = exp C! f av(r,}xv-I(r')dr). (2.1) 

The product 8 (t - r)ITV> 1 X,,(t, 1') is the retarded Green func
tion of the differential operator 
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~ - I a,,(t) x(t t- I , 

dt ,,>1 v! 

so that the solution x(t ) of (E) may be written as 

x(t) = (' d1' (nx,,(t,1')) 17(r) . (2.2) Jo ,,>1 

In what follows the problem of determining x(t ) is re
placed by the problem of determining the Xv's. Equation (E) 
is in fact equivalent to the set constituted by (2.2) and the 
equations 

~X,,(t,1') = i..a,,(t )x(t t- IX,,(t,r), X,,(1',r) = 1. (2.3) 
dt v! 

The latter, or the equivalent expression (2.1), implies the 
composition relation 

Xv(tl,t2)X,,(t2,t3) = X,,(t l ,t3 ), 'r/ t l ,t2,t3,v . (2.4) 

The functionals Xv are related to the functional derivative of 
x with respect to 17: differentiation of (E) gives, for l' > 0, 

~ 8x(t) =8(t-r)+ I av(t) X(t)V-I 8x(t), 
dt 817(r) v>1 (v - I)! 817(1') 

8x(0) = 0 
817(1') 

whose solution reads 

(2.5) 

(2.6) 

Equations (2.2), (2.4), and (2.6) are equivalent to the original 
equation (E) in the case where the polynomial P is homogen
eous: 

Proposition: When v takes one value only, for any solu
tion (x,x,,), of Eqs. (2.2), (2.4), and (2.6), the function x is a 
solution of Eq. (E) for some function a. 

Proof From (2.4) it follows that (d Idt) InXv(t,r) does 
not depend on 1'. This allows one to define a" (a priori, de
pending on 17), for t> 0, by 

av(t'17)=V!.xI-V(t)~lnX,,(t,1'), t>O. (2.7) 
dt 

The definition (2.2) of x then implies, since X,,(t,t) = 1, 

d 1 
-x(t) = 17(t) + - a,,(t,17)x"(t), x(O) = 0 . (2.8) 
dt v! 

This is Eq. (E) if a does not depend on 17, which we prove 
now. From (2.8) one gets, with the help of(2.6), 

~ 8x(t) 

dt 817(1') 

= 8(t - r) + 1 a v(t,17)x(t )"- Ie (t - 1')X,,(t,r) 
(v - I)! 

1 8a,,(t,17) + -x(t)". (2.9) 
v! 817(r) 

Replacing 8x(t )/817(r) by (2.6) and using (2.7) gives the first 
two terms on the right-hand side of (2.9), so that it remains 

(ja,,(t,17) = O. Q.E.D. (2.10) 
(j17(r) 

In the case where P is not homogeneous, (2.10) is re-
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placed by 

2: ~ x(t)" 8av(t,17) = 0 . 
,,? I v! (j17( r) 

(2.11) 

This does not suffice to conclude the independence on 17 of 
the a" 's, which has to be explicitly postulated; that is, in 
terms of (x,x), 

_(j_(xI - V ~ In Xv) = 0, 'r/v. (2.12) 
(j17(T) dt 

The basic equations (2.2) and (2.3) will be taken as the 
starting point of perturbation theory. At first, one recovers 
the usual Feynman expansion. 

3. FEYNMAN DIAGRAMS 

For the product 

K(t,r) = n X,,(t,r), 
,,>1 

Eq. (2.3) gives 

~ K (t,r) = (2: ~ a,,(t )x(t)V - 1) K (t,T) , 
dt v>1 v! 

K(r,T) = 1 

and, therefore, 

(3.1) 

K (t,r) = 1 + (' dr' (2: ~ av(r')x(1")"- I) K (r',r). J v>1 v! 
(3.2) 

By multiplying the two members of this equation by 17(1'), 
integrating on l' between 0 and t, and permuting the integra
tions in the last term, one gets 

it it 1 
x(t) = 17(r) d1' + d1' 2: ., a,,(1')x (r)V . 

o 0 ,,>1 V. 
(3.3) 

This is nothing but the integral form ofEq. (E). The iteration 
method leads to the well-known Feynman expansion: dia
grammatically (3.3) reads 

x(t)~ t~ ~ + v ~ 1 t fl: v lines 

~ (3.4) 

with the correspondence rules 
T .. eft - 1'), 

)( ,. f dr17(1'), 
(3.5) 

-<:v ;.- f dm,,(T), 

the factor lIv! accounting for the symmetry of the diagram 
with v lines. The diagrams appearing in the iteration of (3.4) 
are tree diagrams stretching to the right from the point t, at 
the vertices of which occur the interactions corresponding to 
the different terms of the polynomial P; the associated values 
in the expansion of(3.3) are the integrals defined by the rules 
(3.5) applied to each part of the diagrams. These integrals 
contribute to the nth order in 17 by an expression of the gen
eral form 
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(3.6) 

where G is the n-point function. This latter is then a sum of 
terms coming from various diagrams; according to (3.5) 
these terms are integrals on the variables attached to the 
interaction vertices. In the next section, we develop another 
version of perturbation theory which, in some cases, fur
nishes an expression for G completely explicitly, that is to 
say free from integrations. 

4. STAR DIAGRAMS 

Instead of solving the equation for the product 
K = Il"X" one considers separately the equations for the 
X" 'so The solution now developed needs, at first, the elimina-

By integration, this gives 

tion of the linear term of P; this is easily done by replacing the 
function x(t) by x(t) exp[ - f~ dr al(r)], which satisfies an 
equation of the type (E), without the linear term, and with 
modified functions 'T] and a", v,t: 1. From now on one thus 
assumes that P does not contain a linear term. With the help 
of (2.4), one transforms (2.3) into 

~X,,(t,r) = - ~ a,,(r)x(rt- IX,,(t,r), (4.1) 
dr v! 

then 

~X,,(t,rt-I = _ v - I a,,(r)x(rt-I(X,,(t,rjt-1 
dr v! 

(4.2) 

and, introducing the expression (2.2) of x and the composi
tion law (2.4), one gets 

X'T](rl)"''T](r,,_I) II (XI' (t,rl)"'XI' ((,r1' _ II) II (Xp(r',tjt-I. (4.4) 
I' p#v 

Multiplying by () (t - r) and permuting the integrations, (4.4) becomes 

(4.5) 

One now takes these equations as the starting point of a perturbation theory. To simplify the subsequent exposition we limit 
ourselves to a polynomial P of the form P (x) = (a/2!)xz + ( P /3!)x3 and change X z and X3 into X and Y. Equations (4.5) now 
read 

() (t - r)X (t,r) = () (t - r) [I + ~ r dr''T](r')[ () (t - r')X (t,r')] [() (t - r')Y(t,r')] r dr" a(r")() (t - r")Y(r" ,t)] , 
2 Jo JSUP(T,T" 

(4.6) 

()(t - r)Y(t,r) = ()(t - r) [I + + f dr'dr"'T](r')'T](r")[()(t - r')X(t,r')] [()(t - r')Y(t,r')] 

it ] I/Z 
X [()(t - r")X(t,r")] [()(t - r")Y(t,r")] drill P(T') [()(t - T')X(T',tW . 

SUp(T,"",T-, 

1999 J. Math. Phys., Vol. 24, No.8. August 1983 J. C. Houard and M. Irac-Astaud 1999 



                                                                                                                                    

Equations (4.6) may be translated into diagrams with the 
help of the following representations, t being considered as 
fixed: 

Oft - r)X(t,r) 

o (t - r)Y(t,r) 

Oft - r)X(t,r)Y(t,r)-------i~~ ~ 
(4.7) 

and 

Oft - sup(r\,r2)) 

X r dra(r)Y(r,t) 
JSUP(T1.'T2) 

o (t - sup(r\,r2,r3 )) 

X {PIT,.T"T,) dr/3(r)(X(r,t)f---I.~ 

(4.8) 

The last two diagrams will be respectively called 2-star and 
3-star. Equations (4.6) now take the form 

~ = Oft - r) [1 + ~ ~ 9)( 0 ], 

~ =O(t-r)[I+! T 
] \/2 , 

(4.9) 

in which the symbol X has the same meaning as in (3.5) for 
Feynman diagrams. From these equations, one deduces 

(4.10) 
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with 

A \ = 1, A2 =!, Ak = 0, k)3 '} 
(_1)/+\ (2/)! 

a - -'-----''---
1 + \ - 6/(21 _ 1) ~ . 

(4.11) 

The iteration of (4.1 0) leads to tree diagrams radiating from 
the point labeled by r, each of them being calculated by the 
rule: From any source 1] starts a number of 2-stars and 3-
stars, say k and I, respectively, according to the drawing 

--

I 
I 

f;("'\'/ " , 7- I 

(4.12) 

Such a vertex as the one labeled by r standing furthest on the 
left gives a factor Ak + \ a\ + \' the symmetry being accounted 
for by an extra factor liS, where S is the order of the symme
try group of the whole diagram. According to this rule, the 
expansion of x(t ) is expressed by a sum of diagrams consist
ing of a juxtaposition of2- and 3-stars, bound by the integra
tions on 1]. Until then, however, the stars have been consi
dered as given functions. In fact, these functions still have to 
be submitted to the iteration process. 

From (4.7) to (4.9) follows 

= 0 (t - sup(r\,r2)) r dr aIr) [1 + j T 

)SUP(T1.T2) 

] - \/2 , 

(4.13) 

the expansion of which reads 

it bIT 
= Oft - sup(r\,r2)) dra(r) L ~k 

SUpIT"T,) k>O k. 2 
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(4.14) 

with 

b = ( _ l)k (2k )! , 
k 6k k! 

point r. To illustrate these rules, let us give the lowest orders 
in a and f3 for x(t ): 

Zeroth order 

X = L dr1/(r) , 

First order 

~- X X 

= ~ r' drl drz 1/(rJ!1/(rz) r' dr aIr) Jo JSUP(T 1,T2) 

+ ! L drl drz dr3 1/(r1)1/(rz)1/h) {Plr,.r,.r,) dr f3 (1') , 

(4.15) Second order 

B = ( _ l)k (k + 1 )! 
k 2k 

The first terms (k = 0) in the expansions (4.14) will be called 
simple stars, and represented by 
Tl 72 

• • • 
=O(t-sup(r1,rZ)) r' dra(r), 

JSUP(T1,"T2) 

~
T2 

T, 

T 3 I 

=O(t-sup(r1,rZ,r3)) r drf3(r). 
JSUP(T1."T2.T3) 

(4.16) 

The next terms can be interpreted as a dressing of the center 
of these stars, corresponding to a modification of the func
tions a and f3 by a multiplicative term, according to the 
drawings 

(4.17) 

From (4.12) and (4.17) the following complete rule results: 
The perturbation expansion of the function 
o (t - r)X (t,r)Y(t,r) is represented by the sum of the treedia
grams radiating from the point labeled by 1', so that 

R 1: from each source 1/ start arbitrary numbers k and I 
of 2-stars and 3-stars with the coefficient Ak + 1 a l + l' 

R z: from each center a of 2-stars (respectively, f3 of 3-
stars) starts an arbitrary number k of3-stars (respectively, 2-
stars) with a coefficient bk (respectively, B k)' 

R3: to the whole diagram is furthermore assigned the 
symmetry factor 1/S. 
From (2.2), the expansion for x(t ) is then obtained by inte
grating on l' between 0 and t, after multiplying by 1/(1'); this is 
graphically represented by simply adding a cross ( X ) at the 
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1 

-X • )( • )( 4 

Third order 

1 
+-

72 

5 
+--
24 < 

1 
+-

24 H 

1 

1 

6.8.9 

+- X 24 

1 ) { 1 )l{ +- )( +-
9 72 

.~ 

1 ) { 1 ~ +-+- 'Ie • Yc 48 24 

1 -{:: +,;± -,;Y +-
8 
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from 

1 

36 +~* -~~ T 

72 

12 )( 

12 

-3~~ {* { 
1 

12 

Among these terms, those containing only simple stars fur
nish explicit contributions to the n-point functions. In fact, 
for these terms, the integrations relative to the centers of the 
stars are factorized, and are directly expressed in terms ofthe 
primitives of a and p. This favorable circumstance occurs 
for any diagram when the polynomial P is reduced to a mon
omial, that is, when a = 0 or p = O. This case will be more 
completely discussed in the next section. 

5. STAR STRUCTURE FOR THE SOLUTION x(/) 

The rules given in the preceding section concern the 
diagrams describing the function 0 (t - 1')X(t,1')Y(t,1'}. His to 
be noted that the same diagram for x(t } can be obtained from 
different diagrams for OXY, the coefficients of which have to 
be added. For instance, the diagram 

~).*.,,{ 
comes from the diagrams 

and 
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1 

36 

T 

Therefore, let D be a diagram for x(t }. In the diagrams of OXY 
contributing to D, according to (4.12), the point l' cannot 
belong to the dressing of a center, so that it suffices to consid
er the diagrams with dressed centers. Henceforth, D will be 
constituted by elements like (4.12). A diagram deduced from 
D by distinguishing a source 11 and labeling it by 1', thus 
corresponding to a diagram for OXY, will be called a modi
fied diagram. 

Let us write the coefficient of any diagram in the form 
(liS) F, where S is the symmetry factor. For the modified 
diagrams, F is then defined by rule R I' the centers being 
dressed. 

Proposition: The factor F D of D is equal to the sum of the 
factors of the modified diagrams, obtained by successively 
modifying every source 11 in D. 

Proof The proposition is obvious when D has no sym
metry. Otherwise, one has 

(5.1) 

where the sum runs over all the different modified diagrams 
Da deduced from D. Let us call a labeled diagram any dia
gram the sources of which are labeled by the numbers 1,2, .... 
Let N D and N Do be the numbers of different labeled dia
grams, respectively, obtained from D and Da. If n is the 
number of sources of D, one has 

ND = n!lSD and NDa = n!lSDa (5.2) 

so that (5.1) becomes 

(5.3) 
a 

The right member is the sum of the factors of the labeled 
modified diagrams. Since these diagrams are obtained from 
the labeled diagrams associated with D by choosing in any 
way the place of the modification, and since the factors do 
not depend on the labeling, this sum is also equal toND~j F;. 
where i runs over all the sources of D and F j denotes the 
factor of the diagram modified at the ith source. This gives 

Q.E.D. (5.4) 

Rules to calculate FD are now deduced from (5.4) and R I • 

One has to collect all the modified diagrams constructed 
from D. Let i = 1,2, ... ,n be an index labeling the sources and 
k j (respectively, Ij) the number of 2-stars (respectively, 3-

J. C. Houard and M. Irac-Astaud 2002 



                                                                                                                                    

stars) tied at the source i. According to R I> thefactor F; is the 
product F; = IIj C /, the coefficients C / assigned to the 
source j being given by 

C; = A k. + 1 a I. + 1 , 

C! = A k, aI, + 1 (respectively, A k, + 1 a l,) 

if the shortest path traced on D and joining j ends with a 2-
star (respectively, 3-star). These expressions are condensed 
into 

C f = A k, + p(iJ) aI, + ql;J) , (5.5) 

where p(i,i) = q(i,i) = 1 and p(iJ) = 1 (respectively, 0), 
q(iJ) = 0 (respectively, 1) if the path joining ito j ends with a 
3-star (respectively 2-star). The recursion relations 

A k + 1 = (1 - k 12) A k , 

a l + 1 =(1-2/13)a l 

implied by (4.11) then give 

FD = (I:! A k , al,) fD , 

fD = ~ I} [ (1 - p(iJ) ; ) ( 1 - q(iJ) 2;j ) ] . 

(5.6) 

(5.7) 

The first factor in F D depends only on the configuration of 
the stars around each source, while fD depends on the whole 
topology of D. For instance, the diagrams 

have, respectively, fD = 0 and fD #0. 
According to formula (5.7), the factor fD seems to de

pend on all the details of the topology of D, for (i,j) runs over 
all the pairs of sources. In fact, as shown in the Appendix, fD 
is determined by a rougher structure in which the only rel
evant sources are those binding both types of stars. 

The star structure of x(t) gets simpler when a or fJ van
ishes, that is, when the polynomial P reduces to a monomial. 
If a = 0, for instance, the 2-star vanishes according to (4.8). 
Therefore, any diagram for x(t ) only contains 3-stars, the 
centers of which are not dressed on account of R 2• Since only 
simple stars occur, the integrations involving fJ are factor
ized so that the n-point functions are algebraically expressed 
in terms of the primitive of fJ. Finally, the factor FD is re
duced to 

(5.8) 

It is thus simply obtained by assigning to each source a coef
ficient only depending on the number of stars that it binds. 
The structure of these diagrams looks like that of the usual 
Feynman diagrams in field theory, the coefficients al acting 
as interaction constants, the star replacing the propagator. 
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6. CONCLUSION 

The Feynman expansion and the star expansion lead to 
different physical interpretations. In any term of the first 
one, some of the given sources 1](7d,1](72), ... distribute 
amongst disjointed bundles; each of them has a number v of 
elements equal to one of the exponents appearing in P and 
creates a new source a y (7)1](7;, )"'1](7;.) at a subsequent time 
7. This process repeats itself with the remaining 1]-sources 
and new ones, and so on, until the time t to give a contribu
tion to x(t). On the contrary, in terms of the star expansion, 
when P = axY Iv!, all the 1]-sources gather in a single stage 
into bundles having v elements; these bundles are jointed so 
that each source can belong to different ones, and the result
ing contribution to x(t) is factorized. When P is an arbitrary 
polynomial, a similar description holds for each step of a 
more complicated process, in which each bundle eventually 
creates a new source (corresponding to a dressed center) act
ing in the next step. 

In the general case where the polynomial P is not re
duced to a monomial, the expression of the n-point functions 
furnished by the star expansion is not completely free from 
integrations (i.e., is not a function of the primitives of the 
av's), because the integrations appearing in the dressed 
centers intertwine and therefore remain. However, these in
tegrations can be carried out when the a,. 's are proportional 
to a single function. Let us prove by induction this property 
in the case previously considered when fJ = A.a. This prop
erty holds for diagrams with no dressed center, for they con
tain simple stars only. If it is true for diagrams having less 
than n dressed centers, the same holds for n + 1: In fact, 
according to the recursion hypothesis, the expression for ev
ery center, the dressing of which contains less than n dressed 
centers, is a linear combination of terms of the type 

A (a) fb d7 a(7)(a(7))m = A (a) I (a(7))m + 1 I b , 
Ja m + 1 a 

whereA is an algebraic function of a, the primitive of a, and 
where a and b depend on t, 71,72,,,, • For instance, the afJ 
term in the solution x(t) can be represented by 

3~ -,; ¥ -~~ 
ci a-~*-{ 1 

+-A. ~a 24 a 

We remark that the last expression only involves simple 
stars, but contains disconnected diagrams. This property 
can be verified for the lowest orders, and we thus conjecture 
that it holds in general. Let us give a solvable example that 
supports this assertion: The retarded solution of the equa
tion 

dx 
- = 1](t) + a(t) exp(A.x) 
dt 

is easily obtained and reads 
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x(t) = 7j(t ) - ~ In ( 1 - A f dr a(r)e''7IT
)) , 

where 7j(t) = sb dr 77(r); the expansion with respect to A is 
00 Am~1 

x(t)=7j(t)+ I --
m~1 m 

X L~o ~; f dr a(r)(7j(rw]m 

00 A m~ I [ 00 "V"\]m 
= 7j(t) + m~l-m- n~/ n I: : 

\ I 
I , / 

'- n -' 

The solution x(t ) is then represented by a sum of diagrams 
constituted by disconnected simple v-stars, where v take any 
integer value. 

APPENDIX: STRUCTURE OF THE FACTOR fo 

One calls homogeneous tree (respectively, 2- or 3-tree) a 
tree diagram constructed with a unique type of star (respec
tively, 2- or 3-stars). Any diagram D for x(t) may be consi
dered as consisting of the juxtaposition of homogeneous 
trees joined by sources. Such ajuxtaposition is described by a 
diagram of the type 

where the bubble labeled by 2 or 3 represent 2- or 3-trees, the 
internal structure of which is left out. 

Let us at first remark that, in formula (5.7) for fD' if the 
source j different from i is internal to a 2-bubble (respective
ly, 3-bubble) one has p(iJ) = Ij = 0 [respectively, 
q(iJ) = kj = 0], so that this source does not contribute to the 
product TIj • The only contributions to TIj thus come from the 
modified point (j = i) and the points common to a 2-bubble 
and a 3-bubble (frontier points). Let us label the 2-bubble by 
a,/3, .. · and the 3-bubble by a' ,/3',. ... When the bubble a 
touches the bubble a', one denotes by (aa /) the correspond
ing frontier point. Let us write 

( k)( 2/.) fD = ~1:, 1: = I} I-p(iJ); l-q(iJ)--f. (AI) 

If i l and i2 are internal to the bubble a (respectively, a'l, the 
paths joining, respectively, i I or i2 to any frontier point ( /3/3 ') 
end by stars of the same kind; due to the definitions of p(iJ) 
and q(iJ), the contributions of all the frontier points to 1:, 
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and 1:, are equal, and thus only depend on a (respectively, 
a'l. Let ga (respectively, ga' ) be this contribution. By taking 
into account the contribution of the point i itself, one thus 
obtains 1: = (1 - k;12)ga [respectively, 
1: = (1 - 21;13) ga' ]. If i = (aa /) is a frontier point, the con
tribution to fiaa') of all the frontier points different from 
(aa') is equal to that occurring in ga or ga" the contribution 
of i = (aa') here being 

( 1 _ kl;a') ) (1 _ 2/1;a')) 

this gives the two relations 

fiaa') = (I - kl;a') ) ga = (1 - 2/1;a,) ) ga' . 

By adding all these contributions, one obtains 

fD = I [I (I - k;)] ga + I [~(I -~)] ga' 
a lEa 2 a' lEa' 3 

- I fiaa') , (A2) 
laa') 

where the last term exists because the frontier points occur 
twice in the preceding terms. Since for the homogeneous 
trees one has 

( k) (2/') I 1 - -...!... = 1 and ~ 1 - -' = 1 , 
lEa 2 'Ea' 3 

it remains the formula 

fD = Iga + Iga' - Ifiaa')' (A3) 
a a' laa') 

Contrary to (A I), this expression only depends on the bubble 
structure of the diagram and the configuration of stars at the 
frontier points. This structure essentially occurs in the defin
ition of the ga 's and ga' 'So These terms may be calculated as 
follows: For any frontier point (aa/) let us put 

k 1aa,) 
a1aa,) = 1 - --

2 

, _ 2/1aa,) , 
and a1aa,) - 1 - -- , 

3 
(A4) 

one decides to affect each of these coefficients, respectively, 
to the bubbles a or a', on each side of the frontier point 
according to the schema 

0/ a 

Then ga is obtained by drawing all the paths starting 
from an arbitrary point internal to the bubble a and ending 
at any frontier point, each of these paths contributing to ga 
by a factor a (respectively, a'), according as the frontier point 
is reached on the side of a' (respectively, a). For instance, to 
the diagram 
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l' 2 

in which a, a'", represent a(I')' a'p/') ,", correspond the 
values gl = a' b, g I' = ab, g2 = ab ' and consequently 
III' = aa'b, 121' = abb', and 

ID = a' b + ab + ab ' - aa' b - abb ' 

= 1 - (1 - a) (1 - a') - (1 - b) (1 - b ') 

+ (1 - a)(1 - a' - b') (1 - b). (A5) 

The last expression for ID illustrates a general rule. Let us 
call a cut diagram a diagram Dc deduced from D by sup
pressing some frontier points together with the associated 
coefficients (A4); let us put €(Dc) = ( - 1)"(Dc

), where n(Dc) is 
the number of remaining frontier points in Dc; finally, let 
l:r(Dc) be the sum of the coefficients (A4) contained in the 
bubble r = a or a' of Dc· 

Proposition: The factor ID is given by 

ID = I €(Dc) II (1 -l:rDc))· (A6) 
Dc r 

Proof Let us proceed by induction. One assumes that 
the proposition holds for the diagrams containing a number 
of bubbles lower than N. Let D be a diagram having N bub
bles and D ' obtained by adding one bubble to D. Let /j be this 
bubble, ro the bubble of D in contact with /j, and a (respec
tively, b ) the coefficient relative to the frontier point (rob) 
contained in ro (respectively, /j). Due to (A3) and the recur
sion hypothesis one has, for D, 

I i(aa') = I II (Dc) (1 -l:ro (Dc))' (A7) 
r (aa') Dc 

where 

II (Dc) = €(Dc) II (1 -l:r(Dc))· (AS) 
r#ro 
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Now, according to (A3) and the calculation rules ofthe g's 
and the j's, one has 

ID' = I bgr + agro - I bi(aa') - abgro 
r (aa') 

= b I II (Dc) (1-l:ro (Dc)) + a(l - b )gro ' (A9) 
Dc 

then 

+ (1 - b) [agro - ~ II (Dc) (1 -l:ro (Dc))] .(AW) 

Let us prove the equality 

(All) 

To this end, let Do be the diagram identical to D, except for 
the coefficients internal to ro that are taken equal to zero; for 
Do, (A 7) reads 

IDo =gro = I II (Dc)· Q.E.D. (AI2) 
Dc 

Thus (AW) becomes 

- I II (Dc) (1 - b) (1 -l:r.!Dc) - a). (A13) 
Dc 

This proves the proposition for D', the first (respectively, 
second) sum being the contribution to ID' of all the cut dia
grams of D' for which the frontier point (rob) is suppressed 
(respectively, conserved). 

I Les vibrations forcees dans les systemes non lineaires. Colloque interne du 
CNRS N° 148 (Marseille, 1964) (Editions du Centre National de la Re
cherche Scientifique, Paris, 1965). 

2C. Itzykson and I. B. Zuber, Quantum Field Theory (McGraw-Hill, New 
York, 1980). 

31. C. Houard, Lett. Nuovo Cimento 33,519 (1982). 
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By an application of the geometrical techniques of Lie, Cohen, and Dickson it is shown that a 

system of differential equations of the form x~ri = F; (where r; > 1 for every i = 1 , ... ,n) cannot 
admit an infinite number of pointlike symmetry vectors. When r; = r for every i = 1, ... ,n, upper 
bounds have been computed for the maximum number of independent symmetry vectors that 
these systems can possess: The upper bounds are given by 2n 2 + nr + 2 (when r> 2), and by 
2n 2 + 4n + 2 (when r = 2). The group of symmetries of xlr = ° (r> 1) has also been computed, 
and the result obtained shows that when n > 1 and r> 2 the number of independent symmetries of 
these equations does not attain the upper bound 2n 2 + nr + 2, which is a common bound for all 
systems of differential equations of the formxlr = F(t,x, ... ,xlr - 1 ) when r> 2. On the other hand, 
when r = 2 the first upper bound obtained has been reduced to the value n2 + 4n + 3; this number 
is equal to the number of independent symmetry vectors of the system x = 0, and is also a common 
bound for all systems of the form x = F (t,x,x). 

PACS numbers: 02.30.Hq, 02.30.Jr, 02.20. + b 

I. INTRODUCTION 

This paper should be considered as a continuation of a 
series of papers by the authors, 1 in this and other journals, on 
the fascinating subject of the symmetries of systems of differ
ential equations. In these papers both the direct and the in
verse problem concerning the symmetries have been studied, 
as well as certain connections between the symmetry vectors 
and the first integrals of systems of differential equations. 
Although some global results have been obtained, most of 
the results obtained are of a local character. 

In the present paper we obtain, following the geometri
cal and local techniques contained in the classical treatises of 
Lie and Scheffers, Cohen, and Dickson,2 upper bounds for 
the number of independent pointlike symmetry vectors of 
differential equations of the form 

xlr = F(t,x, ... ,xlr -I), (i) 

where r> 1 andx stands for (xl, ... ,xn ). The case r = 1 has not 
been studied, since it is well known-see, for instance, the 
first and fourth papers quoted in Ref. I-that when r = 1 the 
number of independent symmetries is always infinite. 

We obtain in Sec. III the upper bound 2n 2 + nr + 2 
(r> 2), as well as the number of independent symmetry vec
tors of the systemxlr = 0, which is given by n2 + nr + 3, and 
the explicit expression of them. Since 2n 2 + nr + 2 is greater 
than n2 + nr + 3 when n > 1, the problem arises of knowing 
whether or not the upper bound 2n2 + nr + 2 is attained by a 
system of differential equations of this type, when n > 1. 

Similarly, for a system of the form x = F(t,x,x), we ob
tain in Sec. IV the upper bound 2n2 + 4n + 2, which is re
duced in Sec. V to n2 + 4n + 3 by using a remarkable prop
erty ofthe projective group. This last upper bound is attained 
by the system x = 0, whose symmetry group is the projective 

., Postal address for reprints: F. G. Gascon, Serrano 119, Madrid 6, Spain. 

group of pointlike transformations of the space [(t,x)]. 
When n = 1, i.e., when only a single differential equa

tion is considered, the upper bounds obtained reduce to 
r + 4 (when r> 2) and 8 (when r = 2). These two results are 
classical and well known, and the proof we give of them in 
Sec. II tries only to be a bit more careful than the classical 
proofs, at the same time preparing the reader for a clearer 
understanding of the more complicated case of a normal sys
tem of differential equations of the form 

x~r, = F;. r; > 1, Vi = 1, ... ,n. (ii) 

As is shown in Sec. VI, a system of this type possesses only a 
finite number N(n;rl,. .. ,rn) of independent symmetry vec
tors, and this number grows without limit when either n or 
some of the r;'s tend to infinity. The conclusion is that a 

system of differential equations of the type x:r, = F;, with 
r; > 1 for every i, does not admit a Lie group (in the general
ized sense of a group of transformations with an infinite 
number of essential parameters) as its symmetry group. 

The reader should consult the classical treatises cited in 
Refs. 2 and 5 for most of the definitions and the notation 
used here, as well as the first three papers of this series cited 
in Ref. 1. 

II. MAXIMUM NUMBER OF INDEPENDENT SYMMETRY 
VECTORS OF A DIFFERENTIAL EQUATION OF ORDER 
r> 1 

In order that the reader can follow us without difficulty 
in the more complicated case of a normal system of differen
tial equations, it is convenient to treat first the relatively 
simple case of a single differential equation of the form 

Xlr = F(t,x,;x, ... ,xlr -I). (1 ) 

We remind the reader that when r = 1 Eq. (1) always 
possesses an infinite number of independent symmetry vec-
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tors. I On the contrary, when r> 1 Eq. (1) does not admit, in 
general, pointlike families of symmetries of the form 

t' = t + €.a(t,x), 

x' = x + €·b (t,x). 
(2) 

In particular, when r = 2, one can even classify I all the 
differential equations of the form 

x =F(t,x), (3) 

admitting at least one symmetry vector of type (2) different 
from zero. 

Moreover, concerning the pointlike symmetry vectors, 
it is a classical result that when r> 1, Eq. (1) admits no more 
than eight symmetry vectors (if r = 2) and no more than 
(r + 4) if r > 2. The proof of this result, or at least the funda
mental ideas behind it, can be found in the classical treatises 
of Lie, Cohen and Dickson.2 For the sake of completeness, 
we present here a proof of this classical result, which tries to 
be a bit more careful than the one presented by the above
mentioned authors, and at the same time prepares the reader 
for the more complicated case of a normal system of differen
tial equations of the following type: 

xir
; = F;. rj > 1, Vi = l, ... ,n, (4) 

where the smooth functions F j appearing in (4) depend, of 

h . bl (" - I (r. - 1 course, on t e vana es t;XI,. .. ,x1 ;Xn, ... ,xn 
We begin by studying the case r> 2: 
(a) Consider the unique solution tP (t; A) of (1) corre

sponding to the initial conditions (to,xo, ... ,x~ - 2; A ), and let 
PI = (tl,xl = tP (ttl), with tl sufficiently close to to, and 

tP (t) = tP (t;x~- I) (5) 

for an arbitrary, but fixed, x~ - I. We shall now show that for 
certain neighborhoods UI of PI and II of x~ - I there exists a 
unique smooth (i.e., C'X» function 01:Ur-+II satisfying 

(i) 01(PI ) = x~- I; 

(ii) If P = (t,x)EUI and x(r -IE II' then 

tP (t;X(r -I) = X iffx(r -I = OI(P), 

That is, through every point of UI there passes a unique 
integral curve of (1) whose (r - 1 )th derivative lies on II hav
ing a contact of order (r - 2) at Po = (to,xo) with the integral 
curve Yo of (1) corresponding to the initial conditions 
(to,xo, ... ,x~- I). 

The proof follows from the fact that, regarded as func
tions of t and of the initial conditions to,xo, ... ,x~- I, the solu
tions of (1) are Coo functions, provided only that the function 
F appearing in (1) is, as we shall assume throughout this 
paper, a Coo function of its variables. Therefore, tP (t;Jt ) will be 
also smooth in t andA, and since the triplet (tl,XI,x~- I) satis
fies the equation 

x = tP (t;Jt), (6) 

in order to complete our proof, it suffices to show that for t I 
sufficiently close to to the "transversality condition" 

atP I #0 (7) 
aA (t,.xg"-') 

holds; indeed, if this were the case, the implicit function 
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theorem3 applied to (6) in a neighborhood of the point 
(t I ,x l,x~ - I) would yield A as a smooth function ° I of the 
variables t and x. 

Now, one can obviously write 

tP (t;Jt) = Xo + ;(o(t - to) + ... + x~- 2(t - to)'- 2 /(r - 2)! 
+ A (t - to)'- I /(r - I)! + (t - to)' R (t,A.), (8) 

R (t,A. ) being a Coo function of t and A near (to,x~- 1).4 
Therefore, one can also write 

atP (t - to)' - I ( )r aR - = + t-to -
aA (r- I)! aA 

and, accordingly, 

(9) 

This last expression guarantees that (7) holds provided 
only that one chooses t I # to satisfying 

I(t l - to)·RII < 1/(r - I)!, (11) 

which is possible since R is continuous (COO in fact). 
Summarizing, the implicit function theorem applied to 

(6) yields the unique smooth function ° I satisfying conditions 
(i) and (ii) above. 

(b) Let now tPl(t;Jt ) be the maximal solution oft 1) corre
sponding to the initial conditions (tl,xl, ... ,xr- 2;Jt ), where 

X\k = tP (k(t l ) (12) 

and tP (t) is the function defined by (5). Choosing now a third 
point P2 on Yr:flUI sufficiently close to PI' and repeating the 
construction sketched in (a) with Po and PI replaced respec
tively by PI and P2, we obtain a second function 02:U2-I2 
satisfying: 

(a) 02(P2) = xr - IE 12; 
(b) If P = (t,x)EU2 and x(r -IEl2, then 

tPI(t;x(r-I)=x iff x(r-I=02(P), 

Since U = UlnU2 #0and UC UI, themappingO:U_II XI2 

defined by 

R---+O (P) = (OI(P ),02(P)) (13) 

is such that, given any two integral curves of (1), YI = (t,nt)) 
and Y2 = (t,f2(t I), having a contact of order (r - 2) with Yo, 
respectively, at Po and PI and satisfying 

Jt-l(tO)ElI, J1'-I(t l)El2, (14) 

then YI and Y2 will pass through a point FEU if and only if 

(ft-l(tO),f1'-l(ttl) = O(P). (15) 

(e) Let now Uo be an open subset of (UlnU2) - Yo: If 
PEUo, then P will be an isolated point ofYlnr2 [where YI and 
Y 2 are, of course, the curves defined in (b) passing through P ]. 

In fact, if this were not the case one could immediately 
write 

(16) 

where P = (tp,xp ). Clearly, we can restrict ourselves to the 
case to < tp < tl VPEUo' We then defineJ(t) as follows: 
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f(t) = !fl(t) when t<tp, 
V2(t) when t-;.t p. 

(17) 

Then condition (16) guarantees thatf(t ) is a Coo function in 
some interval J-::J (to,t tl such that 

flr-I(to) =ft-l(tO)ElI. (18) 

Therefore, thecurvey = ! (t,f(t)) J isan integral curve of 
(1) having a contact of order (r - 2) with Yo at Po and passing 
throughPIEU1: Hence (18) and the properties of the function 
OJ [see (i) and (ii) above] imply that 

(19) 

It follows, by uniticity, thatf(t) = </J (t) and, in particular, 
PEYo, contrary to the definition of Uo. 

Therefore, one can safely assume that, for every PEUo, 
YI and Y2 meet transversally at P, that is, 

fIIS(tp)#fiS(tp), for some s, O<s<r. (20) 

The results obtained in Sec. II(a)-(c) imply the existence 
of an open neighborhood Uo near Po having the following 
property: Through every point P of Uo it is possible to draw 
two integral curves of (1), YI and Y2' such that Pis isolated in 
YlnY2 and in addition YI and Y2 have a contact of order 
(r - 2) with Yo, respectively, at Po and PI' 

(d) Assume now the S is a pointlike symmetry vector of 
(1) such that any integral curve of (1) having a contact of 
order (T - 2) with Yo either at Po or PI is invariant under the 
local one-parameter group of transformations generated by 
S. That is, the graph! (t,f(t )) J corresponding to any solution 
fIt ) having this property will be left invariant by any member 
g of the local one-parameter group G generated by S. 

Under these circumstances, YI and Y2 will be invariant 
under G and, accordingly, the same thing will happen with 
YlnY2' Now, since P is isolated in y 1nY2' P will be left invar
iant under the action of any gEG sufficiently close to the 
identity transformation, by continuity. This proves that S 
vanishes at P: since P was an arbitrary point of Uo, we con
clude that S vanishes on Uo. 

(e) Let us now compute the number of conditions suffi
cient in order that any integral curve of (1) having a contact 
of order (r - 2) with Yo at Po or PI be, as a subset of R 2, 

invariant under the local one-parameter group G generated 
by S (in short, under S). 

If S is given by 

a a 
S = 'P(t,x) - + t,b(t,x) -, (21) 

at ax 
then sir - I) , the extension ofS to the variables t,x,x, ... ,xlr -I, 
will be given by 

sir-I) =S+ 'il 

t,bi~, 
I~ I ax 

where 

tiP = t/J by definition 

and, of course, 
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(22) 

(23) 

.!!.... = ~ +x~ + ... +xlk_a_ + .... 
dt at ax axlk - I (24) 

First of all, we notice that a sufficient condition in order 
that an integral curve of( 1), Y = {(t,x(t)) J, be invariant under 
S is that Sir - I) vanish on its initial conditions 
(to,x(to), ... ,xlr - I (to)), since S is by hypothesis a symmetry 
vector of(1). Therefore, in order that S leave invariant any 
integral curve of (1) having a contact of order (T - 2) with Yo 
at Po or PI it will be sufficient that 

(25a) 

and 

(25b) 

hold for every value of Xl' - I . 
Conditions (25a) are clearly equivalent to the following 

set of (r + 1) equalities: 

'P(to,xo) = 0, 

t,b(to,xo) = 0, 

t/JI(to,xo.xo) = 0, (26) 

t,b' - 2 (to'xo, ... ,x~ - 2) = 0, 

t,br- l(to'XO""'x~- 2,xl'- 2) = 0, VXlr-IER, 

where the functions t/Ji were defined by (23). Since, for i> 1, 
the functions t/Ji are easily seen to have the following affine 
structure, 

t,bi = A;(t,x, ... ,XIi-I)Xli + Bi(t,x, ... ,Xli - I), (27) 

conditions (26) are equivalent to the following set of (r + 2) 
equations: 

'P (to,xo) = t/J(to,xo) = t/Ji (to'xo, ... ,x~) = 0, 

i = 1, ... ,r - 2, (28) 

A, _ I (to,xo, ... ,x~ - 2) = B r _ I (to,xo, ... ,Xb - 2) = ° 
[notice that r> 2 by hypothesis, and therefore r - 1> 1 im
plies that t,b' - I has indeed the affine structure (27) with 
i=r-l]. 

Conditions (25a), and hence (28), imply (as has been re
marked above) that any integral curve of (1) having a contact 
of order (r - 2) with Yo at Po is invariant under S. In particu
lar, if(28) holds, then Yo itselfis invariant under S. and there
fore S has to be parallel to the tangent vector to Yo on every 
point of YO' that is, 

[
a. a ] Sp =a(t) - +</J(t)-
at ax 

(29) 
v P = (t,</J (t ))EYo 

for some Coo function a(t ); by setting equal the coefficients of 
a/at in both members of (29), we conclude that a(t ) = 'P (P) 
and therefore 

[
a. a ] Sp = 'P(P) - + </J(t)-
at ax 

v P = (t,</J (t ))EYo' (30) 

Therefore, in order that PI be invariant under S a single 
condition suffices, namely, 
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cp(tl,xd = o. (31) 

When this last condition holds, the invariance of Yo un
der S implies that any linear element of order k at PI' 
(tl,xl, ... ,x\k), is invariant underS(k), for every valueofk. Con
sequently, 8(k) vanishes at the point (tl,xl, ... ,x\k) for every 
value of k, in particular for k = l, ... ,r - 1; hence we have 

1//(tl,XI, ... ,xi[) = 0, i = 1, ... ,r - 2, 
(32) 

A ( (r - 2) (r - 1 + B (t (r - 2) - 0 r- I tl,XI'''''X I 'X I r-I l>""X I -

as a consequence of (28) and (31). Therefore, in order that 
(25b) be also satisfied, only one additional condition is suffi
cient (and not two, as it would seem), namely, 

Ar_ I (tl,xl'''',x((- 2) = O. (33) 

Indeed, using the last Eq. (32), we get 
(32) 

Ar_ Ix1r-1 + Br_ I = Ar_ 2(X(r- 1 - X((-I) = 0 (34) 

for every value of x(r - 1 if and only if (33) holds [of course, 
Ar_ I and Br_ I have to be evaluated at (tl,xI, ... ,Xr- 2) in 
(34)]. 

Therefore, the (r + 4) conditions (28), (31), and (33) are 
sufficient in order that any integral curve of (1) having a 
contact of order (r - 2) with Yo at Po or PI be invariant under 
the symmetry vector of (1), S given by (21). 

(t) Let us show finally that, when r> 2, Eq. (1) does not 
admit more than r + 4 linearly independent symmetry vec
tors. 

Indeed, suppose that SI,,,,,Sr+ 5 are r + 5 symmetry 
vectors of (1). Since the conditions in order that a vector field 
be a symmetry vector of (1) constitute a system of linear 
partial differential equations, any linear combination 

r+ 5 

X= I CiSi (35) 
i= 1 

ofSI,,,,,Sr+ 5 will also be a symmetry vector of (1). 
On the other hand, conditions (28), (31), and (33) are 

easily seen to be linear in the components of the vector field 
S, by the linearity of the functions 1// in these components. 
Therefore, imposing that X satisfy conditions (28), (31), and 
(33), we obtain a linear and homogeneous system of r + 4 
algebraic equations in the unknowns CI, ... ,Cr + 5' whose coef
ficients are real numbers depending on the vector fields 
SI,,,,,Sr + 5 and on the fixed values of (to,xo'''',x~ - 2) and 
(t I'X 1, .. ·,xl( - 2). Since the number of equations in this system 
exceeds the number of unknowns, it has a nontrivial solution 
c~ , ... ,c~ + 5' and, consequently, the vector field 

r- 5 

Xo = I C?Si (36) 
i= 1 

will satisfy conditions (28), (31), and (33). Hence Xo must 
vanish on Uo, the open set defined in H(c), and, consequently, 

r + 5 

L cJSj = 0 (37) 
j~ I 

on Uo, implying that SI,,,,,Sr_ 5 are linearly dependent on 
Uo, contrary to our initial assumption. This completes the 
proofthat for r> 2 there are at most (r + 4) independent 
symmetry vectors of (1). 
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(g) The case r = 2 must be considered separately, since 
for i = 1 the affine structure of tf/ , given by 

1// = Ai(t,x, ... ,X(i- I~(i + B;(t,x, ... ,xli- I) (38) 

is no longer valid, and therefore the previous reasonings fail. 
Indeed, we are going to see that the maximum number of 
independent symmetry vectors of (1) is equal to eight when 
r=2. 

In order to prove this statement, we start from the 
expression ofS I, the first extension ofS: 

8
1 = 8 + [¢I" + (¢I,x - CP,,)X - Cp,x _X2] ! . (39) 

The line element (to,xo,x) will be invariant under SIVx 
provided that the following five conditions are satisfied: 

cplpo = ¢llpo = 0, 
(40) 

¢I"lpo = (¢I,x - cp,,)lpo = Cp,x Ipo = 0, 

where Po = (to,xo) as before. Denoting again by<p (t) thesolu
tion of the differential equation 

x = F(t,x,x), (41) 

corresponding to the initial conditions (to,xo,xo), only one 
condition is now sufficient in order that a second point 
PI = (tl,xd chosen on the integral curve of(41) associated to 
the solution <p (t ) be invariant under the symmetry vector S of 
(41), namely, 

cp(Pd = 0 (42) 

exactly as in Sec. II(e). 
When (40) and (42) are satisfied, bothP) and the integral 

curveyoof(41) associated with the solution <p (t ) are invariant 
under S, and, consequently, the line element (t),<p (t)),¢ (t.)) 
will be also invariant under S I. The following relation is 
therefore automatically satisfied: 

¢I"lp, = - (¢I,x - cp,,)lp,¢ (t l ) + cp,x Ip} 2(t)), (43) 

leading to 

S)I(I"x",;:) =Slp, + (¢I,x -cp,I)lp,(x-x.) 

I (. 2 . 2) +cp,x p, XI -X , (44) 

where X) =¢(t)). 
If one now imposes on S) the two additional conditions 

(45) 

then any line element of the form (t),x),x) will be left invar
iant by SIVx. 

Consequently, the eight conditions (40), (42), and (45) 
replace the (r + 4) conditions obtained when r> 2, and, 
therefore, by the reasoning following in Sec. II(t), we con
clude that Eq. (41) has at most eight independent symmetry 
vectors. 

(h) We shall see in this section that the upper bounds on 
the number of independent symmetry vectors of Eq. (1) ob
tained above cannot be improved. Indeed, it is a standard 
result5 that for r = 2 the equation 

x =0 (46) 

has exactly eight independent symmetry vectors; on the oth
er hand, we are going to prove now that the equation 
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(47) 

has exactly r + 4 independent symmetry vectors when r> 2. 
Thus the upper bounds obtained above are actually attained 
by (47) for every r>2 and therefore cannot be improved. 

Let us prove that (47) has exactly r + 4 independent 
symmetry vectors when r> 2. 

Indeed, calling sn the nth extension of S, we have 

sn = q; (t,x)!-. + ¢r(t,x) ~ + ¢rl(t,x,x) ~ + ... 
at ax ax 

+ ¢rn (t,x, ... ,xin
) ~ • (48) 

axin 

It is easy to verify that the following identity holds: 

¢I = di¢r _ ± (i)XIi - k+ I dkq; . (49) 
dt' k~ I k dt k 

The condition to be satisfied in order that Eq. (1) admit 
S as a symmetry vector can be written in compact form as 
follows: 

sr(xir _ F) = 0 if xir - F(t,x, ... ,xir - I) = 0, (50) 

i.e., the subset of the space {(t,x .... ,xir ) J defined by 

xlr _ F(t,x, ... ,xlr- I) = 0 (51) 

must be invariant under the rth extension of S. 
For the particular case ofEq. (47), condition (50) reads 

sr(x(r) = 0 if xir = 0, (52) 

that is, 

¢rr (t,x, ... ,x(r - I ,0) = o. (53) 

Taking into account the structure of ¢ri , given by (49), 
Eq. (53) reduces to 

[ dr~ _ i (r)x1r - k+ 1 dk~] =0. (54) 
dt k ~ I k dt xlr ~ 0 

Let us see now that (54) has indeed (r + 4) independent 
solutions (q; (t,x),¢r(t,x)). 

In order to show this, consider first the solutions of (54) 
with q; = 0 given by 

tf(t,x) = clx + Cz + C3t + ... + c r + I t r
- I, 

(55) 
q;(t,x) = O. 

These particular solutions of (54) provide a set of(r + 1) 
independent symmetry vectors of (47). 

Next, since (54) is freefrom~ [the coefficient of ~ in (54) 
being x lr , which must be set equal to zero], another solution 
of (54) is obviously given by 

~ = a, aeR, ¢r = 0, (56) 

that is, 

(57) 

We have therefore (r + 3) independent solutions of (54), 
given by (55) and (57). The additional independent solution 
of (54) is easily found taking into account the identity 

dP(tx) = tx(p + (P)X(P-I, pEN, 
dtP \1 

(58) 

whence we get 
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dr(tx) I =rx1r-l. 
dt r x[r~o 

(59) 

Therefore, if we look for a symmetry vector having the struc
ture 

a a s = tx - + q; (t,x) - , 
ax at 

the following relation should be satisfied by qJ(t,x): 

Ir - 1 (r) Ir _ I .. (r). d r q; 0 
rx - 2 x q; - ." - r x dt r = . 

A particular solution of(61) is obviously 

q;=tz/(r-l). 

(60) 

(61) 

(62) 

Multiplying q;(t,x) = t z/(r - 1) and ¢r(t,x) = tx by the factor 
(r - 1), we arrive at the following solution of (54): 

q; = t z, ¢r = (r - l)tx, (63) 

which is clearly independent of the other (r + 3) solutions of 
(54) previously found, given by (55) and (57). 

Therefore, (54) has at least r + 4 independent solutions 
(55), (57), and (63), and hence (47) has at least r + 4 indepen
dent symmetry vectors: since for r> 2 it has at most r + 4 
independent symmetry vectors, as we proved in Sec. II(f), it 
follows that (47) has exactly r + 4 independent symmetry 
vectors when r> 2. 

The reader should notice that these (r + 4) symmetry 
vectors do behave, under the Lie-Jacobi bracket, as the gen
erators of a Lie group. That is, one can write 

r+ 4 

[S;'Sj] = L C7j Sk' i,} = 1, ... ,r + 4. (64) 
k=1 

This property follows from the fact that ifSi and Sj are 
two symmetries of (1), then the same thing will happen also 
with their Lie-Jacobi bracket lSi ,Sj]. 

Indeed, the condition that Sk be a symmetry vector of 
(1) can be written as follows6

: 

[S~-l,X] =fdt,x, ... ,x(r-I)X, (65) 

X being the vector field canonically associated with Eq. (1): 

X =!..- + x ~ + ... + F(t,x, ... ,x(r- I) _(a I . (66) 
at ax ax r-

On the other hand, we have the following identity7: 

[A,B]P = [AP ,BP
], pEN, (67) 

where A and B are arbitrary vector fields. 
Therefore, since Si and Sj are by hypothesis symme

tries of (1), we have 
(67) 

[[Si ,Sj Y -\ ,X] = [[S; - 1 ,Sf - I],X] 

= (Jacobi's identity) - [[S;- I,X],S;- I] 

_ [[X,S; - I],S; - I] 
165) 

= _ [./j X,S; - I] + [/; X,S; - I ] 

(65) 

=./j(/;X) + (S;-I./j)X 

- /;(./jX) - (S;- ~)X 

=gijX, (68) 
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with 

(69) 

Hence the Lie-Jacobi bracket [Sj ,Sj] satisfies (65) and is 
therefore a symmetry vector of (1). 

It easily follows that [Sj ,Sj] must be a linear combina
tion ofSI, ... ,S, + 4' since if this were not the case (47) would 
have r + 5 independent symmetry vectors: SI""'S, + 4 and 
[Sj ,Sj]' contrary to what has been already proved in Sec. II(t) 
(since r> 2). Obviously, the same conclusion holds for Eq. 
(46). 

III. MAXIMUM NUMBER OF INDEPENDENT SYMMETRY 
VECTORS OF THE SYSTEM x(r = 0 (r> 2) 

We show in this section that a system of differential 
equations of the form 

xl' = F(t,x, ... ,xl'- I), 
(70) 

x = (xI, ... ,xn )ERn, FEeoo
, and r> 2, 

does not admit more than 2n2 + nr + 2 independent sym
metry vectors. It would be nice to produce an example of a 
system of differential equations of the form (70) with n > 1 
possessing this maximum number of independent symmetry 
vectors. Unfortunately, the system 

Xl' = 0, r> 2, (71) 

has only n2 + nr + 3 independent symmetry vectors, which 
is equal to the previously quoted upper bound 2n2 + nr + 2 
only when n = 1. Therefore, the open problem remains of 
either showing that the system xl' = ° has more independent 
symmetry vectors than any system of type (70)-in which 
case the number 2n2 + nr + 2 should be substituted by the 
number n2 + nr + 3 as an upper bound on the number of 
independent symmetry vectors of (70)---or of producing a 
concrete example of a differential system of type (70) with the 
maximum number s of independent symmetry vectors 
(n 2 + nr + 3 <s<2n2 + nr + 2). 

(a) Let Yo be the integral curve of (70) corresponding to 
the initial conditions 

(72) 

and PI = (tl,X I) be a point on Yo sufficiently close to 
Po = (to,xo). By a reasoning completely similar to that fol
lowed in Secs. II(a), (b), (c), one can prove that there exists an 
open neighborhood UCR XR n near Po such that through 
every point P of U it is possible to draw two integral curves of 
(70), YI and Y2' with the following two properties: 

(i) YI and Y2 have a contact of order (r - 2) with Yo, 
respectively, at Po and PI' 

(ii) P is isolated in Ylnr2' 
(b) Assume now that the vector S defined by 

a n a 
S = (j?(t,X) - + L t/Jj (t,X) -

at j= I aX j 

(73) 

is a symmetry vector ofEqs. (70). Ifwe were able to construct 
S in such a way that any integral curve of (70) having a con
tact of order (r - 2) with Yo either at Po or PI be invariant 
under the local one-parameter group G generated by S, then 
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in particular the two paths YI and Y2 considered above would 
be invariant under G, and, consequently, 

(74) 

But, by construction, Pis isolated in YlnY2; therefore, we can 
write 

g(P)=P (75) 

for any gEG sufficiently close to the identity transformation. 
Hence S must vanish at P, and, since P was an arbitrary point 
of U, we conclude that S is identically zero on U. 

(c) Let us now show that in order that any integral curve 
of (70) having a contact of order (r - 2) with Yo at Po or PI be 
invariant under S, 2n2 + nr + 2 linear conditions on S suf
fice. 

First, we must impose that the linear element of order 
r-l 

(76) 

be invariant under S' - I for every value of xl' - I, that is, 

Condition (77) can be written in detail as follows: 

(j? (to,xo) = 0, 

,jJ(to,xo) = 0, 

"'k (to,xo,oo.,xli') = 0, k = 1,00.,r - 2, 

",'-I(to,xo,00.,x~-2,xl'-I) = 0, 'Vxl'-IER n, 

(77) 

(78) 

where, of course, ",k = (t/J~ ,oo.,t/J~). Taking into account the 
identity [analogous to (49)] 

d ,-I.I, 
t/J~-I = 'Pj 

dt'- I 

_ ~ x l.'- k _T'_ 
,- I (r - 1) d km 

k~1 k I dt k ' 
i = 1,00.,n (79) 

and the structure of dkj Idtk , given by 

d kj _ ~ aj Ik Ik _ I 
-k - L -Xj +B(t,x,oo.,X ), 
dt j=laXj 

(80) 

f (t,x)f--+j(t,X)EIR., 

we conclude that t/J~ - I has the following affine structure: 
n 

.1,' - I _ ~ A (t . )xl' - I B ( I, - 2) '/'j - L jj ,x,x j + j t,x,oo.,x , 
j=1 

A = at/Jj _ x a(j? _ (r _ 1) d(j? 8 
IJ a I a d IJ' 

Xj Xj t 

provided that r - 1> 1, i.e., r> 2. 

(81) 

Therefore, taking (81) into account, (78) is equivalent to 
the following set of n2 + nr + 1 linear conditions on the 
components of S: 

(j?(to,Xc) = t/Jj (to,Xc) = 0, 

t/J7(to,xo,00.,~k) = 0, 

Aij(to,xo,xo) = 0, 

B;(to,xo,oo.,x~ - 2) = 0, 

i,j = 1,00.,n, k = 1,00.,r - 2. 

(82) 

Next, in order to assure that the linear element at PI 
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(tl,XI, ... ,xr-2,Xlr-I), X\k = ~Ik(td, (83) 

is invariant under sir -I for every value ofxlr -I [where~(t) is 
of course the solution of (70) corresponding to the initial 
conditions (to,xo, ... ,xg--I)] we must impose that 

(84) 

Now, ifS satisfies conditions (82), then the integral 
curve ro will be invariant under S, since S is by hypothesis a 
symmetry vector of (70). Therefore, S must be parallel to the 
tangent vector to r 0 on every point of r 0' that is, 

[an a ] Sp =<p(P) - + L cp;(t)- , 'v'P=(t,~(t))Ero' 
at ;=1 ax; 

(85) 

Consequently, PI will remain invariant under S if 

(86) 

This last condition automatically implies that the linear 
element at PI 

(tl,XI, ... ,X\k) (87) 

is invariant under Sk for every value of k; therefore, for 
k = r - 1 we have, taking into account (81); 

n 

B;(t l ,x\, ... ,xr- 2
) = - L A;j(t\,XI,X\)xI;-I, 

j=1 

i = 1, ... ,n. (88) 

Consequently, the linear element (83) will be invariant 
under sr - I if 

n 

L Aij(t\,xl,xd(xY- 1 
- X~-I) = 0, i = 1, ... ,n, 

j=1 

xlr -I = (xr-I, ... ,x~-I), (89) 

xr- I = (Xrl-I, .. ·,xrn- I). 

Since (89) must hold for every value of xlr -I, we must 
finally impose that 

Aij(tl,xl,xd = 0, i,j = 1, ... ,n. (90) 

The 2n2 + nr + 2 equations (82), (86), and (90) guaran
tee that any integral curve of (70) having a contact of order 
(r - 2) with ro at Po or PI be invariant under the symmetry 
vector of (70) S. The linearity of these equations in the com
ponents ofS is a direct consequence of the linearity of sir -I. 

(d) We shall now compute the maximum number of in
dependent symmetry Vt;ctors of the system 

Xlr = 0, X = (x ", .. ,xn ), r> 2. (91) 

By the reasoning given in Sec. 11th) they will automatically 
close as a Lie algebra under the Lie-Jacobi bracket. 

The necessary and sufficient conditions in order that 
the vector field 

a n a 
S = <p(t,x) - + L tP; (t,x) -

at ;=1 ax; 
be a symmetry vector of (91) can be written as follows: 

",r lx" = 0 = 0 (92) 

or, taking into a account (79), 
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± (r)x~r-k+1 dk~1 =0. 
k = 2 k dt x" = 0 

i = 1, ... ,n. (93) 

At this point it is important to have in mind the structure of 
dSI(t,x)ldf, which can be shown to be 

dj 
dtS 

n 

X L 
itt ...• i p = 1 

Irl = rl + ... + rp, rl <r2 < ... <rp' c;, ... rpEN. (94) 

An immediate consequence of (94) is that a term of the form 
x~r- IXj cannot appear in (93) from the development of dr tP;I 
dtr- I, since (r + 1) + 2 = r + 1> r. A term of this type can 
only arise, therefore, from the expressions 

_(r)xlr_ l d
2

<p (r )dr-I<p (95) 
2 I dt 2 ' r - 1 dt r - I 

also appearing in (93). These two terms are different when 
r - 1 =/= 2, i.e., when r> 3, and therefore for r> 3 the coeffi
cient of the term x~r - IXj is either 

- G)<PJ' when i=/=j, 

or (96) 

- [G) + r ]<p,j, when i = j, 

whereas, for r = 3, x~' - IXj reduces tox;xj , whose coefficient 
is simply 

- 3<p,j' i,j = 1, ... ,n. (97) 

Since (93) must be an identity in x,x, ... ,xl' -I, and<p, tP; do not 
depend on these variables, the coefficient of the term xl' - IXj 
must equal zero; taking into account (96) (for r> 3) and (97) 
(for r = 3), we conclude that 

<P.j = 0, j = l, ... ,n. (98) 

Accordingly, for every symmetry vector of (91) we have 

<p(t,x) = I(t). (99) 

Note that the above reasoning obviously fails when 
r = 2, since then the term x~r - IXj reduces to x;xj , which is 
absent from (93) by the restriction x = O. 

Substituting (99) into (93), we obtain 

d'~1 _ ± (r)x\'-k+1 Ik (t) =0, 
dt x" = 0 k = 2 k 

i = 1, ... ,n. (100) 

Remembering (94) again, we realize that the term 
xy- IXk appears in (100) only through d' tPi1dt' lxi, = 0 and its 

coefficient is (up to the positive integer c~.r _ 1 ) tPi.jk' There
fore, we must have 

aztP; = 0, "k 1 I,j, = , ... ,n. 
aXj aXk 

(101) 

Similarly, considering the coefficients of the terms 
xy- I withj=/= 1, which again only appear in (100) through 

d'tP;ldt 'Ix" = 0' we obtain 
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a 2tPi 0 .. 1 '..J.' -- = , I,} = , ... ,n, l-rJ. 
ataxj 

(102) 

When i = j, considering the coefficient of the term xl' - 1 

in (100), we get 

a2tP (ry. C~_I --'- - (t) = 0, i = 1, ... ,n. 
at aXi 2 

(103) 

Since c~ _ 1 is a positive integer, we can rewrite (103) as 
follows: 

a 2tPi = Kj(t), i = 1, ... ,n [K = (2r) c~_ 1 > 0]. 
ataxi 

(104) 

Considering now the coefficient of the term indepen
dent of i,x, ... ,xl' -I in (100), we are led to 

a'tPi = 0, i = 1, ... ,n. 
at' 

(105) 

From Eq. (101) we readily obtain 
n 

tPi = 2: aij(t)xj + b;(t), (106) 
j=1 

and, taking (102) and (104) into account, we immediately 
arrive at 

n 

tPi = 2: aijxj + Ki(t)xi + bi(t), 
j=1 

aijER Vi,j = 1, ... ,n, (107) 

and, substituting (107) into ( 105), we finally get 

KII' + I(t)xi + b I'(l) = O. (108) 

Therefore, we must have 

I(t) = P,(t), bi(t) = Q~_ I (t), i = 1, ... ,n, (109) 

P, and Q ~ _ 1 being polynomials of maximum degree rand 
(r - 1), respectively. From (107) and (109) we get the follow
ing structure of tPi' 

n 

tPi = 2: aijxj + KX)',(l) + Q ~_ 1 (t) (aijER), (110) 
j= I 

and, substituting it back into (100), we arrive at 

K-, [x»,(t)] d' I 
dt x"= 0 

- kt2 (~)xl'- k + IP~k(t) = O. (111) 

Applying Leibnitz's theorem to the first term of (111), we 
obtain 

(112) 

Since we are considering now the case r> 2, we can 
compare the coefficients of xl' - I and x!' - 2 in both members 
of (11 2), obtaining 

K·r·P,(t) = G}p,(t), 

K.(;}P,(t) = G}p,(t ). 
(113) 
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It is easy to prove by induction that c~ _ 1 = r; hence 
K = (r - 1)/2 [see (104)]. The first equation in (113) reduces 
to an identity and the second one leads to 

P,(t) = 0, VtER, (114) 

i.e., P, (t) = a + bt + ct 2 (a,b,cER). 

Conversely, if (114) holds, then (112) is automatically satis
fied. Therefore, the "general solution" of (93) is obtained by 
substitutingP,(t) = a + bt + ct 2into(11O),and,consequent
ly, the general solution of (92) is 

cp = a + bt + ct 2, 

n 

tPi = 2: AijXj + c(r - l)tx i + Q~_ I (t), 
j=1 

i = I,. .. ,n, a,b,c,AijER, 

(115) 

where we have set Ai) = aij + !b (r - 1 )c5ij (c5ij being, of 
course, the Kronecker delta). 

From (115) we immediately obtain the following set of 
n2 + nr + 3 independent symmetry vectors of(91): 

a 
Xi -a ' i,j = 1, ... ,n, 

Xj 

tPi!......, p=O,l, ... ,r-l, i=l, ... ,n, (116) 
aXi 

a a 2 a n a 
-, t-, t - + (r-1)t· 2: X k --. 
at at at k = 1 ax k 

This establishes the point we wanted to make: when 
n > t and r> 2, the system of differential equations xl' = 0 
does not provide us (as happened for n = 1) with a maximum 
number of independent symmetry vectors equal to the upper 
bound 2n 2 + nr + 2 obtained in III(a)-(c). Therefore, it re
mains an open problem to find systems of differential equa
tions-if any-whose maximum number of independent 
symmetry vectors is greater than the number n2 + nr + 3. 

Finally, note that, when n = 1, the symmetry vec
torsi 116) reduce to the symmetry vectors of xl' = 0 comput
ed in Sec. lI(h), as it should be. 

IV. MAXIMUM NUMBER OF INDEPENDENT SYMMETRY 
VECTORS OF THE SYSTEM" = F 

We show in this section that a system of differential 
equations of the form 

x=F(t,x,i), x=(x1, ... ,xn ) (117) 

cannot possess more than 2(n + 1 f independent symmetry 
vectors. We also compute, by a direct procedure, all the sym
metry vectors of the system x = 0, obtaining only 
n2 + 4n + 3 independent vectors. Since this number is less 
than the upper bound 2(n + 1)2 mentioned above, the open 
question arises of whether or not there exist differential sys
tems admitting more than n2 + 4n + 3 independent symme
try vectors. 

In Sec. V we show that this is not the case: In other 
words, the maximum number ofindependent symmetry vec
tors admitted by any system of the form (117) is never greater 
than n2 + 4n + 3, the number of independent symmetry 
vectors of the system x = o. 
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(a) Let 

a n a 
s=cP- + L tPi-at i~ I aX i 

( 118) 

be a pointlike symmetry vector of (117); then it is easy to 
verify that the structure ofSI (the first extension ofS to the 
variables l,x,x) is the following: 

SI =S+ i tP;·~ , 
i~1 aXi 

n 

tPi = L tPi,jXj + tPi" 
j~ I 

- Xi ( i CP,jXj + cp,,). 
j~ I 

(119) 

Therefore, it is clear that the linear element (to,xo,x) = (Po,x) 
will be left invariant by S I iffor every value ofx the following 
set of n 2 + 3n + 1 linear equations in the components of S 
holds: 

cp(Po) = 0, "'(Po) = OJ 
tPi,,(PO) = CP,j(Po) =:.. a , i,j = 1, ... ,n. 

(tPi,j - cp" t5d(Po) - a 
(120) 

Similarly, a second point PI = (tl,xtllying on the inte
gral curve Yo of (117) corresponding to the initial conditions 
(to,xo,xo) will be left invariant by S provided only that 

(121) 

since, exactly as in Secs, II and III, (121) and the fact that S is 
a symmetry vector of ( 117) and PI lies on an integral curve of 
(117) imply that ",(PI) = 0 as well. 

Finally, from all that has been said in Secs, II and III, it 
should be clear by now that, in order that any linear element 
at PI' (PI'X), be invariant under SI, the following n2 + n lin
ear conditions in cP and", suffice: 

(122) 

since when (120), (121) and (122) hold tPi,,(Ptl automatically 
vanishes, due to the fact that the linear element (PI'X I) tan
gent to Yo is then invariant under SI. 

Accordingly, the 2(n + 1)2 conditions (120), (121), and 
(122) are sufficient in order that any linear element atPoor PI 
be invariant under SI; since these conditions are linear in the 
components ofS, the same construction followed in Secs. II 
and III can be repeated now, with the result that Eq. (117) 
does not admit more than 2(n + If independent symmetry 
vectors. 

(b) We now compute all the pointlike symmetry vectors 
of the system 

x = 0, x = (xI" .. ,xn ) (123) 

in order to establish whether or not the dimension of the 
vecto! space generated by these symmetries equals the upper 
bound 2(n + 1)2 obtained above. 

Since the necessary and sufficient conditions in order 
that (118) be a symmetry vector of (123) are 

tf!7lx~o =0, i= 1, ... ,n, (124) 

computing tf!71 x ~ 0 and setting equal to zero the coefficients 
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of 1, Xi' andxixj , we arrive at the following system of partial 
differential equations in cP, "': 

CP,jk = a ) 
tPi,1t = a 
.,.... = 15 .. (1 15)' i,j,k = 1, ... ,n, 
'f/I,jk CP,k, Ij + jk 

tPi,j! = !CP,lt I5ij 
From (125a) and (125b) we get 

n 

cP= L Cj(t}xj +D(t), 
j~ I 

tPi = A;(x)t + B;(x). 

Substituting (126) into (125c) and (125d), we obtain 

Ai(X) = ai(xi ), 

n 

B;(x)=bi(Xi )+ L bij(xi}xj' 
j~ I 

(j"l'I) 

(125a) 

(125b) 

(l25c) 

(125d) 

(126) 

(127) 

Substituting (127) back into (126), we obtain, after some 
easy calculations, the general solution of (125): 

n 

cP= L (cjt+cj)Xj +at 2 +dt+d', 
j~1 

n 

tPi = (axi + ai)t + L CjXiXj 
• j=1 

n 

+ L bijxj + bi' 
j~ I 

(128) 

From (128) we obtain the following set of n2 + 4n + 3 
independent generators of the vector space of the symme
tries of (123): 

a 
at ' 
a 

ax
i

' 

a 
tat ' 

a 
1-, aXi 

a 
x·

I at 
a x

j aX
i 

, i,j = 1, ... ,n. (129) 

By the reasoning followed in Sec. II, the set of vectors 
(129) closes as a Lie algebra under the Lie-Jacobi bracket. 

It is not difficult to verify that the set of symmetry vec
tors given by (129) is a set of generators for the projective 
pseudogroup of the space {(t,x) J = R n + I , whose finite 
expression is given by 

~n+1 + , kj~ I aijxj ai,n+2 
X= , 

I ~n+lb b kj~ I jXj + n+2 

Xn + I = t, i = 1, ... ,n + 1. (130) 

The projective pseudo group does precisely possess 
(n + 2)2 - 1 = n2 + 4n + 3 essential parameters, and, 
therefore, n2 + 4n + 3 independent generators (see the Ap
pendix). 
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v. REDUCTION OF THE MAXIMUM NUMBER OF 
INDEPENDENT SYMMETRIES OF THE SYSTEM jt = F 

We show in this section that the system (117) does not 
admit more than n2 + 4n + 3 independent symmetry vec
tors, thereby achieving an improvement of the maximum 
number of independent symmetry vectors of (117), 
2n 2 + 4n + 2, derived in Sec. IV. The new upper bound ob
tained in this section cannot be further improved, since in 
Sec. IV, it has been shown that the system i = 0 has precise
ly n2 + 4n + 3 independent symmetry vectors. 

The proof given here uses the following remarkable 
property of the projective pseudogroup of R n + I : 

If a projective transformation T of R n + I leaves n + 3 
points of Rn + I fixed, and these points are in "generic posi
tion," then Tis the identity transformation.s (We say that 
n + 3 points of R n + I are in generic position if for every selec
tion of n + 2 of them the n + 1 vectors obtained choosing 
one of these n + 2 points as the origin and the rest as end 
points are linearly independent.) 

(a) Let PI"",Pn + 3 be n + 3 points of R n + I such that 

(131) 

Let us assume for the moment that these points can be 
chosen in such a way that to any couple of them (Pj,lj ) with 
i =/=j there corresponds an integral curve Yij = {(t,cI»jj (t )) 
.x ItER. J of ( 117) passing through Pj and Pj : We shall prove 
III Sec. V (e) that this assumption can indeed be satisfied. 

Assuming then that we have chosen the points 
P!'""'Pn + 3 in a such a way that this last assumption holds 
true, by a straightforward generalization of the argument 
given in Sec. II(a) one can prove the following result: 

If the points PI""'Pn + 3 are sufficiently close to each 
other, then for every pair (i,j) with i=/=j there exist open 
neighborhoods Ujj and Pj and V;j ofi jj = ~jj (t j ) such that 
through every point P of Ujj there passes exactly one integral 
curve of (117) containing Pj , with velocity ( = derivative 
with respect to time t ) at ( lying in V; j' 

Suppose now that the vector field S given by (118) is a 
symmetry of (117) leaving all the points P1"",Pn + 3 invar
iant. It is clear that in order to achieve it the following 
(n + l)(n + 3) conditions are sufficient: 

cp (Pj ) = 0, th (Pj ) = 0, i = 1, ... ,n + 3,j = 1, ... ,n. 
(132) 

Equations (132) automatically imply that the integral 
curves Yij (i=/=j) are subsets of Rn + I invariant under S, and 
therefore that the n + 2 linear elements at P 

I 

(Pi>Xjj ), i=/=j, (133) 

are also invariant under SI, for every i = 1, ... ,n + 3. 
Indeed, if g is a transformation belonging to the local 

one-parameter group generated by S and sufficiently close to 
the identity, then we have by continuity 

., d I 
X jj = ds s~ti(gcl»jj)(S)EVjj 

(134) 
[ gYij = I (s,( gcl»jj )(s))lsER. J 1 

since XjjEVjj by construction. But this necessarily implies 
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that gYjj = Yjj' since both Yjj and its transform gYjj pass 
through Pj with velocity at Pj lying in Vi), and the equality 
of Yjj and its transform implies obviously that i jj equals i~., 
its transform under S., as claimed. IJ 

(b) Consider now a finite transformation 

t' = g(t,x), x' = f(t,x) (135) 

such thatPj is invariant under (135), for fixed iEll, ... ,n + 3 J. 
As is well known, the transformation induced by (135) on the 
derivatives x at Pj is given by 

x' = ~; ~ I f.j(Pj )Xj + f.t (pj) 

~;~I g)Pj)ij +g,t(pj)' 
(136) 

i.e., any curve I (t,a(t ))ltER. J passing through Pj such that 
a(tj) = x will be transformed under (135) into another curve 
I (s,b(s))lsER J through Pi> with b(t j ) = x'. 

Since Pi is fixed, (136) implies that the velocities at Pi 
transform under a projective transformation, whose param
eters depend, of course, on the point Pi that is being kept 
fixed. Denoting now by 

t' = g(t,x;a), x' = f(t,x;a), (137) 

the local one-parameter group of transformations generated 
by the symmetry S satisfying conditions (132), then SI acts 
on the velocities at Pi as a one-parameter subgroup Gi of the 
projective pseudogroup of R n = Ii J. Furthermore, every 
transformation gEGi leaves invariant the n + 2 linear ele
ments at Pi given by (133), as we have just seen: therefore, if 
we are able to choose the velocities iij (i =1= j, i fixed) in generic 
position (by an appropriate selection of the points 
PI"",Pn + 3)' then, by the property of the projective pseudo
group quoted at the beginning of this section, we can con
clude that Gj reduces to the identity transformation and, 
therefore, that SI leaves every linear element at Pi invariant. 

(c) Suppose now that we are able to find a set of n + 3 
points of R n 

+ I IP1""'Pn + 3J satisfying (131), and the fol
lowing additional requirement: The two sets of (n + 2) vec
tors of Rn given by 

I i jj ~ = 2,3, ... ,n + 3 J, I i 2k Ik = 1,3,4, ... ,n + 3J (138) 

are in generic position in R n 
. According to III(a), we can find 

an open neighborhood U in Rn + I such that through every 
?~i~tPof U there pass two integral curves of(117), YI and Y2' 
JOlllmg P, respectively, with PI and P2 in such a way that Pis 
isolated in YlnY2' Since (131), (132), and (138) imply that ev
ery linear element at PI or P2 is invariant under Sand S is by 
hypothesis a symmetry vector of (117), it follows that Y I and 
Y2 are both invariant under S; therefore, P has to be invariant 
under S, since Pis isolated in YlnY2' Hence every point of Uis 
invariant under S, implying that S = 0 on U. 

Since conditions (132) are clearly linear in the compo
nents of S, we can again apply the argument of Sec. II(f) to 
conclude that (117) does not admit more than n2 + 4n + 3 
independent symmetry vectors. 

The only point meriting a separate treatment in order 
that our proof be complete is the following: We have to show 
that it is indeed possible to find a set of n + 3 points of R n + I 

satisfying conditions (131) and (138), such that every pair of 
points of this set can be joined by an integral curve of (117). 
In order to prove this statement, the lemma that follows is of 
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great practical value since. as we shall explain below. it re
duces the problem of finding the set of points PI""'Pn + 3 

with the properties mentioned above to an easier one. 
(d) Lemma: Let Po = (to,Xo) be a point of R I + n and call 

«I»(t,~) the unique solution oft 117) corresponding to the initial 
condition (Po,~)' Consider the straight line of R 1 + n parallel 
to (l,v) and passing through Po, whose equation is 

t=to+s, x=xo+sv VsER. (139) 

Then one can find E> 0 such that for every s such that 
0< Is I < E there is an integral curve of (117) passing through 
Po and (to + s,xo + suI, whose derivative at to, hIs), satisfies 

lim hIs) = v. 
s->D 

Proof The function f(s,~) defined by 

f(s,~) = (1*0 + s,~) - Xo - s~ 

(140) 

(141) 

is a C'" function [since the function F appearing in (117) is 
assumed in what follows to be of class C'" ]9 and satisfies 

Therefore, we can write 

11 a 
f(s,~) = - f(Os,~) dO, 

o ao 
and, since 

~ ~(Os,l'-) = s·f s (Os,~), ao ~ . 
f(s,~) can be factorized as follows: 

f(s,~) = s.g(s,~), 

(g(S'~) = f !s(Os,~) dO ), 

where g(s,~) is C'" since f is C'" . 
Therefore, we have 

(142) 

(143) 

(144) 

(145) 

«I»(to + s,~) = s·g(s,~) + Xo + s~, gEC'" (146) 

and the intersection of the integral curve {(t,«I»,(t,~))ltER 1 
with the straight line (139) leads to the equation 

s·g(s,~) + Xo + s~ = Xo + sv (147a) 

or, since s'iO, 

v = ~ + g(s,~). (147b) 

Equation (144) implicitly defines ~ as a C'" function of 
s, ~ = hIs). Indeed, define a function 'I\J, (s,~) as follows: 

'I\J(s,~) = ~ + g(s,~) - v. (148) 

Then we have 

'I\J(O,v) = g(O,v) = 0 (149) 

[since g(O,~) = f~ f,s (O,~) dO = 0 VsER on account of the de
finition (141)], and 

(D~'I\J)(O,v) =1 + (D~g)(O,v) =1 
(150) 

(I = identity matrix of dimension n) 

[taking into account that g(O,~) = 0 for every ~, as we have 
just shown]. 

Equations (149) and (150) allow us to apply the implicit 
function theorem to the function 'I\J(s,~) at the point (0, v), thus 
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obtaining ~ as a function of s, ~ = hIs), in a sufficiently small 
neighborhood lsi < E of s = O. The function hIs) satisfies 

h(O)=v, (ISla) 

¢(s,h(s))=O if lsi <E. (151b) 

It follows that the integral curve of (117) corresponding 
to the initial condition (Po,h(s)) passes through Po and 
through the point (to + s,Xo + sv) [by (146)-(148) and (151)]; 
in addition, we have 

lim hIs) = h(O) = V 
s->D 

(152) 

on account of (ISla) since hIs) is a continuous function (as a 
matter of fact, h is COO , as follows from the fact that g is Coo 
and the implicit function theorem). This completes the proof 
of the lemma. 

(e) Consequences o/the lemma: Let {PI'''',Pn + 31 be a 
set of n + 3 points of R I + n , P; = (t; ,X; ), satisfying the fol
lowing conditions: 

i'ij, t; 'itj; (153a) 
the two sets of points of R n 

{ 
X; - XI I' 2 3 3} _ 1=, , ... ,n + , 
t; tl 

(153b) 

{
X, - x21 } 

I _ j = 1,3, ... ,n + 3 
tj t2 

are in generic position in R n 
• 

We shall indicate at the end of this section how to construct 
sets of n + 3 points of R I + n satisfying conditions (153). 

Consider now the transformation Ha :R I + n --+R I + n 

defined as follows: 

Ha(P)=PI +a(P-PI)=P, aER,a>O. (154) 

If IPI'''''Pn + 31 satisfy conditions (153), the same will hap
pen with I P~ , ... ,P~ + 31, since we have 

xr - x% a(x; - xk ) X; - Xk 

t~-t% a(t;-tk) t;-tk 
(152) 

When a-o, pr--+P~for every i = 1, ... ,n + 3, but the 
directions (t; - tj ,X; - xj ) defined by every pair of points 
P;'Pj with i'ij remain invariant under Ha. 

Therefore, by repeated application of the lemma proved 
above, it follows that, for sufficiently small a, for every pair 
of points P; ,Pj with i 'i j there is an integral curve of (117) 
joining P; with Pj and satisfying 

lim cj,~j(t;) = Xi - x; , 
a->D tj - t; 

(156) 
i,j = 1, ... ,n + 3, i'ij, 

where cl>fj (t ) is the solution oft 117) whose associated integral 
curve passes through P; and ~ . 

Furthermore, it is easy to verify that if m + 2 points of 
R m are in generic position, any sufficiently small perturba
tion applied to them will lead again to a set of m + 2 points in 
generic position; this is essentially due to the fact that generi
city is defined in terms of linear independence of certain sets 
of vectors, and linear independence is preserved by suffi-
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ciently small perturbations. It follows [by (153b)] that the 
two sets of vectors of R n defined by 

I cj,~j Ii = 2, ... ,n + 31, 
(157) 

Icj,~j~= 1,3, ... ,n + 31 
are in generic position in Rn , if we choose a sufficiently 
small. 

The conclusion is, therefore, that if PI, .. ·,P n + 3 satisfy 
condition (153), then one can find aER such that the new set 
of points P~ , ... ,P~ + 3 satisfy conditions (131) and (138). The 
only point that remains to be proved is, therefore, that it is 
indeed possible to find PI"",Pn + 3 such that conditions (153) 
are satisfied. 

To this end, notice that if the following points of R n 

10,vI,,,,,vn 1 (158) 

are in generic position, it immediately follows that the fol
lowing set of n + 3 points of R I + n , 

I (O,O),(ro,O),(rl,vil,···,(rn + I 'Vn + I ) I, 
(159) 

rj #0 Vi = O,I, ... ,n + 1, rj #rj Vi#j, 

satisfies conditions (153), provided only that the numbers 

ro, rj - 1, i = l, ... ,n + 1, (160) 

are chosen sufficiently small. 
Indeed, choosing PI = (0,0) andP2 = (ro,O), the two sets 

of vectors 

{ 0 Vj . II} -,-, 1= , ... ,n + , 
ro rj 

(161) 

{ 0 Vj . II} --,---, 1= , ... ,n+ 
- ro rj - ro 

are both in generic position in R n 
, since they are obtained by 

applying an arbitrarily small perturbation to the set of vec
tors (158), which are by hypothesis generic in R n 

• 

VI. MAXIMUM NUMBER OF INDEPENDENT 
SYMMETRIES OF THE SYSTEM 
J;r, = ~(t; X1, ••• , .,;;. -'; ••• ;Xn' ••• .x';n - \'; > 1 

The results obtained in Secs. II-V indicate that systems 
of differential equations of the form 

xl' = F(t,x, .. . ,x(' - I), 
(162) 

x = (xl, ... ,xn ), r> 1, 

possess a finite number of independent symmetry vectors 
and that the system xc' = ° possesses a number of indepen
dent symmetries that tends to infinity when either r or n tend 
to infinity, thus showing that the upper bound for the maxi
mum number of independent symmetry vectors of(162) 
tends to infinity when either r or n tend to infinity. 

We shall see in this section that these results hold as well 
for the more general class of systems of the form 

xi" = Fj(t;y), 

(163) 

i = 1, ... ,n, 1 < rj • 
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The restriction rj > 1 for every i is essential for the valid
ity of these results, since it is not difficult to give examples of 
systems of the form (163) with rio = 1 for some io possessing 
an infinite number of independent symmetries. This is what 
happens, for example, with "split" systems of the form 

XI = FI(I,xd, 

(164) 

r; > 1 for every i = 2, ... ,n, 

admitting an infinite number of independent symmetries of 
the form 

t' = t, xi = XI + E.¢(t,xd, 
(165) 

X; = Xi for every i = 2, ... ,n, 

where ¢(t,xl) is such that ¢(t,xdaiax i is a symmetry vector 
of the equation 

XI = FI(t,x l ) (166) 

[since it is well known that every first-order equation like 
(166) admits an infinite number of independent symme
tries lO

]. 

A less trivial example of a differential system of the 
form (163) with ri = 1 for some io admitting an infinite num-

o 
ber of independent symmetries is the following: 

X = F(t,x), ji = G(t,x). (167) 

Indeed, the necessary and sufficient condition in order that 
S(t,x, y) = 7J(t,x) al ay be a symmetry vector of (167) turns 
out to be the following linear partial differential equation in 

7J: 

7Jrt = - 27J,x F - 7Jxx F2 - 7Jx F (F = F, + Fx F ). 
(168) 

Equation (168) is Kowalewskian in the variable t, and 
therefore I I possesses an infinite number oflocal solutions, 
depending on two arbitrary functions fix) and g(x); for in
stance; 

fix) = 7J(O,x), g(x) = 7J,(O,x). (169) 

Therefore, the system (167) possesses an infinite num
ber of independent symmetries, as claimed. 

(a) We begin now the proof of the assertions made at the 
beginning of this section. 

As in previous sections [I1(a), (b), (c); III(a)] it is not 
difficult to show that, given the initial value (to,yo), where 

_( (,,-I .. ('n-I) 
Yo - XOI, .. ·,XOI ""'XOn ""'XOn , (170) 

and denoting by 4>(t) the solution of (163) corresponding to 
this initial condition, for PI = (t l ,4>(II)) = (tl,xd sufficiently 
close to Po = (IO,xOI, ... ,xOn) = (to,xo) one can find an open 
neighborhood U in R I + n such that through every point P of 
U there pass two integral curves of (163), 
YI = !(t,4>I(t ) I tEll CR 1 andY2 = I(t l ,4>2(t ))ltEl2 CR j,satis
fying 

if> \~(to) = X6~, if> ~~(td = X(I~ 

for every k = 1, ... ,rj - 2 and i = 1, ... ,n, 
P is isolated in Y I ny 2' 

where we have set x\~ = if> \k(t ,). 
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(b) Let 

a n a 
S = cp(t,x) - + I ¢; (t,x) -

at ;~ I ax; 
(172) 

be a symmetry vector of (163). If for every PE U the two inte
gral curves of (163), Y I and Y 2' defined above are invariant 
under S, then Pwill be invariant under S, since by (171b) Pis 
isolated in ylnY2' and, consequently, S will vanish at P for 
every PEU, i.e., S will vanish identically on U. Therefore, by 
the arguments given in Sec. II(c), (e), to compute an upper 
bound for the maximum number of independent symmetry 
vectors of (163) it suffices to find the number oflinear equa
tions in the components ofS that guarantee the in variance of 
the following linear elements of order (r n - 1) under S rn - I: 

( 
Irl - 2 f; F. Fir n - r 1 

Zo = to'XOI,,,,,XOI '!ol' 01'"'' 01 ; ... ; 

Ir - 2 f; ) 
XOn""'XO~ '~n' 

Ir - 2 f; ) 
X 1n , ... ,XI~ ':'n 

for every S = (SI, ... ,Sn), rn = max r;. 
; 

where we have set 

Flk=~FI 
at dt k t (t,x~l- 2, . .• x~: - 2';1;' .;X(Tn •...• x~~ - 2,5,,)' 

(J' = 0,1, 

dan [. a -=-+ I X;-+'" 
dt at ;~I ax; 

+x1r,-I_a_ +F_a_] 
I I' 

a ir, - 2 air, - I 
x; x; 

(173) 

(174) 

[Equations (174) simply state that the derivatives ofF 
appearing in (173) are to be computed along the integral 
curves of(163), YI-for F~-and Y2-for F\~.] 

The in variance of the linear elements (173) for every 
value of S is in turn equivalent to the following set of linear 
equations in the functions cp and ¢;: 

'Vs, cp(Po) = ¢;(Po) = ¢~(Zo) = 0, 

k = 1, ... ,rn - 1, i = 1, ... ,n, 

for Zo, and 

'VS, cp(PI ) = ¢;(Pd = ¢7(zd = ° 
k = 1, ... ,rn - 1, i = 1, ... ,n 

( 175) 

(176) 

for ZI' At this point it is important to note that ¢7(z,,) de
pends on S not only explicitly, but also implicitly, through 
FIjJ (p = 1, ... ,rn - rj,j = 1, ... ,n). 

More precisely, taking into account the structure of ¢7, 
given by (79) and (94), we see that ¢~(zu) depends on the 
variables S, FIjJ polynomially; ¢7(zu) is a polynomial in the 
variables S, F IjJ whose coefficients are linear combinations of 
the partial derivatives of the functions cp and ¢ evaluated at 

P Th I f ( (rl - 2 Ir - 2) 
u' e constant va ues 0 tu; Xul '''''Xul ;",;Xun , ... ,Xu~ 

appear in ¢7(zu) implicitly through the variables FIjJ and 
explicitly as coefficients of the partial derivatives of the func
tions cp and ¢. 

As a consequence, it immediately follows that the ful-
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fillment of (175)-(176) is guaranteed by afinite number of 
linear conditions on the functions cp and ¢, namely the van
ishing of cp(P u)' "'(P u) and of all the coefficients appearing in 
¢7(zu) regarded as a polynomial in the variables Sand FIjJ 
(p= 1, ... ,rn -rj;j= 1, ... ,n),foreveryvalueof 
k = 1, ... ,rn - 1, i = 1, ... ,n and for (J' = 0,1. Indeed, these 
conditions involve only the constant values of 

(tu, xu; Xul , ... ,x~; - 2; ... ;xun , ... ,x~~ - \ and their linearity in 
cp, ¢ is a direct consequence of the linearity of(175), (176) in cp 
and ¢' 

Clearly, not all of the above conditions are independent: 
For instance, following the reasoning of Sec. III(c), it would 
be easy to verify that the vanishing of¢(Pd and of the term 
independent of the variables S, F\} in ¢7(zd are a conse
quence of all the other conditions, and therefore this condi
tion could be omitted. But the point here is that, at any rate, 
the number of the conditions obtained above isfinite; there
fore, the argument given in Sec. II(t) shows that the number 
of independent symmetry vectors of(163) is also finite, since 
it cannot exceed the number of these conditions. 

(b) We shall now see that the least upper bound on the 
number of independent symmetries of(163) tends to infinity 
when either n or some of the r; tend to infinity. Indeed, 
consider the system 

(r, ° . 1 Xi = , I = , ... ,n. (177) 

The necessary and sufficient condition in order that 
(172) be a symmetry vector of (177) can be expressed as fol
lows: 

¢~'I "k = 0, i = 1, ... ,n. 
Xk = O. k = l. .... n 

(178) 

Taking into account the structure of ¢~', given by Eq. 
(79), we observe that (177) admits the particular solutions 

d
r

,¢; I cp=O, -- =0. 
r, (rk dt Xk ~ 0, k ~ I ..... n 

(179) 

A particular solution of (179) is the following one, de
pendent on rl + r2 + ... + rn arbitrary constants: 

cp = 0, ¢; = a? + alt + ... + a~i-It'i-I, 
i = 1, ... ,n. (180) 

From (180) we obtain the following set of rl + r2 + ... + rn 
independent symmetry vectors of (177): 

a t~. .... tri- I ~. (181) 
ax,.' ax,." ax,. 
Since the number rj + r2 + ... + rn evidently tends to 

infinity when either n or some of the r; tend to infinity, it 
follows that the same thing will happen with the least upper 
bound on the number of independent symmetries of(163), 
since the least upper bound by definition is greater than or 
equal to the number of independent symmetries of (177), 
which in turn exceeds the number rl + r2 + ... + rn, as we 
have just shown. 

VII. FINAL REMARKS 

I t has been shown that a system of differential equations 
of the type (163) can only admit an ordinary local Lie group 
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(i.e., a local Lie group with afinite number of essential pa
rameters) of pointlike symmetries. This result precludes the 
possibility that a system of differential equations of this kind 
admit a Lie group of symmetries with an infinite number of 
parameters (as the formal group of locally invertible trans
formations of the manifold ((t,x) J = R 1 + n , for instance). As 
is well known. this result is no longer valid when dynamical 
symmetries are considered (see. e.g., the paper by the authors 
cited in Ref. 1). 

It has also been shown that a system of differential 
equations of the kind (70), with r> 2, does not admit more 
than N(r.n) independent symmetries. where the number 
N (r.n) satisfies the following inequalities: 

n 2 + nr + 3<N(r.n)<2n 2 + nr + 2. (182) 

In addition. the system xlr = 0 has exactly n2 + nr + 3 
independent symmetries: Therefore. it would be nice to show 
that, when n > 1, this number cannot be surpassed by the 
number of independent symmetries of any system of the kind 
(70). or, if this were not the case, to exhibit a system of this 
kind having more than n2 + nr + 3 independent symme
tries. Also open is the problem of obtaining computational 
algorithms for constructing systems of the kind (70) with any 
preassigned number of symmetries s [not exceeding the max

imum number of independent symmetries allowed to every 
equation of the kind (70). for given nand r]. 

When n = 1. the least upper bound to the number of 
independent symmetries of of an equation of the kind (1) 
when r> 2 is given by the number r + 4. this number being 
equal to the number of independent symmetries of the equa
tion xlr = 0 when r> 2. 

If r = 2. the least upper bound to the number of inde
pendent symmetries of(70) is given by n2 + 4n + 3. the num
ber of independent symmetries of the system x = O. There
fore. in this case no new feature distinguishes the two cases 
n> 1 and n = 1. since in both cases the maximum number of 
symmetries is attained by the system (or equation) x = 0 
(x =0). 

It is also interesting to notice that the least upper bound 
to the number of independent symmetries ofa system of the 
kind (163) tends to infinity when either n or some of the r, 
tend to infinity; this result is not completely unexpected. in 
view of the fact that the general solution of(163) depends on 
r l + r2 + '" + rn parameters. 

Another interesting consequence of the previous results 
is that, when r is kept fixed-say r = 2, which is the case of 
Newtonian mechanics-and a certain group G of transfor
mations of the manifold !(t,xl,···,xn) J depending ons param
eters is given, then no equation of the form x = F(t,x,x) can 
possess as many symmetries as G if s > n2 + 4n + 3. But con
sidering the action of GN 

, the group of transformations of 
N 

the manifold R 1 + n X ... X R 1 + n induced by G, the possibil-

ity remains open that, for N sufficiently high, the group GN , 

which also possesses s essential parameters, is a symmetry 
group (of generally nonpointlike transformations) of some 
system of the form 

x, = F,(t,xP""XN,X1, ... ,XN) 

i = I •... ,N, N> 1 [Xi = (xl, ... ,xn,)]. (183) 
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If this were the case for any G, we could then assert that 
any group of pointlike transformations of the manifold 
( (t,x) J = R 1 + n could be considered, when extended in the 
natural way to systems of more than one Newtonian particle, 
as a symmetry group of a system of this kind. The problem 
would be, of course, to find the number N appropriate for a 
given group G and, more importantly. the functions Fi ap
pearing in (183). 

Further work on these open problems is going on and 
will appear in forthcoming papers of this series. 
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APPENDIX 

For completeness reasons. we give here some defini
tions concerning the projective group and a direct proof 
showing that this group is a symmetry group of the system 
X=O. 

(i) Real (m - I)-dimensional projective spaceRP"' - 1 is 
usually defined as the quotient set 

RP"' - 1 = (Rm - (OJ)! - (AI) 

where - denotes the following equivalence relation: 

y-xqy = ex. 

x,yERm -(OJ, cER -(OJ. 
(A2) 

Therefore, the elements of RP"' - 1 are straight lines 
passing through the origin. with the origin removed. It is a 
standard result12 that RP"' -] is a differentiable manifold, 
with the differentiable structure induced by the charts (U" 
!p, ) defined by 

U, = ![x]ERP"' -I lx, #OJ, 

!p,([x]) = (x/x" ... ,x, _llx"x, + ]/xi, ... ,xm Ix,), (A3) 

i = 1, ... ,m, 

where [x] denotes the equivalence class of xERm - (0 J. 
Geometrically, (x]/xi, ... ,Xi _/xi ,l,x, + Jxi, ... ,xm lx, ) 

are nothing but the coordinates of the point of R m defined by 
the intersection of the straight line [xJ with the hyperplane 
x, = 1. 

Every linear nonsingular transformation L: R m -+Rm 
canonically induces a so-called projective transformation 1.: 
RP"' - J -+RP"' -] as follows: 

L ([xJ) = [Lx] V[x]ERP"' - 1 • (A4) 

L is well defined, since L is by hypothesis nonsingular 
and therefore xE(Rm A- ! 0 J )qLXE(Rm - ! 0 J). 

Geometrically, L ([x]) is nothing but the straight line 
(with the origin removed) obtained by transforming the 
straight line [xJ under L. 

Let us see now what is the expression of a projective 
transformation in terms of the coordinates of one of the 
charts (A3), for instance, the chart (Um ,!Pm)' Ifwe denote by 
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lij (i,j = l, ... ,m) the matrix elements of L relative to the ca
nonical basis of Rm , then we have 

A _I 
UmnL (Um) = Vm, (AS) 

where Vm is the open subset of Urn (and hence of Rpm - I, 

since Urn is itself open in Rpm - I ) defined by 

Vm = ![x]ERpm - I IxEtlllnUm , (A6) 

il being the hyperplane of R m whose equation is 
m 

il: I ImiXi = O. 
i= 1 

If we denote by 

Ui = Xi/X m, i = l, ... ,m - 1, 

(A7) 

(AS) 

the coordinates of [X]E V m relative to the chart ( Urn ,q; m ), 
then the coordinates ofL ([X])EUm relative to the same chart 
will be given by 

, _ (LX)i _ ~;: I lijXj 
u· - -- - --"~:........:.::.......:.-

'(Lx)m ~;: I Imjxj 

~;: I lijuj + lim 
i = l, ... ,m - 1. (A9) 

Note that L depends on m 2 
- 1 essential parameters 

since, for any ci=O, Land cL induce the same projective 
transformation L. 

From the identities 

(AlO) 

it follows that the set of all projective transformations forms 
a group, called the projective group: the dimension of the 
projective group of Rpm is, according to what has been said 
above, equal to (m + 1)2 - 1 = m2 + 2m. 

(ii) Let us show now that the system of differential equa-
tions 

(All) 

is symmetrical under the local transformations (sufficiently 
close to the identity) defined by 

, ~r: II lijxj + l;,n + 2 

Xi = n+1 
~j=1 In+z,jxj +In+2,n+2 

with Xn + I = t, (A12) 

where it is understood that the point (xl, ... ,xn,t) belongs to a 
certain open subset W of R n + I such that the denominator 
appearing in (A12) does not vanish on W. 

We can regard (xl, ... ,xn,t) as the coordinates relative to 
the chart ( Un + 2 ,q; n + Z ) of the point [y]ERP" + I defined as 
follows: 

(AB) 

Similarly, we consider (A12) as the expression in,.!he 
chart (Un + 2 ,q;n + 2 ) of the projective transformation L in
duced by the linear transformation L: R n + 2 _Rn + 2 whose 
matrix elements (relative to the canonical basis of R n + 2) are 
the numbers l;j (i,j = l, ... ,n + 2) appearing in (A12). 

The general solution of the system (A 11) is the follow-
ing: 

Xi(t) = aJ + bu i = l, ... ,n, ai,biER, (AI4) 
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x 

u, 

FIG. 1 

which can be regarded as the implicit equation of the straight 
line of RP" + I whose parametric equations are 

Xi = aiA + bi' Xn + I = A, i = l, ... ,n, AER. (AIS) 

To the "straight line" (A IS) there corresponds the fol
lowing subset of R n + 2 : 

Yi = ,u(aiA + b,.), Yn + I = ,uA, 
(A16) 

Yn+Z =,u, i= l, ... ,n, AER,,uER - {Ol· 

Geometrically, (A16) is obtained from (AlS) as follows: 
for each point of the form (alA + bl, ... ,anA + bn ,t,I) in the 
hyperplane Yn + Z = 1 of R n + 2 , we draw the straight line 
joining this point to the origin of R n + 2 ; the union of all the 
straight lines thus obtained with the origin removed is pre
cisely the subset of R n + 2 defined by (A16). 

It is not difficult to verify that (A 16) can be alternatively 
obtained from the two-dimensional subspace ilz or R n + Z 

defined by 

Yi = vai + ,ubi' i = l, ... ,n, 
(A17) 

Yn + I = v, Yn + 2 =,u, v, ,uER, 

by simply removing all the points of the straight line rCil2 

given by 

Yi = 1]au i = l, ... ,n, 

Yn+1 =1], Yn+Z =0, 1]ER 

(see Fig. 2). 

(AlS) 

Since L is a linear, nonsingular transformation, it trans
forms ilz - r into il; - r', where il; = L (ilz) is a two-di
mensional subspace of Rn + Z and r' = L (r) is a straight line 
contained in il;. Furthermore, since (A12) can be chosen 
arbitrarily close to the identity (whose parameters are given 
by l;j = cfJij , for every cER - (O I), it follows that il; - r' 
intersects the hyperplane Y n + Z = 1, since this hyperplane 
intersects the set ilz - r. 

The intersection of il 2 - r' with the hyperplane 
Yn + z = 1 is a straight line, whose equation we write in the 
form 

F. Gonzalez-GascOn and A. Gonzalez-LOpez 2020 



                                                                                                                                    

~. 

FIG. 2. 

y; = a; f.l +P;, Yn+2 = 1, 
(AI9) 

i = I, ... ,n + 1, f.lER, 

where a; andp; are fixed real numbers depending on aj and 
bj (j = I, ... ,n) and on the matrix elements l;j 
(i,j = I, ... ,n + 2) of L. 

It follows that the equations in the chart (Un + 2 ,f/Jn + 2) 
of the subset of RP" + I obtained by applying L to the subset 
of RP" + I whose equation-in the same chart-is (AI5) are 
the following: 

x; = a; f.l + P;, i = I, ... ,n + 1. (A20) 

Since L is arbitrarily close to the identity, and clearly 
an + I = I when L is equal to the identity, it follows that 
an + I #0; therefore, we can use the (n + l)th equation of 
(A20) to solve for f.l as a function of t ': 

f.l=(t'-Pn+d/a n + l • (A2I) 

Substituting back into (A20), we see that (A20) is equivalent 
to the following set of equations: 

x; =A;t' +B;, i= l, ... ,n, (A22) 

where 

(A23) 

Since we have shown that by applying (AI2) to an arbi
trary solution (AI4) of (All) we obtain another solution of 
(All), given by (A22), it follows that (AI2) is a symmetry of 
the system (All), as we had claimed. 

ADDENDUM 

We shall show here that the function R (t,A. ) defined by 
(8) is a C'" function. 
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Indeed, we have 

(t - tor R (t,A ) 

= _1_ f' <p Ir (S,A )(t - S)lr - I ds 
(r - 1)1 )'0 

(i) 

by Cauchy's integral form for the remainder of the Taylor 
expansion of <p (t,A. ) around t = to (for fixed A ). \3 

Performing the change of variable, 

s = to + u(t - to), uE[O,I], (ii) 

we immediately obtain 

f' <p Ir (s,A. )(t - s)lr - I ds 
)'0 

= (t - tor L <p Ir (to + u(t - to),A. )(1 - ur -I duo (iii) 

Comparing (i) with (iii), we get 

1 Sal R (t,A. ) = -- <p Ir (to + u(t - to),A. ) 
(r- I)! 0 

X(I- ur- I du, (iv) 

which is clearly of class Ck in the variables (t,A. ) provided 
that <p (t,A. ) is of class C + k • 

Since by hypothesis <p (t,A. ) is of class C'" , it follows that 
R (t,A. ) is also of class C'" , as claimed. 
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The Hamilton-Jacobi and Laplace-Beltrami equations on the Hermitian hyperbolic space HH(2) 
are shown to allow the separation of variables in precisely 12 classes of coordinate systems. The 
isometry group of this two-complex-dimensional Riemannian space, SU(2, 1), has four mutually 
nonconjugate maximal abelian subgroups. These subgroups are used to construct the separable 
coordinates explicitly. All of these subgroups are two-dimensional, and this leads to the fact that 
in each separable coordinate system two of the four variables are ignorable ones. The symmetry 
reduction of the free HH(2) Hamiltonian by a maximal abelian subgroup ofSU(2,1) reduces this 
Hamiltonian to one defined on an 0(2,1) hyperboloid and involving a nontrivial singular 
potential. Separation of variables on HH(2) and more generally on HH(n) thus provides a new 
method of generating nontrivial completely integrable relativistic Hamiltonian systems. 

PACS numbers: 02.30.1r, 02.20. + b, 02.40. + m 

I. INTRODUCTION 

The purpose of this article is to discuss the separation of 
variables in the four (real) -dimensional Hermitian hyperbo
lic space HH(2) for the following two equations: 

(i) The Hamilton-Jacobi equation (HJ) 

I g'j as as = E; (1.1) 
i,j ax' ax} 

(ii) the Laplace-Beltrami equation (LB) 

A ./, _" 1 a C ij a _ 1./, ,{,J""-L,.--vgg -.-/1-.,.,. 
i,j Vg ax' ax} 

( 1.2) 

In a previous paper' (further to be referred to as I) we 
have considered the separation of variables in complex pro
jective spaces CP(n). The isometry group ofCP(n) is the com
pact group SU(n + 1), and its Cartan subgroup was used to 
generate n ignorable variables and to reduce the problem of 
variable separation on CP(n) to the separation of variables on 
the real sphere S n. We refer to this paper for a discussion of 
the motivation and for some historical background. 

Here let us just mention the relation between separation 
of variables in the HJ equation and complete integrability of 
the corresponding Hamiltonian system. Indeed, separability 
for the HJ equation is defined to mean that a solution S of 
(1.1) exists satisfying 

(1.3) 

whereAi are n constants: the separation constants. We asso
ciate n second-order operators in involution with each sep
arable coordinate system in an n-dimensional space (one of 

.) Research supported in part by the Natural Science and Engineering Re
search Council of Canada and by the Fonds FCAC pour l'aide et Ie soutin 
ii la recherche du Gouvernement du Quebec." 

them is the Hamiltonian); the constants Ai are the eigenval
ues of these operators. The existence of these operators as
sures that the system is integrable. 

For studies of the separation of variables in Hamilton
Jacobi equations on Riemannian and pseudo-Riemannian 
manifolds, see also Refs. 2-5. 

The additive separation of variables (1.3) in the HJ 
equation corresponds to multiplicative separation in the LB 
equation (1.2): 

( 1.4) 

Indeed, for Einstein spaces every coordinate system that sep
arates the HJ equation will also separate the LB equation2

-4 

(the converse is always true). Separation of variables in LB 
equations makes it possible to use powerful methods of 
group theory to study broad classes of special functions. 5-9 

II. THE SPACE HH(n) AND ITS ISOTROPY GROUP 
SU(n, l) 

We introduce the Hermitian hyperbolic (or complex 
hyperbolic) space HH(n) following Kobayashi and No
mizu 10 and Helgason.' , Let (eo,e" ... ,en ) be a standard basis in 
cn + 1 and consider the Hermitian form 

n 

F(x,y) = -XoYo+ I XkYk, (2.1) 
k~l 

where the overbar denotes complex conjugation. This form 
is invariant under the action of the group U(n, 1): 

gEU(n,I), F(gx,gy)=F(x,y), X,YEC"+!, (2.2) 

which acts transitively on the real hypersurface M in cn 
+ 1 

defined by 

F(y,y) = - 1. (2.3) 
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The group U( 1) = [e i
(} I acts freely on this manifold by 

Y ---+ e i
(} y. The space of orbits with suitable complex manifold 

structure and Kaehler metric is identified as HH(n). The cor
responding natural projection 1T:M ---+ HH(n) defines a prin
cipal bundle with U( 1) as structure group. The U(n, 1) action 
commutes with that ofU(l), and it hence projects to an ac
tion on the base HH(n). The isotropy subgroup ofU(n,l) at 
the point Po = 1T(eo) is U( 1) X U(n), and we obtain the diffeo
morphism 

U(n,l)/[U(n) X U(l)]-HH(n). (2.4) 

The group SU(n, 1) acts almost effectively on this space. 
In addition to the homogeneous coordinates 

[ Yo, YI"'" Yn I, let us introduce affine coordinates on HH(n): 

1T(Yo'YI,.··,Yn) = (ZI"",Zn)' Zk =Yk/ Yo, k = 1, ... ,n. 
(2.5) 

The space HH(n) can then be identified with an open unit 
ball in C" 

n 

ZEC
n

, 2: ZkZk < 1. 
k~1 

(2.6) 

The real part of the Hermitian form (2.1) determines in a 
natural manner a metric on HH(n), which is the noncom pact 
version of the well-known Fubini-Study metric lO: 

ds2 = _.±-
c 

(1 - 2:ZkZk) (2: azkdZk) + (2: ZkdZk) (2: Zkazk) 
X , 

(1- 2:ZkZk)2 

(2.7) 

where c < 0 is the (constant) holomorphic sectional curva
ture. 

We now limit ourselves to the case under consideration, 
namely n = 2. 

The Hamiltonian associated with the metric (2.7) for 
n = 2 (c = - 4) is 

(2.8) 

The Lie algebra u(2, 1) in the representation acting on 
the homogeneous coordinates (Yo, YI' Y2) is realized by 3 X 3 
complex matrices X satisfying 

(2.9) 

(the superscript + denotes Hermitian conjugation). 
Two convenient bases are given by the matrices X;, or 

alternatively Yo i = 0,1, ... ,8: 
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o 
o 
-1 

o ~)= YI + Y6 , 

O . 2 
-I 

o 
o 

1 

o 
o 
o 
o 
o 

D~Y" X, ~( ~i 0 

0 

~)~ Y,- Y" 

0 

~)~ Y, - Y" 0 

0 

0 ~ )~ Y, - 3Y, - 1 

0 
2v3 ' 

-1 

~)~ Y,- Y" 

(2.10) 

[the Y; basis is particularly appropriate for considering solv
able subalgebras of su(2, 1 )]. 

With these conventions the second order Casimir oper
ator of su(2, 1) can be written as 

C2 =Xi +X~ +X~ -X~ -X; -X~ -X~ +X~ 

= ! Yi - Y~ - Y~ - Y~ - Y~ 

+ [Y2, Y7 1 + [ Y3, Ysl + [ Y4 , Y6 1 ' (2.11) 

where [ , I denotes the anticommutator. 
A Killing vector L on the cotangent bundle with local 

coordinates (z;:Zo PoP;, i = 1,2) is a linear polynomial inp;, 
Pi: 

(2.12) 

(where c.c. indicates the complex conjugate quantity), such 
that 

[H,L]p = 0, (2.13) 

i.e., the Poisson bracket of H with L is zero. The Killing 
vectors for HH(2) provide a realization of the algebra su(2, 1). 
Using the basis X; (i = 1,00.,8) of (2.10) for the infinitesimal 
operators, we calculate the corresponding Killing vectors in 
affine and homogeneous coordinates to be, respectively, 

XI = - Z2Pz, + ZI Pz, + C.c. = - Y2Py, + YI Py, + C.c., 

X 2 = - i(Z2Pz, +ZIPz,) + C.c. = i(Y2Py, + YIPy,) + C.c., 

X3 = i( - ZI Pz, + Z2Pz,) + c.c. = i(YI Py, - Y2Py,) + c.c., 

X4 = (zi - l)pz, +ZIZ2Pz, + C.C. =YIPyo + YoPy , + c.c., 

Xs=i[(zi + l)pz, +ZIZ2Pz,] +c.c. 

= i( - YI PYo + YoPy,) + c.c., 

X 6 =ZIZ2Pz, +(z~ -l)pz, +C.C·=Y2Pyo +YoPy, +c.c., 
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X 7 = i[ Z.Z2Pz, + (Z; + l)pz'] + C.c. 

= i( - Y2Pyo + YOPy,) + C.C., 

X8 = iv3(z. Pz, + Z2 Pz, ) + C.C. 

= (i/v3)(2yopyo - Y. Py, - Y2Py,) + c.c. 

(2.14) 

Throughout we shall make use of the moment map; when
ever convenient we use the operators a / aZj or a / ay I' instead 
of the functions Pz or Py and commutator brackets instead , ~ 

of Poisson brackets. 

III. SUBGROUPS OF SU(2,1) AND COMPLETE SETS OF 
COMMUTING SECOND-ORDER OPERATORS 

According to the operator approach to the separation of 
variables,6-9 each separable system on HH(2) will be charac
terized by four second-order operators! H,T.,T2,T3 ] that 
are in involution with respect to the appropriate Lie bracket 
(one of them being the Hamiltonian H, or correspondingly 
the Laplace operator .J ). The first task is to classify the tri
plets of operators! T.,T2,T3 ] into equivalence classes under 
the action of the group SU(2, 1), leaving H invariant. 

The task in the present case of HH(2) is greatly simpli
fied by two circumstances: 

(1) It has recently been shown· 2 that for HH(2) all sec
ond-order Killing tensors, i.e., operators 

2 

T= I !c jd ZI,Z.,z2,z2)PIPk 
i,k= 1 

+djdZI,Z.,z2,z2)PjPk +c.c.], 
satisfying 

[T,H] = 0 

(3.1) 

(3.2) 

lie in the enveloping algebra of su(2, 1). Each of the operators 
T j can hence be written in the form 

8 

T j = I A ~b XaXb' A ~b = A ~a E R (3.3) 
a.b ~. 

(2) We have shown in I, Theorem 4, that every separable 
coordinate system in CP(2) and HH(2) has precisely two ig
norable variables. We recall that an ignorable variable in a 
certain coordinate system is a variable that does not figure in 
the metric tensor gjk expressed in this system.4 An ignorable 
variable if; is obtained by setting a Killing vector, say Lp 
equal to the momentum P ¢ canonically conjugate to if;. The 
square of this Killing vector is then a second-order Killing 
tensor 

T. =Li = p~. (3.4) 

This can be done l3 if the corresponding Killing tensor T. is 
the square of a Killing vector, i.e., in our case the square of an 
element of su(2, 1). Since two variables must be ignorable in 
each separable coordinate system, it follows that two of the 
operators Tj , say T. and T2, must be squares of elements of 
sU(2,I): 

T. = L i = Ctl aa Xa r 
T2 = L ~ = ct. ba Xa r (3.5) 

Since TI and T2 commute, the operators L. and L2 must 
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generate an abelian subalgebra of su(2, 1). All subalgebras of 
su[2, I) are known, .4 and work is in progress on the classifica
tion of the maximal abelian subalgebras (MASA's) of all clas
sical Lie algebras .• 5,.6 In particular, su(2, I) has four different 
MASA's [each representing a conjugacy class of MAS A's 
under the action ofSU(2, I )]. Each of them is two-dimension
al. 

The procedure of finding all triplets of operators 
! T I ,T2,T3 ] related to separable coordinates on HH(2) thus 
reduces to the following: 

(i) Take TI and T2 as in (3.5), where LI and L2 run 
through the four different MASA's of su(2, 1). 

(ii) For each MASA L.,L2, find the most general opera
tor Q = T3ES 2(su(2, I)) [second-order symmetric tensor in 
the enveloping algebra of su(2, I)] commuting with L. and 
L z. The operator T3 has the form (3.3). 

(iii) Simplify each T3 by linear combinations, with L i, 
L ~ , L ILz and C2 (2.11) and classify the operators T3 into 
conjugacy classes under the action of the normalizer of 
[L.,L 2 ]in SU(2,I) (the normalizer is the group oftransfor
mat ions leaving the algebra! L .,L2 ] invariant). 

A particularly important and simple class of coordi
nates are called "subgroup type coordinates, ,,5.7,8,13 and they 
occur when T3 is the Casimir operator of a subgroup of 
SU(2,I). 

In Fig. I we show all subalgebras of su(2, 1) that are 
relevant for our purposes (for a complete classification see 
Ref. 14). The basis elements !Xa ] and! Ya ] are defined in 
(2.10), we use the two bases interchangeably. The lowest row 
in Fig. 1 is occupied by the four MASA's: !X3,xs] and 
! Y., Y6 - Y4 ] are the compact and noncom pact Cartan sub
algebras, respectively, ! Y I ,Y4 ] contains a nilpotent element 

FIG. I. Maximal abelian subalgebras ofsu(2,l) and some subalgebras con
taining them. The basis elements X, and Yi are defined in (2.10). The four 
MASA's constitute the lowest row, and double boxes indicate their normal
izers;A 4.ln ,A !.g, and A 2.1 are solvable algebras, and T denotes a translation 
type subalgebra. 
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Y4 (Y4 is represented by a nilpotent matrix in any finite
dimensional representation). All elements of! Y2 , Y4 1 are nil
potent, i.e., this is a maximal abelian nilpotent subalgebra 
(MANS).ls.16 The letter Tin the boxes denotes the presence 
of such nilpotent elements ("translations" on a light cone). 
The double boxes indicate normalizers of the MASA's. By 
definition, Cartan subalgebras are self-normalizing. A clas
sification of all real Lie algebras of dimension d < 5 exists 17; 

the notation A 4• 1O , A !.9' A 1•1 refers to that article. The alge
brasA 4•1O , UtI, 1), and u(2) are the only subalgebras ofsu(2,I) 
[up to conjugacy under SU(2, 1)] containing at least one 
MASA and having a second-order Casimir operator. 

These algebras and their Casimir operators play an im
portant role below; so let us discuss them in more detail. 

(1) The su(2) subalgebra ofu(2) is IXI,xl,x31 and its 
Casimir operator is 

1 (su(2)) =Xi +X~ +X~. (3.6) 

(2) Two mutually conjugate su(I,I) subalgebras and 
their Casimir operators are 

and 

IX4 ,xs,!(X3 - v1 Xg)] -I Y4 ,Ys,Y6 1, 

1z(su(I,I))=X~ +X~ -!(X3+v1Xg)z. 

(3) The solvable algebra A 4•1O : 

! Y1,Y2,Y3,Y4 J -IX3 + (lIv1)Xg, 

(3.7) 

(3.8) 

- Xs + ~(X3 - v1Xs),x. - X 6,xz - X7 J • 

Its invariant is 14 

14 .10 = 4Y1Y4 + 3(Y~ + Y~). (3.9) 

Notice that one realization of A 4•1O is related to the one
dimensional harmonic oscillator. If we put 

YI==~ (a2
2 +xz), Y2 =x, Y3 =~, Y4 =!, 

2 ax ax 
then the commutation relations for Yi are satisfied, and we 
have 14•10 = 4Y1 • 

Let us now return to the classification of triplets of op
erators outlined above. 

A. The compact Cartan subalgebra 

We have 

TI = XL T2 = Xi, 

and [T.,T3] = 0, [T2,T3 ] = ° implies 

QI = T3 = a1(su(2)) + b1.(su(I,I)) + c1z(su(I,I)).(3.1O) 

The Cartan subalgebras are self-normalizing; hence the only 
freedom left is to subtract some multiple of Cz. The following 
possibilities occur: 

2025 

(1) b = c=l= - a: Q. = 1 (su(2)), 
(2) c = - a=l=b: Qz = 1.(su(I,I)), 
(3) b =l=c=l= - a=l=b: Q3.4 = 1.(su(I,I)) + Itlz(su(I,I)), 

Q3: ° <It < 1, Q4: - 1 <It < 0, 
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(the case lit I > 1 can be rotated into one of the cases with 

Iltl< 1). 

B. The noncom pact Cartan subalgebra 

T.=£[X3 +(lIV3)XS ]2, T2=X;, 

QII = T3 = a1.(su(I,I)) 

+ b(X.X6 +X0. +XzX7 +X7X 2)· (3.11) 

Two possibilities should be distinguished: 

Qs: b = 0, a = 1, 

Q6: b = 1, a;;;.O 

(the relative sign of b and a can be changed by a rotation 
through the angle 1T, hence the restriction a;;;'O in Q6)' 

C. The MASA (Y1, Y4 ) 

T. = Yi = £ [X3 + (lIv1)Xs]2, 

T2 = Y~ = ( - Xs + ! X3 - ! v1 XS)2, 

Qm = T3 = a14•10 + b1.(su(I,I)). 

Four possibilities occur: 

Q7: a = 0, b = 1, 

Qg: a = 1, b = 0, 

Q9: a = b = 1, 

QIO: a = - b = 1. 

(3.12) 

Indeed, if ab =1= 0, we make use of the external part of the 
normalizer of I Y., Y4 j, namely the operator Ys to scale a 
with respect to b: For ab > ° we can scale so that we get 
a = b; for ab < ° so that we get a = - b. 

D. The maximal abelian nilpotent subalgebra 

T. = Y~ = (X2 - X7)1, 

T2 = (y4 )2 = (-Xs + !X3 -! v1Xg)2, 

QIV = T3 = a14•10 + b [Y.Y3 + Y3 Y. 
- 3(Y2YS + YsYz) - 6(Y4 YS + YS Y4 )]. (3.13) 

Two cases should be distinguished: 

QII: a = 1, b = 0, 

Q12: a = 0, b = 1. 

Indeed, if a =1= 0, we set a = 1 and use the external part of the 
normalizer of { Y3 , Y4 J to transform b - ° [this is achieved 
by a transformation of the type Q' = exp(a Y2 )Q 
exp( - a Y2 )]. 

We have thus obtained 12 orbits of operators 
{ T., T2, T3 J. Among them six are of the subgroup type, i.e, 
such that Q is the Casimir operator of some subgroup of 
SU(2, 1). These are the sets involving Q., Q2' Qs. Q7. Qs, and 

QII' 
In the following section we shall establish a one-to-one 

correspondence between the above-classified triplets of op
erators in involution and 12 types of separable coordinates 
onHH(2). 
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IV. SEPARABLE COORDINATES ON HH (2) 
A. Introduction of ignorable coordinates and reduction 
to separation on an 0(2,1) hyperboloid 

Our purpose now is to find all separable coordinates in 
HH(2), i.e., to transform from the affine coordinates 
{z I ,zz,z I ,z21 to four real variables (A ,B,x, Y 1 such that x and 
yare ignorable and that Eqs. (1.1) and (1.2) separate in the 
new variables. This transformation can be performed in two 
different manners, starting with the affine coordinates Zi 

(i = 1,2) or the homogeneous coordinatesy!' (p, = 0,1,2), re
spectively. In each case the procedure is repeated four times, 
separately for each MASA of su(2, 1). 

Using affine coordinates, we proceed as follows: 
( 1) Choose a basis (L I ,L21 for the considered MASA, 

express L, and L2 in terms of Zi as in (2.14) and put 

L,=Px , L 2 =Py . (4.1) 

Solve equations (4.1): This provides the explicit dependence 
of Z I and Z2 on the ignorable variables. The dependence on 
the essential variables A, B is as yet unknown and is con
tained in the integration "constants" of (4.1). 

(2) To obtain the dependence on A, B make use of a 
procedure outlined in Ref. 4, for arbitrary four-dimensional 
Riemannian spaces. Since HH(2) is a positive-definite metric 
space and since each separable system must involve precisely 
two ignorable variables, only case "C" of Ref. 4 occurs. 
Hence a pseudo group P of coordinate transformations (de
scribed in I and Ref. 4) must exist, transforming the Fubini
Study metric (2.7) into a form in which the metric tensor 
satisfies: 

where k i' ei ,J;, and hi are functions of the indicated variables 
satisfying 

~In [ (k , +k2f J =0 (4.3) 
aAaB (e l + e2)(f1 + /2) - (hi + h2)2 

[i.e., RAB = 0, where Rij is the Ricci tensor]. Solve Eqs. (4.2) 
and (4.3) to obtain the dependence of [z,,z21 onA andB. 

Following this procedure, we find that the MASA 
[X3,x81Ieads to four different types of coordinates, 
[Y"Y6 - Y4 J to two types, [YI ,Y4 J to four types, and finally 
[ Y3, Y4 1 to two. The computations are quite long and in
volved, but the results are relatively simple and coincide 
with those obtained using a different, more geometrical and 
group-theoretical method, described below. 

The second procedure is an adaptation of the general 
method of the reduction of phase space in classical mechan
ics by ignorable variables. 18 The procedure is related to that 
used by Marsden and Weinstein '9 and Kazhdan, Kostant, 
and Sternberg20 to obtain completely integrable Hamilton
ian systems. In I we applied this procedure to reduce by the 
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maximal torus, i.e., the Cartan subgroup ofSU(n + 1). We 
thus reduced the problem of separating variables on CP(n) to 
that of separating on the sphere Sn + I . The free Hamiltonian 
on CP(n) was reduced to a singular Hamiltonian on Sn + I 

with a specific inverse square type potential. We shall see 
that the situation is very similar for HH(2) and that the re
duction can be performed by any of the maximal abelian 
subgroups (not just the maximal torus). 

Instead of MAS A's ofsu(2,1), we shall use MASA's of 
u(2,1), i.e., to the basisL"Lz of each MASA we add a further 
operator 

Xo = YoPy" + YIPy, + YlPy, + C.c. (4.4) 

When acting on functions/( Yo, YI' Y2) that project properly 
onto HH(2), i.e., homogeneous functions satisfying 

/(YO,YI'YZ) = /(Y/YO,Y2/ Yo) (4.5) 

we have 

(
a a a ) YO-a + YI-a + Y2-a /=0 
Yo Yl Y2 

(4.6) 

and for the corresponding constant of motion on HH(2) we 
have 

(4.7) 

The procedure is: 
(1) Choose a basis [L "L21 for the considered MASA, 

express L
" 

L 2, and Xo in terms ofy as in (2.14) and (4.4) and 
put 

L, = Px' L2 = Py, Xo = Pp ' (4.8) 

Solve equations (4.8) to obtain the explicit dependence ofy on 
the ignorable variables x, Y, and p [upon projection from C(3) 
to HH(2) p will cancel outl 

The variables Y" depend on three more real variables, 
say SO' S I' and S2' which are contained in the integration con
stants of Eqs. (4.8). These must be introduced in such a man
ner that SI" x, y, and p parametrize all of C(3), that x andy 
project into ignorable variables on HH(2), and that the varia
bles Sit are compatible with the projection, i.e., 

I Y 12= I y~ I - I Y 112 - 1 Yll 2 = s~ - s~ - S~ 
_52 = const. (4.9) 

In order to obtain the space HH(2), we puts2 = 1; other 
homogeneous spaces with SU(2,1) actions are obtained by 
putting S2 = - 1 or S2 = 0. 

(2) Express the su(2, 1) infinitesimal operators Xi 
Ii = 1, ... ,8) the HamiltonianH and the Killing tensor T3 = Q 
in terms ofthe variables (x, y,SO,SI,S2J (settingpp = 0, or cor
respondingly dropping a term containing a lap). The essen
tial variables s!' are constrained by the condition (4.9). The 
corresponding momentaps,. figure in the infinitesimal opera
tors Xi only via the expressions 

112 =SIPs, -S2Ps" fo, = soPs, +SIPs", 

102 = soPs, + S2Ps" . (4.10) 

The quantities f!,v (Il,v = 0,1,2) generate an 0(2,1) algebra 
under the corresponding Lie bracket. This 0(2, 1) is in general 
not a subalgebra of su(2, 1); however, if we restrkt ourselves 
to the manifold (4.9) by setting the ignorable variables equal 
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to zero, then we obtain 

XI = [12' X4 = [01' X6 = [02' (4.11) 

i.e., the 0(2, 1) group acting on the variables S coincides with 
the real 0(2,1) subgroup of SU(2, 1). In the new variables the 
Hamiltonian H and the Killing tensor Q are expressed as 

H = n2 - [~I - [~2 + iI(sll)P~ 
+ f2(sll)p; + f3(sll)Px PY ' 

Q = L Allv.Il'v' [Ilv [1l'V' 
IlV 

1"11' 

(4.12) 

+ hl(SIl)P~ + h2(sll)p; + h3(sll)Px PY ' (4.13) 

where/; and hi are functions of the essential variabless
ll 

and 
Allv,Il'v' = AIl'v'.llv is a symmetric constant matrix. The prob
lem of separating variables for the free Hamiltonian on 
HH(2) has thus been reduced to that of separating variables 
in the Hamiltonian (4.12). This is an 0(2,1) Hamiltonian, 
which is, however, not a free one: It includes a "potential" 
term depending on the 0(2, 1) variables SIl' We recall that the 
momenta P x and P y corresponding to the ignorable variables 
should be set equal to constants 

Px = CI, Py = C2· 

Notice that we have 

n2 - [~I - [~2 = (p;o - P;, - P;,), 
where we have used the fact that 

2 

L SIl PSI' = O. 
1l=0 

(4.14) 

(4.15) 

(4.16) 

(3) Introduce separable coordinates on the hyperboloid 
(4.9), compatible with the form of the operator Q and the 
potential in (4.12). 

Let us now implement the first two steps of this proce
dure for each of the four MASA's of su(2, I). 

1. The compact Carlan suba/gebra (X3 ,X8 ) 

We first introduce the ignorable variables (p,al,az), 
putting 

HX3 - (l/v'3)Xs] = Pa" 

-~ [X3+(l/v'3)Xs] = Pa" Xo= PP' (4.17) 

Using (2.14), we obtain a system of equations that is easily 
solved to express the homogeneous coordinates as 

Yo = soei(3P - a, - a,)/3, YI = sle
i(3p + 2a, - a,)/3, 

Y2 = S2ei(3p - a, + 2a,)/3 . (4.18) 

The infinitesimal operators are expressed in these co
ordinates in the Appendix. Putting a I = a z = 0, we obtain 
(4.11); X2,x3,xS,x7,xS then involve only the essential varia
bles and the momenta conjugate to the ignorable ones. Ex
pressions (4.12) and (4.13) for the HamiltonianH and Killing 
tensor QI (3.10) reduce to 

(4.19) 
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QI =a[n2 + (1 + ~)p~, + (1 + ~)p~,] 
+b[[~1 +( -1+ ~)p~, 

+( -1+~)(Pa,+PaY] 
[ 

2 ( S~) 2 ( ~) + C [02 + - 1 + ~ Pa, + - 1 + S~ 

X (Pa, + PaY] . (4.20) 

Setting P ai = 0 we obtain a free 0(2,1) Hamiltonian and a 

Killing tensor of a specific type: it involves the squares [~v 
only. Separation of variables on an 0(2,1) hyperboloid H2 is 
discussed below.5

•
7

•
21 Nine distinct separable coordinate sys

tems exist on H 2 but onl y four of them have Killing tensors of 
the type QI' Precisely these four occur in our HH(2) prob
lem. 

Settingpa
i 

= Ci =t=0, we reduce (4.19) to an 0(2,1) Ha
miltonian with an inverse square type singular potential, and 
QI reduces to the corresponding integral of motion. We have 
thus generated a nontrivial relativistic completely integrable 
Hamiltonian system. Similar systems with singular inverse 
square potentials have been studied in a nonrelativistic con
text. 22-Z4 

2. The noncom pact Carlan suba/gebra (X3 + (1/V'JjX8 ,XS ) 

Introduce the ignorable variables (p,a,u) by putting 

-HX3+(l/v'J)XS]=Pa' X5 =Pu' Xo=Pp' 
(4.21) 

Express~ng Xi in terms of the homogeneous coordinates Y Il' 
we obtam a system of partial differential equations that can 
be solved to yield 

Yo = ei(3p - a)/3(isochu + slshu), 0,.;;; p < 21T, O";;;a < 21T, 

YI = ei(3p - a)/3 (islchu - soShu), O,.;;;u < 00, 

Y2 = ei(3p + 2a)/3 iS2 . 
(4.22) 

The infinitesimal operators are given in the Appendix. Put
ting a = u = 0, we again obtain (4.11). The Hamiltonian and 
Killing tensor Q [(3.11)] in this case are 

H [ 2 [2 [2 { S~ - ST 2 
= - 12 + 01 + 02 + - P 

(S~ + si)2 u 

+ [ S~ - si 1] 2 4soS I } 

(~ + Si)2 - S~ P a + (S~ + si f PuP a , 
(4.23) 
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Settingpu = Pa = 0, we again obtain a free 0(2,1) Ha
miltonian and a specific 0(2, 1) Killing tensor (leading to only 
two ofthe nine separable systems onH2 ). Forpu = CI andpa 
= C2, we obtain a new nontrivial completely integrable Ha

miltonian system with a singular potential. 

3. The orthogonally decomposable MASA (Y" Y4 J 
To introduce the ignorable variables (p,a,t), we put 

-j YI =Pa' - Y4 =p" Xo= Pp (4.25) 

and obtain 

Yo = ei(3p ~ a)/3 [so + i(so - sIlt], - 00 < t < 00 , 

YI = ei(3p ~ a)/3 [Sl + i(so - Sl)t ], 
O<p < 21T, O<;a < 21T , (4.26) 

Y2 = ei(3p + 2a)/3 S2 . 

The infinitesimal operators are given in the Appendix. The 
Hamiltonian and Killing tensor (3.12) are 

H= -li2 +161 +/~2 

[ 
1 2 So + s I 2 2 ] 

+ -:; Pa + ( )3 PI + ( )2 Pa PI , 
S2 So - S I So - S I 

(4.27) 

Q 3 [ (1 I )2 (so - S d2 
2 

III = a 02 - 12 + Pa 
S~ 

S~ 2 ] + ( )2 PI + 2Pa PI 
So -SI 

+ b [/~I + (so + SI): P; + 2 So + SI PI Pa] . 
(so - S I) So - S I 

(4.28) 

For a = t = 0 we again have pure 0(2, 1) quantities. The spe
cific form of Qm leads to four of the nine separable 0(2,1) 
systems. For Pa = C I and P, = C2, we obtain yet another 
0(2,1) Hamiltonian with a new nontrivial singular interac
tion. 

4. The maximal abelian nilpotent subalgebra (Y3 , Y4 J 
To introduce the ignorable variables (p,t,u), we put 

(4.29) 

and obtain 

The infinitesimal operators are in the Appendix; the Hamil
tonian and Killing tensor (3.13) are 

H 1 2 12 12 [ 1 2 = - 12 + 01 + 02 + ( )2 P, 
So -SI 

(4.31) 
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(4.32) 

Forp, = Pu = OtheoperatorQlv reduces to an 0(2,1) opera
tor related to variable separation in two of the nine separable 
systems on H 2• For P, = C I and Pu = C2 we again obtain a 
nontrivial interaction term in (4.31). 

B. Separation of variables on an 0(2,1) hyperboloid 

Let us now consider the separation of variables in the 
free Hamilton-Jacobi equation or free Laplace-Beltrami 
equation on the 0(2,1) homogeneous space 

s2=s~-s~-s~=K2 (K 2 =±lorO). (4.33) 

Nine separable coordinate systems have been shown to ex
ise l and to be in one-to-one correspondence with orbits of 
second-order operators in the enveloping algebra of 
0(2,1).5,7 Since the results are not readily available and were 
not presented in a convenient form for our purposes, we 
summarize them here. 

Let Ipv be the 0(2,1) operators (4.10), satisfying 

[/01 '/02] = - 112, [112'/01] = 102, [112'/02] = - 101 , 

(4.34) 

A general second-order operator in the 0(2,1) enveloping 
algebra can be written as 

(
112) 

R = (/1210J02)X 101 , X = X 7ER3X3 
. 

102 

(4.35) 

Under an 0(2,1) transformation, R is transformed into 
R' given by (4.35) with X replaced by X': 

X' = G T XG, GJG T = J, (4.36) 

where J is a nonsingular 3 X 3 real symmetric matrix with 
signature (- + +). We rewrite (4.36) as 

i"=G~lj{G, X=JX, XTJ=JX. (4.37) 

Thus, X is symmetric under the involution that defines 
0(2,1). Such symmetric matrices have recently been classi
fied for all classical Lie algebras.25 For 0(2,1) the results are 
quite simple, namely any pair of matrices (X,J) satisfying 
(4.37) is SL(3,R) conjugate to one of the following: 

(I) XI orthogonally decomposable with three real eigen
values: 

x,~CC a J. hC' J a,b,_, 

(4.38) 

(II) XII orthogonally decomposable with one real eigen
value and one pair of complex conjugate eigenvalues: 
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b 

a 

o 

(III) X III orthogonally decomposable with two real ei
genvalues: 

~ ~} a,heR. 

o 
a 

o 
(4.40) 

(IV) X IV indecomposable (one real eigenvalue): 

o 
a 

(4.41) 

Returning to a basis in which J is as (4.38) and simplifying by 
linear combinations with the 0(2,1) Casimir operator 

..1 = 1~, + 1~2 - li2' (4.42) 

we obtain four classes of quadratic operators R: 

R, =..13 li2 +..1,l~, +..121~2' ..1ieR, 

Rn =..1l~, + 1102'/u}, (4.43) 

Rm = ..1l~, + Jl(102 - 112f, wlO, ..1,JleR, 

R,v = 1102 - / 12'/01 ) 

(the brackets 1 , ) denote an anticommutator). The opera
tor R) can be further simplified by combinations with..1; in 
RII we can assume..1>O; inRm we can scaleJl with respect to 
A by means of the 0(2,1) transformation expa 101 and hence 
only distinguish three cases: A = 0, Jl = 1; ..1= Jl = 1; 
..1= -Jl=1. 

Finally we obtain nine classes of operators Ra 
(a = 1, ... ,9) and the corresponding coordinate systems for 
which the 0(2,1) Hamilton-Jacobi and Laplace-Beltrami 
equations separate. The separable coordinates, Hamilto
nians H and integrals of motion R a , for the two-sheeted hy
perboloid, i.e., K 2 = 1 are as follows. 

2029 

So = coshA, SI = sinhA cosE, S2 = sinhA sinD, 

O<;;;A < 00, O<;;;B < 2rr, (4.44) 

H- 2 1 2 
- PA + -:---h2A PB' sm 

So = coshA coshB, SI = coshA sinhB, 

S2 = sinhA, A,BeR, 

H 2 1 2 

=PA +-h2APB' cos 
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(4.45) 

3. Elliptic I: R, with - A3 ~A, ~A2 ~ - A3' 
(AI + A3)/(A2 + A~ > 0 

s~ = vp/a, ~ = (v - l)(p - 1)I(a - 1), 

s~ = (v - a)(a - p)/(a - l)a, 1 <;;;p<;;;a<;;;v< 00, 1 <a 
(4.46) 

H = [4/(v - p)1[ v(v - l)(v - a)p~ 

+p(p-l)(a-p)p~] , 

R3 = ani +1~2 
= [4vp/(v-p)1[(v-l)(v-a)p~ 

+(p-l)(a-p)p~] . 

4. Elliptic II: R, with - ..13~A, ~A2~ - A3' 
(AI + A~/(A2 + A~ < 0 

~ = (v - 1)(1 - p)/(a - 1), sf = - vp/a, 

s~ = (v - a)(a - p)/(a - l)a, 

p<;;;O, 1 < a <;;; v, O<a - 1<;;;1, (4.47) 

H = [4/(v - p)1[ v(v - l)(v - a)p~ 

+p(p-l)(a-p)p~] , 

R4 = (a - 1)1~, - 1~2 

= - [4(I-p)(v-l)/(v-p)] [v(v-a)p~ 

+ (a - p) pp~ ]. 

5. Complex elliptic: RII 

!(so + isd2 = (v - a)(p - a)/a(a - a*), s~ = 

v<O<p, a = a + i/3, /3>0, a,/3eR, 

H= [4/(p-v)] [p(p-a)(p-a*)p~ 

- v(v - a)(v - a*)p~] , 

R5 = ani -/31112'/02) 

= [4pv//P-v)] [(p-a)(p-a*)p~ 

- (v - a)(v - a*)p~] . 

6. Horospheric: Rill with A = 0 

So = coshA +! r"le-
A

, SI = sinhA +! r"le- A
, 

S2 = re- A
, - 00 <A < 00, - 00 <r< 00, (4.49) 

H =p~ + e2A p;, R6 = (102 -ld2 =p;. 

7. Elliptic parabolic: Rill with All> 0 

s~ =l(V+p)2/Vp, ~ =!(v+p-2Vp)2/Vp, 

~ = (1 - v)/P - 1), O<v< 1 <p, (4.50) 

H = [4/( P - v)] [p2( P - 1) P~ + v( 1 - v)p~] , 

R7 = 1~, + (102 - Id2 

= [4pv/(p - v)] [pIp - l)p~ + v(l- v)p~] . 
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8. Hyperbolic parabolic: Rill with All < 0 

s~ = (v + P - 2vpf/( - 4vp), s~ = (v + p)2/( - 4vp), 

s~ =(I-v)(p-l), v<O<I<p, (4.51) 

H = [4/( p - v)] [pl( P - 1) p~ + v2( 1 - v)p~] , 

RK = 16, - (/01 - Id1 

= [4pv/(p - v)] [pIp - l)p~ + v(1 - v)p~] . 

9. Semicircular parabolic: R/V 

s6 = 1I[ - 16(pv)3] [(p - V)2 +p2V]2, 

s~ = 11 [ - 16( pvf] [(p - V)2 _ p 2V2 
] 2, 

s~ = (p + v)2/( - 4pv), v < 0 <p , (4.52) 

H= [4/(P-v)](p3p~ _V3p~), R9= [/02 -/12'/0,1 
= 2[ vpl(v _ p)](p2 P~ _ v 2 p~). 

Three of these coordinate systems are of the "subgroup 
type," namely spherical, hyperbolic, and horospheric, corre
sponding to the group reductions 

0(2,1)::)0(2), 0(2,1)::)0(1,1), and 0(2,1)::) T, 

respectively (T being the group of translations generated by 
102 -/d· 

All coordinate systems are written so as to parametrize 
the upper sheet of a one-sheeted hyperboloid. It is not diffi
cult to modify the coordinates so as to parametrize the one 
sheeted hyperboloid (S2 = - 1). 

C. Separable coordinates on HH(2) and the Hamiltonian 
systems 

In Sec. III we have classified triplets of operators 
[T"T2,T3 J into 12 orbits underSU(2, 1). In Sec. IVA we have 
introduced ignorable variables on HH(2). Each different 
MASA of SU(2, 1) leads to specific coordinates in which the 
Hamiltonian H and integral of motion Q = T3 reduce to an 
0(2,1) form corresponding to an 0(2,1) Hamiltonian system 
with a nontrivial interaction. In Sec. IVB we reviewed separ
ation on the 0(2,1) hyperboloid S2 = 1. Combining all these 

I 

1. The compact Cart an subalgebra (X3,XaJ 

HX3 - (lIv'3)Xs] = Pa, = c l, 

2030 

- HX3 + (1Iv'3)X81 = Pa, = c2 • 

a. Spherical coordinates: 

ZI = tanh A cos Beia" Z2 = tanh A sin Beia" 

QI =p~ + (lIcos2B)p;, + (lIsin2B)p;, =c3 , 

H = p~ + (lIsinh2A ) QI - (lIcosh2 A )( Pa, + Pa, f = E. 

b. Hyperbolic coordinates: 

z, = tanhBeia" Z2 = (tanh A Icosh B )eia" 

Q2 = p~ + (lIsinh2 B) P;, - (1/cosh2B ) (Pa, + Pa,)2 = c3, 

H = p~ + (lIcosh2A) Q2 + (lIsinh2A )p; = E. 
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results together, we obtain the following theorem. 
Theorem 1: (1) There exist precisely 12 systems of co

ordinates on HH (2) in which the Hamiltonian-Jacobi and 
Laplace-Beltrami equations separate. 

(2) Each separable system has two ignorable and two 
non ignorable variables. The non ignorable variables are in
troduced so as to separate variables on the 0(2,1) hyperbo
loid S2 = sG - s~ - s~ = 1. 

(3) The separable coordinate systems in HH (2) are in 
one-to-one correspondence with orbits of triplets of second
order operators [T"T2,T3 1 in the enveloping algebra of 
su(2, 1). The operators Ti are in involution, two of them, 
T, = L i and T2 = L ~ , are squares of the generators L, ,L2 of 
a MASA of su(2, 1), the third Q = T3 is a general operator of 
the form (3.3). The operator Q takes one of the forms 
Q" ... ,Q'2listed in Sec. III. 

(4) The compact Cart an subalgebra [X3,x81 for which 
Q has the form QI of (4.20) leads to four types of coordinate 
systems, namely, (4.18) with (SO,SI,S2)' expressed in spherical 
(QIl, hyperbolic (Q2)' elliptic I (Q3)' or elliptic II (Q4) coordi
nates on the 0(2,1) hyperboloid H 2 • 

(5) The noncompact Cartan subalgebra [X3 + (1Iv'3) 
XK,x51 for which Q has the form Qll of (4.24) leads to two 
types of coordinate systems, namely, (4.22) with (sO,S"S2) ex
pressed in hyperbolic (Q5) or complex elliptic (Qo) coordi
nates on H 2 . 

(6) The decomposable non-Cart an subalgebra [ Y" Y4 1 
for which Q has the form Qm of(4.28) leads to four separable 
coordinate systems, namely, (4.26) with (so,s, ,S2) expressed in 
hyperbolic (Q7)' horospheric (QR)' elliptic parabolic (Q9)' or 
elliptic hyperbolic (QIO) coordinates on H 2· 

(7) The MANS [Y3,Y4 1 forwhichQ hastheformQlv of 
(4.32) leads to two separable systems, namely, (4.30) with 
(sO,S"S2) expressed in horospheric (QI Il or semicircular para
bolic coordinates (QI2) on H 2· 

Finally, let us list the 12 separable coordinate systems 
and in the process show that the "potentials" in the 0(2,1) 
Hamiltonians are indeed compatible with separation in each 
of the 12 cases. We shall use the affine coordinates (2.5). 

(4.53) 

(4.54) 

Boyer, Kalnins, and Winternitz 2030 



                                                                                                                                    

c. Elliptic I coordinates: 

zi = [a(v-l)(p-l)/(a-l)vp] e2ia" 
zi = [(v - aHa - p)l(a - I)vp] e2ia" 

Q, = [lI(v - p)1l4pv(v - IHv - a)p~ + 4vp(p - I)(a - p)p~ 

+ [(a - p)v/(p - 1) + (v - alp/Iv - 1)] p~, + a[(p - I)v/(a - p) + (v - I)p/(v - a)] p~, 

-a(v/p-p/v)(Pa, +PaYI =c3 , 

H = [I/(v - p)] [4v(v - I)(v - a)p~ + 4p(p - I)(a - p)p~ 

+ (a - 1)[ lI(p - 1) - lI(v - I)] p~, + ala - 1)[ lI(a - p) + lI(v - a)] p~, 

- a(lIp - lIv)(pu, + PaY] = E. 

d. Elliptic II coordinates: 

zi = - (a - I)vp/a(v - 1)(1 - p), z~ = (v - a)(a - p)la(v - 1)(1 - p), 

p<O, 1 <a<v, O<a-l<I, 

H = [lI(v - pI] (4v(v - l)(v - a)p~ + 4p(p - l)(a -p)p~ + a( - lip + lIv)p~, 
+ ala - 1)[ lI(a - p) + lI(v - a)] p~, - (a - 1)[ 11(1 - p) + lI(v - 1)](Pa, + PaY = E, 

Q4= [4(I-p)(v-I)/(v-p)] [v(v-a)p~ +p(a-p)p~] + [(vp-ap-av+a)lvp]p~, 
+(a-I)(pv-a)p~, + [(a-l)(2-v-p)l(v-I)(I-p)] (Pa, +PaJ=c3• 

2. The noncompact Carlan subalgebra f X3 + (1/V3) XB,XS } 

- HX3 + (lIV3)Xg] = Pa = c l , X5 = Pu = Cz· 

e. Hyperbolic coordinates: 

i sinhB coshu - coshB sinhu . ia tanhA 
Zl = .. ,Z2 = Ie . ..' 

i coshB coshu + smhB smhu lcoshB coshu + smhB smhu 

Q5=p1 +(lIcosh22B)(p~ -p~)- 12sinh2B/cosh22B]PuPa' 

H=p~ +(lIcosh2A)Q5+(lIsinh2A)p~. 

f Complex elliptic coordinates: The coordinates are 

is J coshu - So sinhu z = l'eia S2 ZI = , 2 
iso coshu + s I sinhu iso coshu + s I sinhu 

with So, Sl' and S2 as in (4.48) 

Qo = [lI(p - v)] {4PV(P - a)(p - a*)p~ - 4pv(v - a)(v - a*)p~ 

+! \a-a*\2pv IlI(p-a)(p-a*)-I/(v-a)(v-a*)](-p~ +p~) 

+ (\aj2/pv)(p2 - v)p~ 

+ 1 ira - a*H [(a* + a)vp - 2\a\2p ]l(v - a)(v - a*) - [(a* + a)vp - 2\a\2v ]/(p - a)(p - a*)J Pu Pa}, 

H = [lI(p - v)] {4p(p - a)(p - a*)p~ - 4v(v - a)(v - a*)p~ 

+! \a - a*\2 [p/(p - a)(p - a*)- v/(v - a)(v - a*)] (- p~ + p~) 
+ (\aI 2/pv)(p - v)p~ 

+ 1 ita - a*H [(a* + a)v + 21\a\2/(v - a)(v - a*) - [(a* + alp - 2\a\2]1(p - a)(p - a*)J Pu Pu} . 

3. The orlhogonallydecomposable MASA fYI' ~J 

- ~ YI = - 4 [X3 + (lIV3)Xsl =Pa = c l , 

ZI = (sinhB + ite-B)/(coshB + ite- B), 

Z2 = tanh Aeia /( coshB + ite - B) , 

- Y2 = X5 - ~(X3 - V3Xs) = P, = C2 . Q7 = p1 + (e2Bpl + Pa)2 - p~ = C3 , 

g. Hyperbolic coordinates [a = 0 in (4.28)]: H = p~ + (lICOSh2A) Q7 + (lIsinh2A)p~ = E. 
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h. Horospheric coordinates [b = 0 in (4.28)]: 

z 1 = ( - 1 + elA + B 2 + 2it )/( 1 + elA + B 2 + 2it ) , 

Z2 = Beia I( 1 + elA + B 2 + 2it ), (4.60) 

Qs=P~ + [(1/B)Pa + Bpr]2 , 

H = p~ + elAQs + e4A p; . 

i. Elliptic parabolic coordinates [3a = b in (4.28)]: 

Zl = (v + p - 2vp + 2ivpt )/(v + p + 2ivpt) , 

~ =4vp(l-v)(p-l)e2ial(v+p+2ivpt)2, (4.61) 

I 

j. Hyperbolic parabolic coordinates [3a = - bin (4.28)]: 

Q9 = [1/( p - v)] ! 4pv [ p( P - 1) P~ + v( 1 - v) p~ ] 
+ [p(1 - v)/v + vIp - 1)/p2] p; 

+ vp[ 1/(1 - v) + 1/(p - 1)] p; 

+ 2(plv - VlP)P,Pa J = c3, 

H = [1/(p - v)] ! 4p2(p - l)p~ + 4v(1 - v)p~ 

+ [1/( 1 - v) + 1/( p - 1)] p~ 

+ [(1 - v)/v + (p - l)/p2]p; 

+ 2(1/v - 1/P)Pa P, J = E. 

Z\ = (v + p - 2ivpt )/(v + p - 2vp - 2ivpt) , z~ = [ - 4vp(I - v)(p - l)e2ia ]l(v + p - 2vp - 2ivpt)2 , (4.62) 

QIO = [1/(p - v)] ! 4pv[ pIp - l)p~ + v(1 - v)p~] + [p(1 - v)IV + vIp - 1)/p2] P; 

+ vp [1/(1 - v) + 1/(p - 1)] p~ - 2(plv - vlP)Pa P, J ' 

H = [1/( p - v)] ! 4p2( P - 1) P~ + 4v( 1 - v) p~ + [1/( 1 - v) + 1/( p - 1)] p~ 

+ [(1 - v)/v + (p - I)/p2] P; - 2(1/v - 1/P)Pa P, I . 

4. The maximal abelian nilpotent subalgebra ! Y3' Y4 } 

k. Horospheric coordinates [b = 0 in (4.32)]: 

Z \ = [2(u + Bt ) - i(elA + B 2 + t 2 - 1)]1 [2( u + Bt ) - i(e2A + B 2 + t 2 + 1)] , 

Z2= -2(t+iB)/[2(u+Bt)-i(elA+B2+t 2+ 1)], 
(4.63) 

QII = p~ + (P, - 2Bpul2 = c3 , 

H = p~ + elAQ\\ + e4A p~ = E . 

I. Semicircular parabolic coordinates [a = 0 in (4.32)]: 

_ 2p2vu - 2pv(p + v)t - i[(p - vf + p2v(t 2 - 1)] 
z\-~~--~~~~~--~--~~~~~--~ 

2p2vu - 2pv(p + v)t - i[(p - V)2 + p2v(t 2 + 1)] , 
(4.64) 

__ ~~ ______ 2p~v_t-__ 2~i(~p_+~v)~~~~ ___ Z2-
2p2vu - 2pv(p + v)t - i[(p - V)2 +p2V((2 + 1)] , 

Q\2 = [2/(p - v)] ! Vp3 P~ - vp p~ + (vip - plv)p; + 4(vlp3 - plv)p~ 

+ (4vlp2 - 4plv + p - v)Pu P, J , 

H = [4/(p - v)] ! p3 P~ - V p~ + (1/p - 1/v)p; + 4(1/p3 - 1/v)p~ + 4(1/p2 - 1/v)pu P, I. 

To summarize: The nonsubgroup type coordinates on 
H 2 , namely elliptic I and II, complex elliptic, elliptic para
bolic, hyperbolic parabolic, and semicircular parabolic each 
occur precisely once. The subgroup type coordinates on H2 
occur as follows: spherical coordinates once [since the com
pact subalgebra u(2) contains only one MASA], hyperbolic 
coordinates three times [u(I,I) contains three MASA's] and 
horospheric coordinates twice [A 4 ,1O contains two MASA's 
(see Fig. 1)]. 

V. CONCLUSION 

The results of this article should be viewed in the con
text of three different but related research programs. One is a 
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systematic study of the group theoretical, algebraic, and geo
metrical aspects of the separation of variables in linear and 
nonlinear partial differential equations. From this point of 
view we should stress that the hermitian hyperbolic space 
HH(2) is a noncompact manifold of non constant curvature 
(it does, however, have constant holomorphic sectional cur
vature). The fact that it has a large isometry group, namely 
SU(2, 1), made it possible to apply essentially the same tech
niques as for spaces with constant curvature. We have shown 
that all 12 separable coordinate systems on HH(2) have their 
origin in the properties of the algebra su(2, 1), its subalgebras, 
and its enveloping algebra. 

The second context is that of the classification of sub
groups of Lie groups, in particular, maximal Abelian sub-
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groups of classical Lie groups, and its application to the 
study of differential equations. Indeed, the classification of 
all MASA's of su(2, I) into four conjugacy classes was the 
basis of our calculations providing the explicit forms of the 
12 separable coordinate systems. In passing, we comment 
that other applications of this classification are being pur
sued. In addition to the separation of variables, these include 
the derivation of superposition principles for certain systems 
of nonlinear differential equations26-28 and the symmetry re
duction of certain nonlinear partial differential equations to 
ordinary ones.29 

Finally, the reduction of the problem of separating var
iables for the free Hamiltonian on HH(2) to that of a Hamil
tonian with a nontrivial interaction, defined on a lower-di
mensional manifold, namely the 0(2, 1) hyperboloid H 2, is an 
example of a more general method of introducing interac
tions, in particular completely integrable Hamiltonian sys
tems, by symmetry reduction on group manifolds or homo
geneous spaces. 

All three above aspects are being actively pursued. In 
particular, we are currently generalizing the results of this 
paper to the space HH(n) making use of the MASA's of 
SU(n, 1). The completely integrable Hamiltonian systems ob
tained in this article are being investigated (explicit solu
tions, properties of trajectories, special functions occurring 
as solutions of the Laplace-Beltrami equations, etc.). The 
related problem of separating variables in Hamiltonians on 
HH(2) with specific potentials that reduce by symmetry to 
more general completely integrable relativistic Hamiltonian 
systems than the ones treated in this article is also under 
consideration. 
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APPENDIX: THE su(2,1) INFINITESIMAL OPERATORS 
IN TERMS OF IGNORABLE VARIABLES AND 0(2,1) 
VARIABLES 
1. Compact Cartan subalgebra variables 

XI = cos(al - a 2)I12 

+ sin(a] - a2)[(S21sI!Pa, + (s]1s2)Pa,], 

X2 = - sin(a l - a 2)I12 

+ cos(al - a2)[(s2/sdPa, + (sI1s2lPa,], 

X3 = Pa, - Pa" 

X 4 = COsaJOI - sina I [(s]/so + SO/SllPa, + (sllsolPa, ], 

X5 = sinaJol + cosa l [(s]lso + solsllPa, + (sllsolPa,], 

X6 = cosa2I02 - sina2 [(S21s0lPa, + (S2/S0 + sols2lPa, ], 

X 7 = sina2I02 + cosa2 [(S21s0lPa, + (S2/S0 + sols2lPa, ], 

X8 = - v1(Pa, + Pa,)· 
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2. Noncompact Cartan subalgebra variables 

X] = coshu cosaI12 + sinhu sinaI02 
- [S2/(S~ + si)] (socoshu sina - slsinhu cosalPu 

- [1/S2(S~ + si)] [ - so(s~ + si + s~ )sinhu cosa 

+ SI(S~ + si - s~ )coshu sina ]Pa' 

X 2 = coshu sinaI12 + sinhu cosaI02 
+ [S2/(~ + si)] (socoshu + cosa + slsinhu sinalPu 

+ [1/ S2(S~ + s; )] [so(s~ + si + s~ )sinhu sina 

+ SI(S~ + si - ~ )coshu cosa ]Pa, 

X3 = !( - sinh2uIO! + [2soSl/(S~ + sf)] cosh2upu 

+ {[(s~ -si)l(~ +si)]cosh2u - 3}Pa), 

X 4 = cosh2uIoi - [2soS1/(S~ + si)]sinh2upu 

- [(~ - si )/(s~ + si )]sinh 2uPa' 

X5 =Pu' 
X6 = - sinhu sinaII2 + coshu cosI02 

- [S2/(S~ + si)] (sosinhu cosa + slcoshu sinalPu 

- [1/S2(S~ + si)] [so(s~ + si + s~ )coshu sina 

+ SI(S~ + si - s~) sinhu cosa ]Pa' 

X 7 = sinhu COsaI12 + coshu sinaI02 
- [S2/(S~ + si)] (so sinhu sina - slcoshu cosalPu 

- [1/S2(~ + si)] [ - so(s~ + sf + s~ )coshu cosa 

+ SI(S~ + sf - s~ )sinhu sina ]Pa' 

X8 = !v1(sinh2uIot - [2soSt/(s~ +si)] cosh2upu 

- {[(s~ -si)l(s~ +si)] cosh2u + l}Pa}. 

3. Variables corresponding to orthogonally 
decomposable non-Cartan subalgebra 

YI = - 3pa, 

Y2 = - cosa(I02 - Id + sinal [(so - sl)1s2]Pa 
- [S2/(SO - s])]p, J, 

Y3 = - sina(Io2 - Id - cosa[ [(so - sl)1s2]Pa 
- [S2/(SO - SI)]P, J, 

Y4 = - PI' Ys = /01 + 2tp" 

Y6 = - 2tIO! + [(so + sd/(so - sd]Pa 

+ [[2soSl - 2t2(so - SI)2]/(SO - SI)2Jp" 
Y7 = cosaII 2 + t sina(I02 - 112) 

+ { [ [ - S I (so - S I) - si ] sina 

+ (so - slftcosa Jls2(so - Sd}Pa 

- [S2 [sosina + t (so - sdcosa ]I(so - slf J PI' 

Yg = sinaI12 - t cosa(I02 - Id 

+ ([ [s I (so - s d + s~ ] cosa 

+ (so - sltsina J/S2(SO - sd)Pa 
+ [S2[SOCOsa - t (so - sdsina]l(so - sd2 J p,. 

4. Variables corresponding to the maximal abelian 
nilpotent subalgebra 

YI = 3 [t (112 - 102 ) + [S2/(SO - s])] p, 

+ (t 2 - si/(so - sd2lPu J, 
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On a new hierarchy of Hamiltonian soliton equations 
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A method is suggested for studying the Hamiltonian structure of the nonlinear partial differential 
equations that can be solved by the use of the spectral transform (soliton equations). The method is 
applied to a new hierarchy of N + 1 coupled partial differential equations related to a 
Schrodinger-like spectral problem. It is shown that these soliton equations are integrable 
Hamiltonian equations with commuting flows. For N = 1 and N = 2 a Miura-like transformation 
is computed and the corresponding modified equations are explicitly given. 

PACS numbers: 02.30.1r, 02.30.Th 

1. INTRODUCTION 

Let us consider evolution equations of the form 

q, =s(q), qEM, (1.1) 

where the field function q(x,t ) is in a linear space M and 
s(q) = s(q, qx' qxx , ... ) is a suitable Coo vector field. 

One usually calls soliton equations the special evolution 
equations of the form (1.1), corresponding to isospectral de
formations of the linear spectral problem 

I/Ix = U(q; ,1)1/1, (1.2) 

where the linear operator U is rational in the spectral param
eter A with singularities at fixed points with fixed multiplic
ities (see Ref. 1 and references quoted therein). 

An infinitesimal isospectral deformation of U 

U (q(x,t );,1 ) ~ U (q(x,t + dt ); A ) 

can be generated by a gauge transformation of 1/1 

I/I~ [1 +dt V(q;A)]I/I. 

(1.3) 

(1.4) 

Then the operators U and V satisfy the Lax representa-
tion 

(1.5) 

The Lax representation (1.5) can be equivalently ob
tained (AKNS method2

) as a consistency condition by re
quiring that 1/1 satisfy the so-called auxiliary spectral equa
tion 

(1.6) 

If one requires that V have fixed rational singularities in 
A, Eq. (1.5) can be understood as a system of A-independent 
equations on residues of U and Vat their fixed singularities 
inA. 

The solution of(1.5), when it exists, furnishes the explic
it form of Vand the soliton equation. 

The obtained soliton equation can be solved by the use 
of the spectral transform2

•
3 related to the principal spectral 

problem (1.2). 
In general, with different special choices of V, one gets a 

hierarchy of soliton equations of the form 

(1.7) 

.10n leave of absence from Computing Center of the Chinese Academy of 
Sciences, Beijing, China. 

where J is a symplectic operator with respect to a prefixed 
bilinear form (,) and L is an integrodifferential operator. 

If L "P(q) is a potential operator, i.e., 

(1.8) 

by introducing the following Poisson bracket for any two 
functionals F and G 

f F G I = (bF J bG ) 
( , bq' bq , 

(1.9) 

the hierarchy (1.7) is endowed with an Hamiltonian struc
ture.4

-6 

Moreover, if the operators Land J satisfy the "coupling 
condition" 

(1.10) 

where L + is the adjoint operator of L with respect to the 
bilinear form (,), it is easy to verify that this coupling condi
tion, together with the definition (1.9) for the Poisson 
bracket, implies that all the Hamiltonians %n in (1.8) are 
conserved quantities in involution.4-6 

Consequently, the hierarchy (1. 7) consists of integrable 
Hamiltonian equations with commuting flows. 

The crucial statement that one needs to arrive at this 
result is that L np(q) is a potential operator for any n. 

This problem was first solved in the framework of the 
so-called bi-Hamiltonian systems.4

•
6 

Subsequently, it has been shown5 that the two following 
conditions are sufficient for proving this statement: 

(i) L + is a Nijenhuis operator or a hereditary symmetry 
according to the two equivalent definitions of Magri5 and 
Fuchssteiner.6 

(ii) The first two elements p(q) and Lp(q) in the sequence 
L "P(q) are potential operators. 

However, in order to search for possibly different geo
metrical structures generating hierarchies of integrable Ha
miltonian soliton equations, it is important to find a proce
dure for proving directly that L np(q) is a gradient function 
for any n. 

In fact, one needs only to take into account that the 
infinite set! %n I of conserved quantities can be directly 
derived from the attached linear spectral problem. This pro
cedure has been applied successfully in Ref. 7 to the soliton 
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equations related to some spectral problems. 
In this paper, we consider the spectral problem with 

N + 1 independent potentials q N _ I' 

N 

-Yxx+ LqN_1J.-y=J.y, 
1=0 

(1.11) 

we derive the related soliton equations and, by means of the 
previously outlined procedure, we prove that they are inte
grable Hamiltonian equations with commuting flows. 

We verify, a posteriori, that this case can be described 
according to the Magri picture.5 

For N = 1 and N = 2, we show that the found soliton 
equations are quasi-Lagrangian equationsS in the sense that 
they can be reduced by a canonical transformationS to 
"modified" soliton equations which are the Euler-Lagrange 
equations of a variational problem. The modified hierarchy 
obtained for N = 1 coincides with that deduced by Ito by 
using different methods.9 

2. A NEW HIERARCHY OF SOLITON EQUATIONS 

Let us consider the one-dimensional stationary Schro
dinger equation 

(2.1) 

where the potential Q is supposed to be dependent on the 
spectral parameter J. in the following way: 

N 

Q= L qN_/(X,t)J.-1 (2.2) 
1=0 

and the potentials ql(X,t) decrease rapidly as Ixl~ao. 
Equation (2.1) can be cast into the form (1.2) by putting 

I/I-(Y) 
and Yx 

U = 0'+ + (Q - J. )0'_ , 

(2.3) 

(2.4) 

where 20' + = 0'1 + iO'2, 20'_ = 0'1 - iO'2• The o';'s (i = 1,2,3) 
are the Pauli 2 X 2 matrices. 

The t-dependence is fixed by requiring that 1/1 satisfy the 
spectral equation 

1/1, = VI/I, (2.5) 
where 

V= aO'3 + bO'_ + co'+ (2.6) 

with a, b, and c functions of the q's and J.. 
The compatibility condition for the principal spectral 

equation (1.2) and the auxiliary spectral equation (2.5) fur
nishes the Lax representation 

U, - Vx + [U, V 1 = 0 (2.7) 

or, equivalently, the set of equations 

0 1 0 0 

0 0 0 

L= 
0 0 0 0 

0 

0 

a= -!9c, 

b = -! 9 2c + (Q - J. )c , 

Q, = -!9 3c+29.'n(Q-J.)c, 

where we denote the x differentiation operator by 

a 9--ax 
and by .'n the operator 

.'n(Q)P = QP - ! f(QxP) . 

The operator f is the inverse of 9 : 

We choose c(q; J. ) to be of the form 
n 

c(q; J. ) = L J. n - jcj(q) . 
j=O 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

By introducing for convenience c _ N _ I , C _ N"",C- I 
and by equating to zero the coefficients of the powers of J. in 
(2.10), we get the following recursion formula for the c/s: 

C_ N_ I =c_N="'=C_I=O, (2.15) 

1 3 N 
9Cj + 1 = --9 Cj + L 9.'n(qN_dCj _1 

4 1=0 
(j = - 1,0, ... ,n - 1), (2.16) 

and the N + 1 coupled evolution equations 
N 

qN-j" = 2 L 9.'n(qN_I)Cn +j_1 (j = 0,1, ... , N). 
I=j 

(2.17) 

The recursion formula (2.16) can be once integrated to 

1 2 N 
CJ+I = --9 Cj + L .'n(qN_I)Cj_1 +Yj+l(t), 

4 1=0 
(2.18) 

where Yj + I (t) is an arbitrary function of t. 
By introducing for convenience the vectors 

(2.19) 

(2.20) 

and the matrix operator 

(2.21) 

.'n(qo) .'n(q.) .'n(q2) .'n(qN_ .) - i 9 2 + .'n(qN) 
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° ° ° 9P(qO) 

° ° 9P(qO) 9P(qd 

J= Pfi (2.22) 

° 9P(qo) 9P(qN_2) 9P(qN_ d 
9P(qo) 9P(qd 9P(qN_ d -! Pfi2 + 9P(qN) 

the recursion formula (2.18) and the evolution equations 
(2.17) can be rewritten 

(2.23) 

(j = - 1,0,1, ... , n - 1), 

(2.24) 

(2.25) 

From (2.23) and (2.24), one easily deduces the explicit 
form of the Cj's and, therefore, from (2.25) the soliton equa
tion we are looking for. Equations (2.8) and (2.9) furnish the 
explicit form of the auxiliary operator V. 

With a convenient choice of the constants of integration 
Yj' i.e., Yo = 1 and Yj = ° fori> 1, one obtains the following 
hierarchy of soliton equations: 

q. ~JL· (D In ~ 0.1 .. ·.). 

We write explicitly the first few of them. 
For n = 0, one gets the trivial equation 

q, =qx· 

For n = 1, one gets 

q~N.x +! qNqO.x 

qo,x + qlqN.x + ! qNql,x 

qN-I qN-2.x +qN-IqN.x +!qNqN-I.x 

qN qN - l,x - ! qN,xxx + l qNqN,x 

(2.26) 

(2.27) 

(2.28) 

The more general soliton equation related to the spec
tral problem (2.4) with the special choice of V that we made 
in (2.14) is derived by taking a linear combination of Eqs. 
(2.26) with coefficients which are arbitrary functions of time. 

3. REVIEW OF SOME BASIC NOTIONS 

The basic notions referred in this section and used 
throughout the paper can be found in Refs. 4-7 and 10-17. 

The q(x,t ) defined in (2.20) is considered as a point in the 
linear space M of the vector-valued field functions regarded 
as functions of the space coordinate x only. The space M will 
be called the configuration space associated with the soliton 
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equations (2.26). 
q(x,t ) is supposed to be defined on the whole real x-axis 

and to satisfy the homogeneous boundary condition 
q(x,t) --- ° (rapidly) as Ix 1--- 00. 

To each point q in the configuration space, one asso
ciates a tangent space Tq whose elements 
a(x,t) = (ao(x,t), a.(x,t ), ... ,aN(x,t W, called controvariant 
fields, define the infinitesimal displacements of the point 
q(x,t), 

oq = €a. (3.1) 

The vector-valued field functions a(x,t ) satisfy the same 
homogeneous boundary conditions as q. 

The space of field functions 
{:3 (x,t) = ({:3o(x,t ), ... , {:3N(X,t)), obeying the same boundary 
conditions, which is put in duality with Tq via the bilinear 
form 

J
+ 00 

( {:3, a) = _ 00 {:3 (x,t )a(x,t ) dx 

(3.2) 

is called cotangent space T: and its elements are named 
covariant fields. 

The Gateaux derivative of an operator G defined in M 
with values in M or Tq or T: is defined by 

G'(q)[a] =!!...-G(q+Ea)l. (3.3) 
dE E=O 

It is also called the directional derivative of G at the 
point q in the a direction. 

Taking into account that the notation G (q), in general, 
synthesizes a nonlinear differential operator of the form 

(3.4) 

the Gateaux derivative is explicitly given by the formula 

G'(q)[al = r(G(q))a, 

where the operator r is defined by 

with 

and 

rIG (q)) = L (ajG)Pfi j 

a a--
J a,q . 

.J 

j>O 

q,j = Pfijq. 

We next introduce 

~(q) = L ( - Pfi)jaj , 
j>O 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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the Euler operator of the calculus of variations. For a func
tion G (q), gt(q)G (q) is the functional derivative of SG (q)dx 

o f+'YO 
- G (q)dx = gt(q)G (q) 
oq - 'YO 

(3.10) 

aside from boundary terms. 
If one considers a point transformation 

q=q(q) (3.11) 

between the configuration space M and a new configuration 
space M, the controvariant fields a and the covariant fields {3 
transform according to the formulas 

a = r(q(q))a , 

{3 = J/+@q)).B , 

(3.12) 

(3.13) 

where r+ is the adjoint operator of r with respect to the 
bilinear form ( , ). 

The Euler operator gt under the point transformation 
q = q(q) transforms as 

(3.14) 

and therefore 0 loq is a covariant operator. 
A covariant operator f M - T: that can be expressed 

as a variational derivative of a scalar operator F: M _R 

(3.15) 

is called a potential operator. 
It is convenient to introduce the commutator of two 

controvariant operators f, g: M _ Tq : 

[ j, g] = '}/~(f)g - ~/'( glf· (3.16) 

Under this operation, the controvariant operators con
stitute a Lie algebra. 

An operator J (q): T: _ Tq , q EM, is called symplectic 
if it is skew symmetric, 

({3,Ja) = - (a, J{3) , 

and if the bracket 

[a,{3, rl = ({3,J'(q)[J(q)a]r) 

satisfies the Jacobi identity for every a, {3, r E Tq . 

(3.17) 

(3.18) 

The symplectic operator J (q) enables us to introduce the 
following Poisson bracket for two scalar operators 
F,G:M-R: 

fF G 1 = (OF J OG) (3.19) 
t ' oq' oq , 

which is anti symmetric and satisfies the Jacobi identity. 
Any equation that can be written in the form 

(3.20) 

is called a Hamiltonian system. 
The flows of two Hamiltonian systems with the same 

symplectic structure and with Hamiltonians cW' and % are 
said to commute iff 

[J oPt' ,J 0%] = 0 . 
oq oq 

(3.21) 

The controvariant operators J (8cW'1 oq) and J (0% loq) 
can be considered as the infinitesimal generators of a symme-
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try transformation, respectively, for the Hamiltonian system 
% andcW'o 

One can prove, following e.g., MagrV that 

(3.22) 

and, consequently, if J is invertible, deduce that the two Lie 
algebras defined by [ ] and [ 1 on the Hamiltonian opera
torsJ (oF loq) and on the potential operators of loq, respec
tively, are isomorphic. Specifically, two Hamiltonian flows 
commute iff their corresponding Hamiltonian are in involu
tion. 

A linear operator N (q) mapping the tangent space Tq 
into itself is called a Nijenhuis operator or an hereditary 
symmetry iff 

N'(q)[N(q)a]{3 - N(q)N'(q)[a]{3 (3.23) 

is symmetric with respect to a and {3. 
A symplectic operator J and a Nijenhuis operator N are 

said to satisfy the first "coupling condition" iff 

NJ = IN + . (3.24) 

An operator N:Tq _ Tq is a strong symmetry (or a re
cursion operator in the terminology of Ref. 13) of an evolu
tion equation q, = s(q) ifit is invariant along the trajectory of 
the vector field s(q). This is the case iff N satisfies the operator 
equation 

N'[s] -s'N +Ns' = O. (3.25) 

A hereditary symmetry N and a symplectic operator J are 
said to satisfy the additional "coupling condition" iff 

(a, N'[¢; ]J{3) - (a,N'[J{3]¢) + ({3, N'[Ja]¢) 

+ ({3, NJ' [¢ ]a) - ({3,J' [N¢ ]a) = O. (3.26) 

The proofs that the operator J defined in the previous 
section is a symplectic operator and that L + is a Nijenhuis 
operator are given in the Appendices A and B. 

The first coupling condition (3.24) can be easily verified, 
while the proof that the second coupling condition (3.26) is 
satisfied is sketched in the Appendix C. 

According to the Magri general result (1st Theorem of 
Magri), the nonlinear evolution equations in the hierarchy 

q,=JLnp(q) (n=O,I, ... ), (3.27) 

with J a symplectic operator and N = L + a hereditary sym
metry satisfying the first coupling condition (3.24), are inte
grable Hamiltonian equations with commuting flows if p(q) 
and Lp(q) are potential operators: 

If, in addition (2nd Theorem of Magri), J and N = L + 

satisfy the second coupling condition (3.26), N is a strong 
symmetry for all the equations in the hierarchy (3.27). 

However, in the following section, by taking advantage 
of the existence of a spectral problem related to the found 
hierarchy (2.26), we show that the 1st Theorem of Magri can 
be proved without using the hereditary symmetry property 
ofL +. 

Moreover, we are able to derive by a recursion relation 
the explicit form ofthe Hamiltonians of the soliton equations 
and, consequently, to show that, in spite of the integrodiffer-
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ential character of the operators Land J, all the soliton equa
tions are local equations. 

4. THE HAMILTONIAN STRUCTURE 

The soliton equations in the hierarchy (2.26) have an 
infinite set of polynomial conserved quantities {H n 1. 

The explicit form of the {Hn l's can be obtained by solv
ing the Riccati equation 

(4.1) 

that is derived from the spectral equation (2.1) by means of 
the transformation 

h =yJy. (4.2) 

From (2.3), (2.5), and (2.6) it results that 

h, = b - 2ah - ch 2 , (4.3) 

and from (2.8), (2.9), and (4.1) that the density h satisfies the 
conservation law 

h, = (- ~ c + ch)x . (4.4) 

By assuming the formal expansion in A. for h, 

h = f hjA. - (1/2)j + iA. 1/2, (4.5) 
j=o 

we get from (4.1) the following recursion formula for the 
coefficients hj : 

ho=O, 

hj+ I = + i (hj,x + 
(j=0,1,. .. ) , (4.6) 

which determines uniquely all the polynomial conserved 
densities hj and, consequently, the corresponding conserved 
quantities 

f
+ 00 

Hj = _ 00 hj dx . (4.7) 

Moreover, the Riccati equation (4.1) can be used to de
rive a differential equation for 

KI=~' 
OqN_1 

(4.8) 

the functional derivative of H = f::+:' :: h dx with respect to 

qN-I' 
From (4.1) we derive the explicit dependence of q N _ 1 on 

h and its derivatives: 
N 

qN_/(h)=A./(hx +h2+A.- L qN_rA. -1· (4.9) 
r=O 
r#l 

It can be used to compute the right-hand side of the 
identity 

oH + oH 
1 =-= r (qN-/(hll--

oh OqN_1 
(4.10) 

obtained taking into account the covariant transformation 
properties of the gradient operator 0 / Dq N _ 1 under a point 
transformation q N _ / = q N _ 1 (h ). 

It results that K, satisfies the differential equation 

K"x = 2hK, -A. -I. (4.11) 
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By differentiating (4.11) two times with respect to x and 
by using repeatedly the Riccati equation (4.1), one obtains 

K"xxx = 4(Q - A. JK"x + 2QxK, . (4.12) 

If we define the formal series 

"" C= L CjA. -j (4.13) 
j=o 

and we choose Yo = 1 and Yj = 0 forI> 1, then the recursion 
formula (2.24) for the Cj's can be cast into the form 

Cxxx = 4(Q - A )Cx + 2Qx C . (4.14) 

The two formal series K and C satisfy the same linear 
differential equation. 

Since 

Ho=O 
and bH 

__ I = -!iCo , 
Dq 

it follows that 

A. 1/2 oH = -! iC. 
oq 

(4.15) 

(4.16) 

(4.17) 

By identifying the coefficients of the powers of A., we 
obtain thatthe conserved quantities H 2n (n = 0,1,. .. ) are triv
ially zero and the Cn 's are potential operators 

C = L nco = 2i DH2n + I 
n oq 

(4.18) 

Therefore, the soliton equations in the hierarchy (2.26) 
are Hamiltonian systems, i.e., 

q, =J DK2n + I (n = 0,1, ... ), (4.19) 
Dq 

where the Hamiltonians K 2n + I are directly related to the 
conserved quantities H 2n + I ' 

K 2n + I = 4iH2n+ I . (4.20) 

The identity (4.18) can be used to prove that the nontri
vial conserved quantities H 2n + I are in involution. 

The Poisson bracket of a pair of conserved quantities is 
given by the formula 

{H2n+ I' H2m + 11 = -! (L nco, JL mco) . (4.21) 

The coupling condition 

n=LV ~~ 

that can be easily verified induces the following recursion 
formula on the Poisson bracket (4.21): 

{H2n+pH2m+d = {H2n+3,H2m_ll, (4.23) 

and, by iteration (n < m), one finds 

{H2n + I' H 2m + I 1 = {H2m + I' H 2n + I 1 
and then 

! H 2n + I' H 2m + I 1 = 0 

(4.24) 

(4.25) 

on account of the skew symmetry of the Poisson bracket. 

5. QUASI-LAGRANGIAN CHARACTER OF THE 
SOLITON EQUATIONS FOR N = 1 AND N = 2 

Let us, first, consider the case N = 1. 
We factorize the symplectic operator J in the following 
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way: 

J=lL (5.1) 

with 

J = (iZJ~(qo) ~). (5.2) 

Since the operator J is symplectic, the hierarchy (2.26) 
can be rewritten in another form: 

(n = 1,2,.··) . (5.3) 

If we consider the point transformation q = q(u) de
fined by 

qo =! u~ , 

ql =u l , 

(5.4) 

(5.5) 

the operator J can be transformed into the x differential op
erator iZJ according to the formula 

J = r(q(u))iZJ r+(q(u)) . (5.6) 

Taking into account the controvariant transformation 
properties of q, and the covariant transformation properties 
of the Euler operator '?Y, we get that the hierarchy (5.3) under 
the point transformation (5.4) and (5.5) transforms into the 
hierarchy 

u = iZJ OcW'2n + I (n = 1,2, ... ) . , ou (5.7) 

Since this hierarchy can be derived from a variational 
principle, according to the definition given in Ref. 8, we say 
that the equations in the hierarchy (5.3) are quasi-Lagran
gian systems. 

According to the general results on hereditary symme
tries,6 the new hierarchy of Hamiltonian equations (5.7) 
takes the form 

where 

L = r+(q)L [r(q)] + -I 

is the new hereditary symmetry. 
We write explicitly the first soliton equation in (5.7): 

uo" =! (uoudx , (5.8) 
_ I ( 3 2 2) ul,' - - 4 ul,xx - ul - Uo x . (5,9) 

Let us now consider the N = 2 case. 
The symplectic operator J is factorized as in the pre

vious case with 

2040 

The point transformation q = q(u) defined by 

qo =! (uo + iud2 , 

ql=!(U~+U~), 
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(5.10) 

(5.11) 

(5.12) 

(5.13) 

transforms, as previously, the symplectic operator J into the 
iZJ operator. 

Therefore, also in the N = 2 case, we can say that the 
found soliton equations can be transformed via a Miura-like 
transformation into modified versions which are Lagrangian 
systems. 

The corresponding hierarchy is 

where 

L = r+(q)L [r(q)] +-1 

~Co-:fuo'l llu, ~~u',1 
is the new hereditary symmetry. 

We write explicitly the first modified soliton equation in 
the hierarchy 

(5.14) 

U I" = (iuo - U\ +! U I U2)x , (5.15) 

u2,' =!(u~ +ui -u2,xx +3u~)x' (5.16) 

We conjecture that this result can be extended to any 
value of Nbut we have not succeeded in computing the need
ed point transformation. 

APPENDIX A 

We prove that the operator J [Eq. (2.22)] satisfies the 
following Jacobi identity: 

(a, J'[J,8 ]y) + (cycle) = 0, 

where a,,8, and yare vectors with N + 1 components which 
decrease rapidly as x ---+ ± 00, and (cycle) means the cyclic 
permutation over a, ,8, and y. 

From (2.22) and Definition (3.3) of the Gateaux deriva
tive, we find that the integrand of (a, J '[J,8 ]y) + (cycle) is 

N m j 

I I I am(qk ,8k+N-j,xYN+j-m,x 
m~Oj~Ok~O 

+ ! q kx ,8 k + N - j Y N + j - m,x + ! q k ,8 k + N - j,xx Y N + j - m 

+! qkxx,8k + N-jYN+j- m + ~ qkx,8k + N- I,x YN+j- m) 

- !aN(,8NxxxYNx + i,8NxxxxYN) + (cycle). 

By changing the order of summation, it is not difficult 
to see that the above expression can be transformed into 

+ ((aN ,8Nx - a Nx ,8N)YNxx - aN ,8NYNxxx + (cycle)) 
where 

N m 

ifJk = I I am ,8k+N-jYN+j-m . 
m~kj~k 

Accordingly, the integrand of (a, J '[J,8 ]y) + (cycle) is 
a total x-derivative and the desired identity results. 
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APPENDIXB 
We prove that N = L + is a hereditary symmetry. 
Let (cut represent the ith component ofa vectorcu, and by/"""gwe mean that! - gis symmetric with respect to a andp. 

Then, from (2.21) and (3.3), we see that 

(N'[Na)p)i = a i _ l PN + (qiaN PN) +! qix PNf aN -1 a Nxx PN8iN 

+! (fPN) [ ai-l,x + (qixaN + qiaNx) + ~ qixx(f aN) +! qixaN -1 aNxxx8iN] 

""" a i _ l PN -! a Nxx PN8iN +! (fPN)[ ai-l,x + qiaNx +! qixaN -1 aNxxx8iN] . 

In the same way, we find 

(NN'[a) pt-::::=.a i - l PN +! ai-I,x(fPN) +! qiaNx(fPN) 

+ 1 qiXf(aNxfPN) - A 8iN(aNxxxfPN + 2aNxx PN)' 

Since 

f(aNxfPN) = aNfPN - faN PN-::::=.aNfPN , 

we see that 

(NN'[a) P)i"",,(N'[Na) P)i , 

which completes the proof. 

APPENDIXC 

It is convenient to write the second coupling condition between J and N = L + as follows: 

(a, N'[¢ )JP) - (a,J'[¢ )LP) + (a,J'[N¢) P) = (a, N'[JP)¢) - (P, N'[Ja]¢) . 

The terms with ¢m (m = 0,1,,,., N - 1) appear only in the lhs and, thanks to the identity 9' 3P(q) = 3P + (q)9' , they cancel 
each other. It results that 

(a, N'[¢ ]JP) - (a, J'[¢ ]LP) + (a,J'[N¢) P) 

= f-+ 0000 dX{ mto am kto 3P+(3P+(qk)¢N)PN_ m + k,x -! aN¢N.xx PN,x -l aN¢N,xxx PN} . 

The terms in the rhs can be cast into the form 

-! a N3P+(PN,XXX)¢N - mto kto PN - m+ k3P +(3P+(qk)am,X)¢N + !PN3P +(aN,xxX)¢N} . 

By direct calculations, one can verify that the terms containing am (m = 0,1,.", N) and aN in the lhs equate, separately, the 
similar terms in the rhs. 

We conclude that the second coupling condition is satisfied. 
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Connection between the existence of bisolitons for quadratic nonlinearities 
and a factorization of the associate linear operator 

H. Cornillea) and A. Gervoisa) 
Division de la Physique, Service de Physique Theorique, Cen-Saclay, 91191 Gif-sur- Yvette Cedex, France 

(Received 16 April 1982; accepted for publication 15 October 1982) 

In a first part we investigate the exponential type bisolitons of the class of equations (E + Lq)K 
= (E + l:;! ~ ~ i aij a~~jj)K = (A + j.lax)K 2 (E#O. A #0 or E = A = 0). which are rational 

solutions and we assume that their denominators have no coupling between the solitons. We have 
found that their existence requires a factorization property of either the operator E + Lq for E # o. 
A #0. q<,3 or Lq for E = ,1.= O. q<,3 with the exception of the Burgers equation. We find three 
kinds of nontrivial bisolitons: either those associated with the mixed nonlinearity (A + j.la x )K 2 

alone. or those common to the mixed nonlinearity and KK x or those belonging to KK x alone. In 
the second part we look at the two last types ofbisolitons for q > 3 and give a constructive method 
leading both to factorized linear operators and to the explicit determination of the bisolitons. We 
consider mainly lq _ 2 (t) (aat + bax + caxx)G = (ax G )2, K = Gx• with the linear operator 
factorizing the linear part of the Burgers equation.lq _ 2 (t) is a differential operator in variable t 
only. The general G solution is a linear combination oflog,1 and..:1 - i. i = 1 •...• q - 2 with 
..:1 = 1 + l:f exp(t + YiX). We determine different classes of solutions as well as the associated 
lq _ 2 (t) operators. 

PACS numbers: 02.30.Jr. 02.30.Th 

I. INTRODUCTION 

A. General considerations 

In the last 15 years one of the most important success in 
the study of nonlinear equations is the discovery that for a 
class of equations. the so-called "completely integrable 
equations." the solutions can be obtained from linear inte
gral equations. Unfortunately. in general the physically in
teresting l equations do not belong to that class. For noninte
grable equations. maybe a method could be the extension of 
the direct Hirota2 method originally developed for the inte
grable case. It is not clear that this extension can be generally 
done. outside some ad hoc model equations3 not too far from 
the integrable case. The truth could be that. in fact. the non
integrable nonlinear equation must be divided in different 
classes and that for each class one has to find appropriate 
and specific methods. It is such a particular class that we 
propose to study here. A way to classify nonlinear equations 
may be to investigate their bisolitons which certainly are 
nontrivial solutions. 

Let us call exponential type solitons the solutions ra
tional in the variable exp(yx + pt ) and exponential type biso
litons the rational solutions with the variables Wi = exp(Yi x 
+ pJ). A further physical restriction is certainly that these 

solutions vanish when W --+ 00 or Wi --+ 00. but we do not 
retain this condition a priori. 

We have recently4 obtained general features for the ex
istence ofbisolitons associated with the quadratic nonlinear 
equations (E + Lq)K = (E + l: aij a~~/)K = K2. E#O. 
which correponds to a model Boltzmann5

.
6 equation for 

q = 2. On the one hand. the nontrivial bisolitons have de
nominators of the type (1 + WI + (2)q without the coupling 

-) Chercheur au C. N. R. S. 

const. X W IW 2 between the two solitons; on the other hand. 
the linear operators E + Lq for either K or E + K are neces
sarily factorized. This property was entirely proved for q<,3. 
and conjectured as always true for q > 3, and we explicitly 
exhibit classes ofbisolitons having these properties. It is in
teresting to know whether these properties, factorization of 
the linear operator linked to denominator powers of 
1 + W + W 2• are particular to K 2 or are true for a larger class 
of nonlinearities. If the answer is positive. we will have de
fined a class of nonlinear nonintegrable equations with com
mon features. 

In this paper we investigate other quadratic nonlineari
ties which are KKx and a nonlinearity which mixes K 2 and 
KKx. and, as we shall see. the factorization property is still 
the main fact of the study. A preliminary brief report, 5 with
out proofs. was previously done. We study the class of non
linear equations in I + I variables: 

(E + Lq )K = (E + 1+ f q a ij a~~/)K = (;1 + j.la x )K 2 

1+ J~ I 
, (1.1) 

with either E#O.;1 #0 for the mixed nonlinearity or 
E =;1 = 0 for KKx alone. Further we assume that the possible 
bisolitons have denominators which are powers of 
I + WI + W2' and this is a restriction because we know for 
KKx that the KdV equations have not this kind of denomi
nator. In the first part of the paper we systematically investi
gate all possible bisolitons of Eq. (1.1) for q< 3, the result 
being that ifwe except the Burgers equation, all other bisoli
tons found are associated with factorized linear operators. In 
the second part of the paper. analyzing these results, we are 
able to develop a general formalism for q > 3. with factorized 
linear operators. giving us the possibility of explicitly deter
mining the bisolitons. The key point is that these linear opera
tors factorize the linear part of the Burgers equation. 

2042 J. Math. Phys. 24 (8), August 1983 0022-2488/83/082042-14$02.50 © 1983 American Institute of Physics 2042 



                                                                                                                                    

Let us notice that in Eq. (1.1) if we substitute K = E/ 
A + K, we find for K another equation of the same type, 
(- E + £q)K = (- E + Lq - 2/.J£ax )K = (A +,uax)K 2

• 

Similarly, if £ = A = 0, K = C + K leads to [ K = (L 
- - q q 

- 2C,ua x)K =,ua x K 2. We do not distinguish between 
these two cases; for instance, the factorization property must 
be understood either for K or K. Similarly, for each soliton or 
bisoliton of K there exists a partner K. We note also that the 
nonlinearity in (1.1) is invariant under the transform (ax ,at) 
---+ (ax ,at + const. ax)' and all our results must be under-
stood modulo these transforms. 

8. Solitons and bisolitons 

For a nonlinearity (A + ",ax)K 2 there exist different 
types of solutions. First, those which are common to K 2: 

from a solution (E + Lq _ I)K = K 2, we trivially obtain 
(EA + Lq)K = (A + ,uax)(£ + Lq _ dK = (A + ,uax)K\ 
and in the following we do not consider this case. Secondly, 
those solutions which are specific to the mixed case and do 
not exist when A ---+0. Thirdly, those common to the mixed 
nonlinearity and KKx ' which still survive when A - 0, 
£ ---+ O. In the last class are those specific to KK" alone, and 
they are the most interesting because KKx is the physically 
interesting nonlinearity. In order to avoid any misunder
standing, let us be precise that when we speak of KKx alone, 
we mean practically always E = O. This is due to the fact that 
ifin (1.1) we put A = 0 and E=/-O, we have found that no 
solitons exist. This can also be seen directly from the explicit 
expression of the bisoliton in the mixed case: In fact, E then 
disappears and we have to take the limit A ---+ O. 

In Sec. II, in order to emphasize a closed connection 
between these quadratic nonlinearities K 2 with £1=0 KK 
with E = 0, and (A + ",ax)K 2, we compare their expo~enti~l 
typesolitonsK = K (UJ),UJ = exp5,5 = {'x + pt. ForKKx the 
solitons equations, integrated with respect to 5 lead to differ
ential equations with K 2 nonlinearity. It is why the same 
finite number of algebraic forms exist for both KKx and K 2. 

For (A + ,uax)K 2 in supplement to these solitons there ap
pear two new kinds of solutions which are specific to that 
nonlinearity: first, a class of solitons with algebraic forms 
depending continuously on a parameter ,ul A and, secondly, 
a class which we call "bizarre solitons" because they have 
unusual asymptotic behavior-they are going to infinity 
when w ---+ 00. These "bizarre solitons" are in finite number, 
and their existence is due to the presence of both nonlineari
ties K 2 and KK, . 

In Sec. III we investigate the possible bisolitons of Eq. 
(1.1) for q.;; 3, assuming that their denominators are powers 
of 1 + WI + Wz. The method used in order to find the bisoli
tons has been fuIIy4-6 explained previously for theK 2 nonlin
earity. It essentially consists of writing K as a polynomial in 
one variable, let us say w2 

I""" 

K = r w~ FI (Z ), Z = UJ 1 + UJ 2 , (1.2a) 
I 

and, substituting into the nonlinear partial differential equa
tion (n.l.p.d.e.), we find that the coefficients [F/{Z) J satisfy 
systems of nonlinear differential equations, with one vari
able Z only. More explicitly, first the linear application 
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K -+ (f" + Lq)K leads to another polynomial 
[m .. :.. +q 

(E+Lq)K= I w;'Fm(Z) , (1.2b) 

where F m (Z) is a linear combination of Fo, Fw .. ,Flmax and 
the derivatives of various order with respect to Z. Secondly, 
the non-linear part of (1.1 ) can be rewritten 

(A +,uax )K 2 = Lw;'Fm(Z), 

Fm(Z) = (A +,umrz +",rl zaz) I Fp Fm_p 
p=o 

",-I 

+ ,u(Y2 - ydaz I Fp Fm - p- I . (1.2c) 
p=o 

It follows that Eq. (1.1) is equivalent to F m (Z ) F m (Z ). For 
the set [FI I this represents lmax + q + 1 coupled nonlinear 
differential equatjqns in Z, becoming linear for the special m 
~alues such that F m ~O. In the pure K 2 case, the number of 
Fm = 0, linear [F, I constraints, was sufficient to provide a 
factorization of (E + Lq). It is not true in the full 
(A +,ua x )K 2 case, and the factorization appears only after 
the complete resolution of the n.l.p.d.e. In Sec. 3, inessential 
technical modifications are performed. Mainly, in order to 
symmetrize the nonlinearity, we define UJ· = expx i-I 2 
and the formalism is applied to (1.1) in the new v~;iabie; , 
X I 'X2• Here we do not report the details and give only the 
results back in the (x,t I variables for q = 2,3. 

(i) We begin with the bisolitons specific to the mixed 
nonlinearity without partners for KK". For q = 2 we have 
found two "bizarre bisolitons" and six for q = 3 with always 
factorized linear operators (see Table I). We still call them 
"bizarre" because they are going to infinity when both 
WI ---+ 00 and W 2 -+ 00. 

(ii) We go on with the bisolitons common to the mixed 
nonlinearity (A 1=0) and to KKx (A = 0). We have not found 
such an object for q = 2 but only for q = 3, which still has a 
factorized linear part. We write down the result in a poten
tial formulation K = (A + ,uax)G: 

(1 + atl[A 2 + aat + (A,u + b lax + },,uZ axx J G 

= [(A + ,uax)G ] 2, G = il - I, ( 1.3 ) 

ail, + bAx + },,u2il xx = 0, 

A=I+wl+w2, w,=exp(f+r,x), 

a + br, + }, f.L 2 11 = ° . 
( 1.4) 

(iii) We finish with the bisolitons specific to KK (or 
G 2 

x 

x), We have found only one: It has an associated factorized 
linear part, and we write down the result for the potential Gx 

=K: 

(1 +at I6)(aat +bax +caxx )G=C(ax G)2, 

G = - IogLl +.1 -I (1.5) 

still with the relations (1.4),,u2/6 being replaced by C. 
We have found only one example withoutJactorized lin

ear part. It is the Burgers equation for q = 2, which we write 
down in the two formulations K and Gx = K: 
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TABLE I. List of the bizarre bisolitons for q = 2, 3. 

q=2 
K, =wi/M 
K,=w,w,/.::! 

L, = (I - (ax - a, )/4) (I - (ax - a, 1/6) 
L, = (I - (ax + a,)12)(1 - (ax - a, 112) 

q=3 
K, =wi/IO.::!2 
K2 = (wi123.::! ')(6 + 5w, + 5w,) 

K, =wiw,/.::!' 

L, = (I - (ax - a,I/6)(1 - (ax - a,)l8) (I - (ax - a,)llO) 

L, = (I +:b ax)(1 - (ax - a,)/4) (I - (ax - a,)/6) 

K4 = (w;/M 2)(1 + w2 + 2w,) 
K, = (3wi/50.::!2)(1 + 2w2 + w,) 

K6 = fJ (W,W2/.::! 2)(6 + 5w, + 5w2 ) 

L, = (I - (ax + a,)l2) (I - (ax - a,)l4) (I - (ax - a,I/6) 
L, = (I - (ax + a,)/12) (I - (ax - a,I/4) (I - (ax - a,)/6) 
L, = (I - (ax - a,)l20) (I - (ax - a,)llO) (I - (ax - a,)/4) 
L, = (I +:b ax)(1 - (ax + a,)/2) (1- (ax - a,I12) 

with 

.:1 = 1 + ~ wi> (a.:1 t + b.:1 x - ,u.:1 xx ) = 0, 

ap; + by; -,ui; = 0 , (1.6c) 

and we remark that (1.6c) contrary to (1.4) can be satisfied by 
an arbitrary number of W; terms. We can have multisolitons 
and not only bisolitons. 

c. The Burgers equation as a germ for a class of Eq. (1.1) 
with factorized linear operators 

Summarizing the above results concerning Eq. (1.1) and 
q<.3, it follows that, with the exception of the Burgers case, 
all other equations with bisolitons correspond to factorized 
linear operators. In the second part of the paper, we provide 
a general method for q> 3, leading to bisolitons associated 
with factorized linear operators and which include (1.3), 
(1.5), and (1.6) for q = 2 or 3. We are interested either in 
bisolitons common to the mixed nonlinearity and KKx or 
specifictoKKx or(Gx)2alone. The main fact is that forA = 0 
the built linear operators factorize the linear part of the 
Burgers equations. 

Let us define G (.:1 ), .:1 = 1 + ~ Wi' satisfying 

Iq _ 2 (t)G = C~2 bia
t
,) G (.:1 )_H (.:1 ), 

a~a H = v(Ga )2, 

a.:1 t + b.:1 x + c.:1 xx = 0 , 

and introduce a second-order differential operator 

/2 = A. 2 + aat + (b + A.,u)ax + caxx ' 

b = 0 or #0, a#O, c#O, 

which for A. = 0 reduces to the linear Burgers operator. 

(1.7) 

( 1.8) 

We want to build a class of nonlinear equations with 
factorized linear operator Lq = Iq _ 2 /2 and including the re
sults (1.3), (1.5), and (1.6). 

(i) We assume H -G, A. = 0, v = - 1, C = -,u. From 
(1.7), and (1.8) we find lq _ 2 =1, G = log.:! and we recover the 
Burgers equations (1.6). 

(ii) We assume H = G 2
; then vc = ,u2, W; = exp(t 

+ y;x), i = 1,2. From (1. 7), (1.8) we find 
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Iq_ 2 G=G 2, (G 2)aa =V(Ga )2, 

a + by; + ci; = 0 , 

lq_ 2 /2G = [(A. + ,uax )G]2. 

( 1.9) 

The general solution of(1.9) is easily obtained, G =.:1 - q + 2, 

V = 2(2q - 3)/(q - 2), and we obtain, for the potentials G, a 
set of nonlinear equations valid in both cases A. # 0, A. = 0: 

(1.10) 

which reduces to (1.3) for q = 3. 
(iii) We assume H # G, H # G2

, which necessarily leads 
to A. = 0 and the nonlinearity KKx alone or equivalently to 
the potential G and nonlinearity (G x )2. The study is done in 
Sec. IV. Further, we assume W; = exp(t + y) or.:1 t 
=.:1 - 1, a + by; + ci; = 0, and the problem is reduced to 

the resolution of the equation 

a
2 
(q-2) (aG)2 

a.:1 2 ~ bi at' G(.:1) = v a.:1 ' bo = 1. (1.11) 

(1.11) is, in fact, a nonlinear quadratic differential equation 
depending on only one variable.:1. For the nonlinearity K 2 

we have previously encountered similar equations and in 
Sec. IV we provide two methods in order to solve it. For each 
q value there exists a finite number of solutions, and, conse
quently, with lq _ 2 /2 we can associate a finite number of 
n.l.p.d.e. with nonlinearities (Gxf or KKx' This number in
creases quickly with q: one for q = 2, two for q = 3, six for 
q = 4, twenty for q = 5, .... 

Consider, for instance, q = 3 and v = 1; then from 
(1.11) we find G = - log.:! +.:1 - I and we recover the non
linear equation (1.5). 

For each solution ofEq. (1.11) we have to find the set of 
b; values or the operator Iq _ 2' and this is explained in Sec. 
IV. The general solutions of (1.11) can be written 
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TABLE II. Families of potential functions for KKx or (Gx)' nonlinearity for any q. 

LoGo 0=10 _ ,I,Go = vo(axGo )' 

I, = oa, + bax + ca~x' ~ = I + WI + W" w, = e'+ Y", 0 + by, + c'/1 = 0, ; = 1,2 

G =_1_, 
1.0 ~ 0 -, 

10~,o=°If(l+ a, ). vo=2(2q-3)1(q-2), q>3 
hO q-2+1 

G __ 1_ + _p_._1_ 
2.0 - ~ 0 - , q _ 3 ~ 0 - J ' 

10 ,0= (I + (q - 2)c1, ) Oil' (I + a, ) 
3(q - 2)(q - 2 + p) + 2( P - q + 2) I ~ 0 q - 3 + I 

4 
4(2q - 5)(2q - 3) 

q>, v = ~---:---:'--'-::-"'--'--::--'------c-
o 3(q _ 2)(q - 2 + p) + 2( P - q + 2) 

p2(q _ 2) + p(2q2 _ 9q + 8) + (q - 2)'(q - 3) = 0 

G, = _1_ + _p ___ I_ 
,.q ~o' q-3~0 J 

10-,=PiIl(l+ a, )0'(('(1+ a, )(I+T+a,)(I+T_a,) 
hO q-3+1 ,~o p+q-2+1 

5 - I 2 - 4 - __ ---=2::..!-'(q'-:-+'--'p"-------'-'3)""(2q..!....--,.:..5!.!C)(22q,----=3.!....) ----,-q>, p - , , ... , q ,Vq -
(q - 2)(q - 3)(2q - 5) + p(2q - 3)(2q + P - 6) 

[2(q - 2)(q - 3)(2q - 5) + 2p(2q - 3)(2q + P - 6)](T ± )' - [(4q - II)(q - 2) + 2p(2q - 3)]T ± + (q - 2) = 0 
o ~, I • - , 

G •.• =-log4+ I-k' /0_,=1+ Ib,a, .. q>2,vo =c 
k~ I k~ I 

ho = b l , (1)1), Of hi (q- 2 + I)! Cit _ 1)/+m = q - 2 - m 
I~m (q-2)! (q-I+m)(q+m) 

if; stirling numbers 

q- 2 a. 
G = - r log;::! + ~ -', 

~ ..1' 
(1.12) 

and in Sec. IV we determine different classes of such solu
tions. The most simple one, G =..1 - (q - 2), was written 
down in (1.10) and corresponds to H = G 2. There is a very 
simple solution which generalizes the Burgers' ones (with the 
restriction that only two different Wi are allowed), 

found two general classes G = pl( q - 3)..1 q - 3 + 1/..1 q - 2: 

one for q;;;.4 for p complex and the other for q;;;. 5 with p 
integer (see Table II). There exist also general classes of solu
tions which include three..1 - i'S. We have found in Sec. IV 
two such classes: 

G = - log;::! + l:j:: i (1/i..1 i), and the associated lq _ 2 oper
ator is determined in Sec. IV. Seeking solutions which are 
linear combinations of..1 - ( q - 3) and..1 - (q - 2), we have 

G = 1 (_1_ + ~ + 1 ) for q;;;.6, 
(q-2)..1q-4..1 2 ..1 (q-4) 

G= 1 (_1_+ 2 + 2 ) 
(q-2)..1q-4..1 2 (q-3)..1 (q-3)(q-4) 

TABLE III. Families of potential functions for KKx or (Gx )' nonlinearity for any q when G has three~ terms. 

L.G. = 1._ ,I,G. = v.(axG.)' 
I, = oa, + bax + c~xt ~ = I + WI + w,. w, = e'+ Y", i = 1.2, 0 + by, + c'/1 = 0 

G =_1_[_1_+ 2 + 2 ] 
, .• (q-2) ~.-' (q_3j.d·-J (q-3)(q-4j.d'-' 

1.- 2 = (1+ q~JX((I+ q_a;+J(I+ ~t>Aj) 
q>7. v. = 2(2q - 7)(2q - 6)(2q - 5)(2q - 4)(2q - 3)0'. 

0'3 - [Sq - 26 + 4j2q - 3)1(q - 2)]0'4 = 0 

0', - (6q - 21)0'3 + [24q' - 168q + 295 - 8(2q - 5)(2q - 3)1(q - 2)(q - 4)]0'4 = 0 

0'1 - (4q - 15)0'2 + [I2q' - 90q + 169]0'3 - [(4q - 15)(8q' - 60q + 113) + (2q - 5)(2q - 3)1(q - 2)(q - 3)]0'4 = 0 

I - (2q - 8)0"1 + (2q - 8)'0', - (2q - 8)30'3 + [(2q - 8)4 - 16(2q - 5)(2q - 3)I(q - 2)(q - 3)]0'4 = 0 

G =_1_[_1_+_1_+ 1 ] 
6 •• (q-2) ~.-, ~.-3 (q_4j.d.-4 

1.-, = (1 + ~)'iI7 (1 + a, ) (1 + ± O'ja,,) 
q-4 I~O q-2+1 j-I 

q>6. v. = 2(2q - 7)(2q - 6)(2q - 5)(2q - 4)(2q - 3)O"v'(q - 2) 

0', + [31 - IOq - 2(q - 3)I(q - 2)]0'3 = 0 

0'1 + [4q + 14]0', + (I8(q - 2)' - 5I(q - 2) + 37 - (q - 3)(6q - 21) - [2(2q - 3)1(q - 2)][(q - 3)' + 2(q - 2)] J 0'3 = 0 

I + (12 - 2q)0'1 + (12 - 2q)'0'2 + [4jq - 3)(2q - 3)(2q - 5)]0'3 = 0 
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for q) 7 and the associated Iq _ 2 

(see Table III). 
The method we give in Sec. IV is general and can gener

ate for the KKx nonlinearity other general classes offour 
.1- i, .... It essentially consists of building progressively the 
operator lq _ 2 (ar ) in its factorized form lq . 2 (a r )=ITi: t 
(1 + TA). Let us remark that both /2G (.1 ) and (G x )2 are poly
nomials in .1 - tn, but 12G (.1 ) has 10wer.1 m terms which do 
not belong to (Gx )2. Consequently, we proceed in two succes

sive stages: First, we build a part IT;n';"1 (1 + Ti a r ) in such a 

way that IT;"'''' (1 + Tiar ) 12G has only Ll - m powers which 
appear too in (Gx )2; in a second step, coefficients Ti of the last 

part ITrn~' 2+ I (1 + Tia r ) of lq _ 2 are chosen so that they rear
range the coefficien ts of the remaining Ll -", powers in order 
to be identical to (G x). 2 It is worthwhile to notice a significant 
difference between the Burgers equation and all the other 
generated by our general scheme. The Burgers equation has 
only one linear constraint a.1 r + bLl x + eLlxx = 0 and, con
sequently, can lead to multisolitons or to an arbitrary num
ber N of(Yi,Pi) with denominator power of (1 + };.~ wJ On 
the contrary, in all other cases we have another linear con
straint Llr = Ll - 1 which restricts us to have only bisolitons 
or the y, cannot have more than two values. Coming back to 
the general problem of the possible bisolitons of (1.1) for 
A = 0 or KKx nonlinearity alone, we have verified in the first 
part of the paper for q<3 (denominators powers of .1 ) that 
they are all given by our general scheme developed in the 
second part of the paper. Is this property true for any q val
ue? Unfortunately, we cannot verify it in the general case. 

D. Possible generalizations for other quadratic 
nonlinearities? 

Besides K 2, KKx' (A + f.J.ax)K 2, is it possible that other 
quadratic nonlinearities carry out the same features for their 
bisolitons: do denominator powers of Ll lead to factorized 
linear operators? As a trivial remark, our results, which were 
expressed in potential formulation, show that this is true at 
least for (Kx)2 with the same Burgers exception. As a curios
ity we quote for q)3 a general bisoliton solution for the non
linearity KKxx as well as a mixed nonlinearity 
AK 2 + 2f.J.KKxx which is going the same way as the present 
paper. 

YI3 (1 + ar ) (A + aar + bax + f.J.(q - 2) axx ) K 
o q-2+p 2q-3 

= AK 2 + 2f.J.KK xx' K = .1 2 - q 

Ll = 1 + WI + w 2 , Wi = exp(t + Yi x), i = 1,2, 

f.J.(q-2) 
aLl r + bLl x + Llxx = 0, 

(2q - 3) 

a + by. + f.J.( q - 2) • .2 = O. (1.13) 
, 2q-3 ri 

We have both cases A #0 and A = O. It is amusing to notice 
that for A = 0 the linear operator still factorizes the linear 
Burgers operator and solution Ll 2 - q as well as the same 
operator lq _ 2 were present in Eq. (1.10). 
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II. SOLITONS 

The connection between the solutions of (1.1) with ei
ther of the three nonlinearities K 2, KKx , or AK 2 + 2f.J.KKx 
can be seen first in the case of solitons, i.e., rational functions 
of a unique variable w = eS, S = yx + pt, Y and p being pa
rameters to be determined. The relation between the cases 

and 

q 

Lq K = f.J.ax K 2, Lq = I a'jax'r J 

I -f- j = 1 

q-I 

(2.1) 

(E+Lq I)K=AK 2
, Lq I = I bijax"tJ (2.2) 

i+ j=O 

is straightforward and is explained in the first subsection. 
The link with the "mixed" case 

(2.3) 

is less obvious. When A = 0 or f.J. = 0, we recover the solitons 
of KKx andK 2; but when A andf.J. are not zero, other solitons 
appear together to the previous ones. These new solitons are 
of two kinds. First, we get a continuous family, depending on 
ratio f.J.I X Secondly, we find "bizarre" solitons with unusual 
asymptotic behavior (they are not bounded when w ->- (0). 

A. KKx and K2 nonlinearities 

Equations (2.1) and (2.2) are rewritten, using variable S, 
on the same formal aspect 

fA. ak-IK =XK 2 , (2.4) 
kL:1 k as k I 

where 

A k = I aij y rJ and X = Yf.J. (2.5) 
i + j = k 

in the first case (2.1) and 

Ak = I bij Y pi and X = A (2.6) 
i+j~k-I 

in the second case (2.2). This means that, in terms of the 
variable w or S, solitons of (2.1) and (2.2) have the same in
trinsic or canonical form. But the specific values of y and p 
and the (possible) conditions on constants (au) are different 
and the "dressed" solitons are not the same. 

As an example, we treat completely case q = 3 for KK x 

corresponding to L2 for K 2. It is easy to see that 
lim,v _ = K (w) is 0 or A/A, and it can be taken as zero 
through the invariance K ->- A II A - K. K is sought as an 
expansion4 K = };n>O '17n ( - w)" and '17n is a polynomial in n 
of degree 0 or 1. This leads to the four possible canonical 
forms: 

(I) K = 8/(1 + w), A3 = 0, AI = A 2 , 8X = A 2 , 

(II) K=8/(I+w)2, A I =6A3, 5A I =6A 2 , 8X=A I , 

(III) K = 8wl(l + W)2, A2 = 0, 
Al = -A3' oX = 6A I , (2.7) 

(IV) K = 8(1 + 2w)l(1 + W)l, Al = - 6A 3, 

SA I = 6A 2' oX = A I' 

where we have explained the intrinsic relations [for q = 2, 
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we should have only soliton (I)]. Using definitions (2.5) and 
(2.6) for the A k' we get the possible values of y, p, and oA in 
terms of the (aij)' In the KKx case, we get six "dressed" soli
tons for each intrinsic form (2.7), while in the K Z case we get 
only two "dressed" solutions. No supplementary condition 
on the (aij) arises, but this is no more true for q;>4. Notice 
that in L3 we note that (IV) contains the famous Bobylev
Krook-Wu soliton? of the Boltzmann equation6 and (III) 
contains the classical soliton of the "completely integrable" 
KdV. More generally, if L3 has no second-order derivatives 
(KdV or IKdV), A 2=0, and only soliton (III) exists; A 2,¥=0 if, 
for instance, a dissipative term a; is present. 

B. The complete nonlinearity (A + J-lax }K2 

Going now to the solitons of the mixed equation (2.3), 
we get the intrinsic equation 

q ak 
2 I Ak -K= (A +J-lyas)K , (2.8) 

k ~ ° as k 

where the Ak are given by (2.5) and Ao = E. 
We first consider the solitons which are bounded when 

OJ -+ 00, and, up to an additive constant, we write K as an 
expansion ~n>O TIn ( - OJt and TIn is a polynomial in n of 
degree q - 2 at most. We restrict ourselves again to q = 3. 
When J-l =1= 1, we get first the canonical forms (2.7) with new 
conditions on the A k : 

(1') A3 = 0, AA2 = EJ-l = (A, - E)A, ,18 = E, 

(II') AA3 = (E/6)jL/A, AA2 = (E/6)(A + 5jL), 

AA, = E(5A /6 + J-l), ,18 = E, 

(III') AA3 = - AA I = EJ-l, AA2 = - E, 8,1 = 6E, 

(IV') 

(2.9) 

We get a supplementary bisoliton, not present in the pre
vious cases, depending on the ratio J-l/ A 

(2.lOa) 

with the intrinsic equations 

OA Z = E, (2.lOb) 

from which we can determine parameters y, p, and J-l/ A with 
no supplementary condition on the aij and get at most 24 
"dressed" bisolitons. 

If A = 0, we can verify in (2.9) and (2.10) that necessarily 

E = 0, which means that the nonlinearity KKx has no expo
nential type soliton when the linear part has no term propor
tional to K. When both E, A -+ 0 in such a way that the ratio 
E/ A is a constant, we recover the solitons (I) to (IV). 

We recover them for jL = 0 too. These solitons are the 
solitons of L2K = AK 2, and they are the solitons of 
L3K = AK 2 with denominator (1 + OJ) - I and (1 + OJ) - 2; the 
solitons of L3K = AK2 having denominator (1 + OJ)-3 can
not be reached here. 
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It is easy to see that another class of solitons exists, not 
bounded for large OJ because of the presence of two nonlin
earities. They are presumably not so interesting both from 
the physical point of view (they have no corresponding term 
in the KK x case) nor from the mathematical point of view 
(analyticity disappears near OJ = 0 in the exchange 
OJ ~-Hu-I). For nonlinearity AK 2 + 2J-lKKx , we find a finite 
number of solutions 

k,OJ + ko + H(OJ) , 

where H (OJ) is a bounded rational function: lim",. 00 H (OJ) 
= O. We have the further relation A + 2J-ly = 0 and the rhs 

of (2.8) is always proportional to ( - 2 + as)' Their number 
depends on q and for q = 2, we have (up to the in variance 
K -+ E/ A - K) the unique solution 

(VI) K = - (E/3A )OJ2/(1 + OJ), AI = 5E/6, A2 = E/6, 

corresponding to the identity 

( as) ( as) ( OJ2 ) ( OJ2 )2 1- 2 1- 3 I+OJ =(-2+as) I+OJ 

When q = 3, we have soliton (VI) with A 3 = 0 plus the three 
independent solutions 

(VII) K = ~ ~ (5OJ
3 + 6OJ

2
), A 29 

23 A (1 +OJ)2 ,= - 6x23 E, 

3 E 
AZ=-n E, A3=-6X23' 

3 

(VIII) K = - E OJ ,A, = 
5A (1 + OJ)2 

Ao_=~, A - -~ 
5 3- 60' 

(IX) K = _ _ E_ (6m
3 + 3m

2
), 

25A (1 + OJ)2 

17 E 
A2 =--E, A3 = 

100 100 

47 
--E, 

60 

4E 
5 

Besides these "bizarre" solitons exist an infinite number of 
binomial solutions kp wP + ko, p = 1,2,3, ... ,ko = 0 or E/A, 
which have no practical interest. We shall not consider them 
anymore. 

III. NONTRIVIAL BISOLITONS OF (E + Lq}K 
= (A + J-lax}K2 FOR q = 2,3 

In this section, we seek systematically bisolitons of the 
full nonlinearity, assuming that their denominators are pow
ers of 1 + OJ, + OJ 2, 

(3.1) 

for q = 2,3. We examine successively cases E, A =1=0 and 
E = A = O. For E, A =1=0, we shall verify that E is factorized 
both on the lhs and rhs of (3.1), so it disappears in the balance 
and two cases may occur. Either A and J-l, disappear too in 
the balance (3.1); then Eq. (3.1) contains no parameters, only 
numerical coefficients, and no limit exists when ,1-+ O. We 
shall see that this happens for "bizarre" bisolitons (relaxing 
to the bizarre solitons of Sec. II). Or A and J-l, still exist and 
we can go to the limit A = 0; in that latter case, solutions of 
(3.1) for E, A =1= 0 are prolonged into solutions for E = A = O. 
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At first sight, we expect bisolitons coming from four 
different directions: 

(i) "Trivial" bisolitons, i.e., bisolitons for Lq _ 1 K = K 2 

with E + Lq _(A + f..lax )Lq _ l' By construction, they yield a 
factorization of Lq; they are still present when taking the 
limit A = 0. 

(ii) Bisolitons of(E + Lq)K = (A + f..lax)K2 forE,A #0, 
which exist in the limit ,1= 0. We shall see that E + Lq is 
then factorized and that K is derived from a potential func
tion G: K = (A + f..lax )G. 

(iii) Bisolitons of the KKx case only. Except for the 
Burgers case, Lq is factorized. We shall see examples for any 
q in the last section. 

(iv) Bisolitons specific of the mixed case K 2 + KKx. In 
general, they relax to bizarre solitons (VI)-(IX) of Sec. II. 
They disappear when A = 0, as they come from the presence 
of two nonlinearities. For q = 2,3, we proved that they lead 
to a factorization of E + L q • 

Other bisolitons perhaps exist, but, for q = 2,3, they are 
the only possibilities, up to the in variance K ---+ E! A - K, 
U)1 +-> U)l ... and they lead-Burgers case excepted-to a fac
torization of Ll and L 3 • 

A systematic method was described in Refs. 4 and 6. It 
was recalled in the introduction [Eqs. (1.2)]. In order to sim
plify the formalism, we have symmetrized the nonlinearity. 
For that purpose, we take advantage of the invariance prop
erty of the linear part under linear transformations of the 
(x,t) variables. By the linear transformations (x,t) ---.. (X 1,X1 ), 

Xi = Yi X + Pi t, U)i = expxo Lq becomes another differen
tial operator 

(3.2) 

where the new aij have a new meaning and are trivially de
duced from the old ones; for simplicity, we keep the same 
notations in what follows. Equations (3.1) and (1.2b,c) are 
rewritten 

(3.3) 

and 
m 

F m (Z ) = (A + f..l2m + f..l1 zaz ) I Fp (Z )F m _ p (Z ) 
p~O 

m --I 

+ (;.12 - f..l1)aZ I Fp(Z)Fm _ p - dZ), (3.4) 
p~O 

respectively. 

A.Caseq=2 

When E,A #0, besides the trivial bisolitonK = (dA )(1/ 
Ll ) solution of L 1K = AK 1, we find no bisoliton common to 
K 1 + KKx and KKx but only two bisolitons specific for the 
mixed nonlinearity. Their derivation is explained in the Ap
pendix. We obtain 
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These solutions have an unusual asymptotic behavior, and 
one of them relaxes to the bizarre soliton (VI). They require 

f..l1 =f..l2 =f..l = -A /2 (3.5b) 

and factorize on both sides of (3.1) the factor c If..l, the rhs 
operator being proportional to ( - 2 + ax] + ax,); of course, 
we cannot go to the limit A = 0. 

As an example, we have for the first bisoliton, the iden-
tity 

and both bisolitons may be found in Table I (first and second 
lines) with the ordinary (x,!) variables. 

When E = A = 0, the bizarre bisolitons disappear, and 
we get one solution specific oftheKKx case 

[(;.1i ax] +f..l~ ax,) - (;.11 ax] +f..l2ax,n (;.11U)1 +f..l2U)l)l..:.1 

= (;.11ax] + f..l2ax,)[(;.11U)1 + f..l2U)2)/..:.1 ]2, 

which is the Burgers solution with the change of variables ax 

=f..l1ax] +f..l2ax2 and a, =f..l~ aX] +f..l~ ax,. We rewrite it in 
the well-known form 

(a, - a~,)K = ax K2, K = ax log.d 

or 

(a, - a~,)G = (Gx)l, 

where we have put into evidence the potential function 
G = log.d. 

B. Case q= 3 

Besides the trivial bisolitons, obtained with a monomial 
form6 (K = U)2 F 1), we get bisolitons in the three classes re
called at the beginning of the section. We have 

1. A continuous family common to K2 + KKx and KKx 

Both K and E + L3 factorize parameter E! A 2. We may 
drop it in (3.1), and we get the identity 

(1 + ~ ax,) [A 2 + A If..li ax, - ~ If..l; ax, + i (If..li ax/] 

X! [A + I(A - f..li)U)i ]/..:.1 2) 

(A + I f..liax.l{[ ,1+ I(A - f..li )U)i ]/..:.1 2 r 
(3.6) 

and K may be derived from a potential function G 

(3.7) 

We can take the limit A ---+ 0, and the solution survives giving 
the new identity 
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(1 + I ax,)[ I Ji7axi - (I Ji;axJ] (6 IJi;w;lL1
2
) 

= (IJi; ax,)( 6 IJi; W,/L12Y, 

2. A family specific to the KKx case 

(3.8) 

When setting directly E = A = 0 in (3.1), we find a biso
liton specific of KKx without the corresponding solution for 
the mixed nonlinearity 

K = (,uIW I + Ji2(2)(1 + .1 )1.1 2, K = (I Ji;aXi)G, 

G = 10gLl - 1/.1, (3.9) 

where G G (.1 ) is the potential function. Solutions (3.6) and 
(3.8) are gotten with a restricted expansion K = Fo + W 2 F I , 

and the results can be checked with the formulae of the Ap
pendix and using Table V, which gives the general expres
sion of (E + L3)K when F2-F3 O. 

3. Bisolitons specific to the K2 + KKx case 

Up to all in variances (mainly WI - W2' K -+ dA - K), 
we get six bisolitons which are not present in the pure K 2 or 
KKx case. There is a supplementary condition 

Jil =Ji2 =Ji = -A/2 

as for q = 2, so that the rhs operator is proportional to 
( - 2 + ax, + ax,); both sides factorize (dA 2)2, and we can 
drop this normalization factor. They are written in Table I 
(lines 3-8) in the (x,t ) variables together with the associated 
linear operator 1:3 = 1 + L 3 ; the parameter A has completely 
disappeared and the limit A = 0 cannot be taken. Like bi
zarre solitons, they have an unusual behavior when W; -+ 00; 
moreover, four of them relax to bizarre solitons (VI)-(IX) 
when WI = O. Their derivation is sketched at the end of the 
Appendix. 

We have verified that no other bisoliton exists up to all 
invariances for q = 2,3. The calculation is long and tedious 
but can be done with the general formulae of the Appendix. 
Notice that solitons belonging to different kinds cannot be 
coupled to form a bisoliton and that each soliton appears in 
one bisoliton and one only. 

IV. GENERAL SOLUTIONS IN THE KKx CASE 

The observation of the bi-solitons for q = 2 and q = 3 
has shown that they belong to four kinds: (a) trivial bisoli
tons, solutions of Lq _ I K = K 2, (b) bisolitons specific of the 
mixed case E, A #0 which may grow indefinitely for largew; 
and which disappear at the limit A -+ 0, (c) bisolitons com
mon toKKx andK 2 + KKx , and (d) bisolitons which appear 
in KKx only. We consider here bisolitons of kinds (c) and (d) 
only and generate classes of solutions for any q which are 
generalizations of solutions (3.6), (3.7), and (3.9). The key 
point is that they derive from a potential function G (.1 ) of the 
unique variable .1 = 1 + WI + W2, K = (A + Jia x)G or 
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K = ax G and the linear part Lq factorizes the second-order 
linear operator 12 = A 2 + aat + (b + AJi)ax + c~x of Eq. 
(1.8), which for A = 0 reduces to the Burgers equation. 

Potential G (.1 ) is defined through Eqs. (1.7), and, as 
pointed out in the Introduction, there are only three possibi
lities for H = Iq _ 2 (t )G: (i) H G; then Iq _ 2 = 1 and A = 0 
and we have the Burgers equation; (ii) H =G 2, which gives 
both/or E, A #0 and E = A = 0 the unique solution 
G = .1 2 - q, Eqs. (1.9) and (1.10); and (iii) H¥=G, G 2. This 
latter case implies necessarily E = A = 0, i.e., the bisolitons 
(iii) are solutions/or the KKx case alone and not for the mixed 
case. This is not a great restriction, as the physically interest
ing cases enter this category. This section is devoted to the 
study of some classes of solutions (iii) forany q, still assuming 
that the denominators are powers of .1. 

A. General features 

We recall that the potential function G (.1 ) is solution of 
the intrinsic equation (1.11). 

a2 a2 (q - 2 ) 
-2 Iq - 2 (t )G (.1 ) = -2 I b; at' G (.1 ) 
aL1 aL1 ; ~O 

= Vq(~~r bo = 1, (4.1) 

Iq _ 2 / 2G=vq (GJ, 12 =aat +bax +ca~x, 

ap; + by; + Cr7 = 0, (4.2) 

and the general solution has the form (1.12) 

q-2 a
k 

G = I I: - Y 10gLl (4.3) 
k ~ I .1 

with a q _ 2 #0. When q = 2, we have the only solution 10gLl 
(Burgers) and, when q = 3, the two solutions 1/.1 and 1/.1 
- 10gLl. Actually, their number increases very quickly with 

q as for q = 4 and q = 5, we find 6 and 20 solutions, respec
tively. A rapid estimation for q = 6 gives 35 solutions with 
y # 0 and presumably the same number without the logarith
mic terms! In the following, we shall investigate for any q the 
simplest cases where only aq _ 2' or aq _ 2' and aq _ 3' or 
a q _ 2' a q _ 3' a q _ 4 ... (subsections IVB and IVC) are present. 
Two methods are given, one of them was already used for 
nonlinearity K 2 in Ref. (4). For q small the existence of a 
non vanishing logarithmic term requires that the (a k ) are all 
nonzero; when q increases, we may expect that most (a k ) are 
nonzero too. It is then impossible to give here all the solu
tions, but we can exhibit a peculiar one which generalizes 
both the Burgers solution for q = 2 and solution (3.9), 
G = - 10gLl + 1/.1 for q = 3, subsection IVD. All these so
lutions have been gathered in Tables II and III; we wrote 
them in a self-contained way so that the identities could be 
directly checked. Finally, in subsection IVE we give, for il
lustration, all solutions for q = 4. 

We end this subsection with a more technical remark. 
There is some freedom in the choice of the time variable t as 
the rhs of Lq K = Jia x K 2 is invariant under any transfor
mation at -+ constlat + const2ax ' A convenient choice is 

W; = exp(t + YiX), i = 1,2, L1t = L1 - 1, (4.4) 

and due to (4.2) we have always only two Y; values. Then (4.1) 
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is a nonlinear differential equation in variable Ll only. We 
shall assume (4.4) from now on. Then, for any derivative 
a ~ k F of any function F (Ll ) we have 

k 

a~k F - I (Ll - I)' 'G~ a~J F, (4.5) 
,~ I 

where the (G'~ are the Stirling's numbers of the second kind,H 
which we have already encountered in the K 2 nonlinearity.4 

B. Solutions with two Ll terms 

We assume here that 

G (Ll ) = 1/ Ll q - 2 + 13 ILl q - 3 , (4.6) 

all other terms being zero (for simplicity, we have set a q _ 2 

= 1, a q _ 3 = f3). For 13 = 0 and q = 3, we recover the solu
tion G = Ll 2 - q, which is still valid when E, A ~O [see Eq. 
(1.10) and solution Gl,q of Table II]. When 13 ~O, Eq. (4.1) 
splits into q numerical equations for the q variables 
bl, ... ,bq _ 2' V q , and 13 and we may expect a finite number of 
solutions. We give here two methods; the first one was al
ready used for deriving solutions with the K 2 nonlinearity.4 

1. First method 

Noticing that a, = zaz , where Z = liJl + liJ 2 = Ll - 1, 
Eq. (4.1) may be rewritten as 

Ct~lik zkaz ' C2) G = Vq G~, 
where lio, lil,. .. ,liq _ 2 are triangular linear combinations of 

bo = l,b l ,. .. ,bq_ 2 [liq-2 =bq _ 2, Iiq-3 

= b q _ 3 + 2( q - 2)b q __ 2 ... ] • 

Introducing the quantities 
q-2 

Ip= I Iik(-)k(q-3)(q-2) ... (q-2+k)Cf, 
k~p 

q-2 
Xp= I Iid-)k(q-2) ... (q-l+k)C~-I, 

k~p 

where C;:, = (;;') is the binomial coefficient, we get (q - 3) 
linear equations without the rhs, 

f3Io = 0, 

- f3II + Xo = 0 ,. .. , (4.7a) 

(- )P(f3Ip - XP-I) = 0, p = 1,2, ... ,q - 4, 

and three non linear equations with the rhs, 

(- )q-3(f3Iq_3 - Xq-4) =f32( q - 3)2Vq, 

(- )q-2(f3Iq __ 2 - Xq-3) = 2( q - 2)( q - 3).8vq,(4.7b) 

( - )q X q _ 2 = ( q - 2 )2V q • 

Notice that f3Io = 0 excepted, Eqs. (4.7a) exist only when 
q>5 while (4.7b) holds already when q = 4. 

The resolution goes in the following way: 
As 13 ~ 0, the first equation gives Io = 0, then, through 

some easy combinatorial manipulations on Stirling numbers 
'G ~, we get X 0 = I/( q - 3). Then, the second equation 
(4.7a) is rewritten [13 - 1/( q - 3)]I I = 0 and splits into two 
possibilities: either 13 = 1/( q - 3) or II = O. Choosing 
I I = 0, we get X I = [2/( q - 3)] I 2, and the third equation 
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gives in turn [13 - 2/( q - 3)] I2 = 0 and another bifurca
tion: Either 13 = 2/( q - 3) or I2 = 0, i.e., X2 = [3/( q - 3)] 
I3 .... After solving the ( q - 3) first equations, we have 
found q - 4 bifurcations 13 = 1/( q - 3), 2/( q - 3 ),. .. , 
(q - 4)/( q - 3) (provided q>5) and, for q>4, another way 
which corresponds to Io = II = ... = Iq _ 4 = 0 with 
Xo = II( q - 3),XI = lI2/( q - 3),.··, ,Xq-4 = Iq_ J' 

It is easy to see that the possibilities 13 = 1/(q - 3), 2/ 
( q - 3), ... , pl( q - 3) ···13 = ( q - 4)/( q - 3) are actually so
lutions as system (4.7) is now linear and homogeneous in the 
(Pk) and Vq parameters and the determinant is zero. The first 
equation Io = 0 fixes then Vq as lio is not independent of 
1i1, ... ,Vq __ 2 (as bo = 1 is fixed). We get solutions G3.q of Table 
III withp = 1,2, ... ,q - 4 (q>5). 

As to the last possible solution, we have to solve the 
three last equations (4. 7b ). Noticing that I q 2 and X q_ 2 are 
proportional to liq _ 2' we are left with three variables, 
liq _ 2lvq, Iq_ Jlvq, andf3. We get 13 as any ofthe roots of the 
second degree equation 

f32( q - 2)( q - 3) + 13 (2q2 - 9q + 8) + (q - 2)2 = 0 (4.8) 

with G = 1/ Ll q - 2 + 131 Ll q - J [Eq. (4.6)], and we obtain the 
two solutions G2•q of Table II. 

2. Second method 

The above calculation give all the possible solutions of 
(4.1), but we obtain the operator Iq _ 2 (t) or its coefficients bi 

through a complicated linear (triangular) system. We may 
now directly construct Iq _ 2 (t) in its factorized form 

q-2 
lq _ 2 (t) = II (I + ria,). 

i= 1 

We use the identities 

12(1/Ll q- 2 + 13 ILl q- 3) 

= c(q - 2)(Ll x )2 [( q - l)/Ll q + f3( q - 3)/Ll q- I] 

(4.9) 

=c( q - 2)F[f3( q - 3),q - 2] , (4.lOa) 

(1 + ra,)(Ll ;/Ll m) 

=Ll; ! [1- T(m - 2)]lLl m + rmlLl m+ IJ, (4.lOb) 

[1 + aJ(m - 1)] F(p,m) 

= [(m + 1)/(m - 1)] F(p - I,m + I), (4.1Oc) 

where 

F(p,m)-Ll~ [pILlm+I+(m+l)/Llm+2]. (4.1Od) 

As the final expression Lq G = Iq _ 2 12G contains only 
the inverse powers Ll 2 - 2q, Ll 1- 2

q, Ll - 2q of the various Ll, it 
is necessary to kill, at each step (1 + Ti a, ) but the last one, 
the lowest term in the powers of Ll - I. Two cases may occur 

(i) 13 ( q - 3) is not an integer or 13 ( q - 3) is an integer 
larger than q - 3. Then from (4.lOc) 

c(q-2){qil(l+ a, )F[f3(q-3),q-2)]} 
k~O q-3+k 

= 2c(2q - 5)F[f3( q - 3) - (q - 3),2q - 5] 

and 

(1 +Tq_ 2 a,)F[(f3-1)(q-3),2q-5] 

must be proportional to 
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(Ll
X
)2[(q-2)1.,p-1 +/3(q-3)1Llq-2]. 

We find 

7q_2 = (q - 2)1[( q - 2)(3q - 8) +/3( q - 3)(3q - 4)] 

and/3is solution of(4.8). We recover the two complex conju
gate solutions G2 •q of Table II; we have set p = /3 (q - 3). 

(ii) /3 (q - 3) = p,p integer and 0 < p < q - 3. This may 
happen only if q>5. Then from (4.1Oc) again 

e(q - 2) [Prf (1 + at )] F(p,q - 2) 
k~O q-3+k 

= (q - 3 + p)(q - 2 + p) eF(O,q _ 2 + p) 
(q- 3) 

(q - 3 + p)(q - 2 + p)(q - 1 + p) Ll ~ = e----, 
(q-3) Llq+p 

where at the pth step two terms were killed together. In the 
next q - 4 - p operations, we go on killing the lower order 
term. Using (4.1Ob) with 7 = l/(m - 2), m = q + P - 1, "', 
we get 

q-rr- P
(l+ at )~ 

j~O p+q-2+J Llq+p 

(2q - 6)(2q - 5) Ll ~ 
(p + q - 2)( P + q - 1) Ll 2q - 4 

We choose the last two parameters 7 q _ 3 and 7 q _ 4 by requir
ing that 

(1 + 7 q _ 3 a t )( 1 + 7 q _ 4 at)Ll ; ILl 2q - 4 

is proportional to (G x )2. 
I t follows that 7 q _ 3 and 7 q _ 4 are the two (real) roots 7 ± 

of the second degree equation 

[2(q - 2)(q - 3)(2q - 5) + 2p(2q - 3)(2q + p - 6)]r 

- [(q - 2)(4q - 11) + 2p(2q - 3)]7 + (q - 2) = O. 

(4.11) 

Factorization of Lq for G3•q follows (see Table II). 

c. Three Ll terms 

The derivation of the solutions become more and more 
tedious when the number of Ll terms increase. We just give 
two families of solutions with three Ll terms and use the 
second method explained in subsection IVB. We start with 

a /3 /3' 
G(Ll)=--+--+--Llq-2 Llq-3 Llq-4 

(a = a q _ 2' /3 = aq _ 3' /3' = a q _ 4) 

and useformula (4.1Ob) for (1 + 7at ) (Ll ;1 Ll m) together with 

12 ---+---+---G a /3 /3' ) 
q-2 Llq-3 Llq-4 

= e(Ll f[ a(q - 2)(q - 1) 
x Ll q 

/3(q - 3)(q - 2) /3'(q - 4)(q - 3)] + + , Llq-I Llq-2 (4.12) 

and we look for Iq _ 2 under its factorized form (4.9). 
The principle is the same: After having performed the 

transformation (1 + 7; a, ), we choose 7; so that the lower 
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term in Ll - I vanishes. Actually, the experience of the pre
vious case shows that most solutions appear by killing an
other Ll term along the sequence II; (1 + 7;a,). Here, we may 
imagine that we may kill all terms but one and restore, in the 
last four operations, I1~ =; (1 + 7;a,), the five terms Ll - 2q 
Ll - 2q + \ .. , ,Ll - 2q +4 which are present on the rhs (GLI f 
and impose 7 q _ 5 , ... ,7q _ 2 so that we have proportionality. Or 
we may still kill two terms only and restore the five terms 
and proportionality to (G LI )2 in the last three operations by a 
convenient choice of 7q _ 4' 7q _ 3' 7q _ 2' /3' so that (a 2/aLl 2) 
1 (q _ 21 G would be again proportional to (G LI )2. In all cases, 
the requirement thatLqG be proportional to (Gx )2 gives four 
equations for determining four variables, so that we may 
expect a finite number of solutions. The above processes are 
more numerous than in the preceding study as we may kill 
these terms in one time or successively in different steps 
(1 + 7 I a,). A priori, there are (q2 - 9q + 22)/2 processes and 
in general each of them leads to several solutions. We shall 
restrict to three solutions which we shall investigate succes
sively. 

(i) Killing all terms but one after the first step. This is 
possible if q> 7 only. We get solution G 5.q of Table III. 

(ii) Killing two terms after the first step and keeping two 
terms in the further operations. Then q>6 and we get four 
solutions, one of them is solution Go,q of Table III. 

(iii) Keeping three terms at each operation. We derive 
the solution for the minimum case q = 5 only. 

1. Casei 

Using (4.1 Ob) and (4. 1 1), we get after one operation 

(1 +7a )I,G= (q-l)q ~ 
1, - q-4 Llq+1 

provided a(q - 2) = 1, (q - 2) (q - 3) /3 = 2, 
(q - 2) (q - 3) (q - 4)/3' = 2, and (q - 2)71 = 1 andq>7. 
The possible solution is then already determined. The next 
(q - 7) derivations keep the monomial form and determine 
the (7;), i = 2,3, ... ,q - 6: 

(1+~)Y((I+ at )12G 
q-4 I~O q-l+1 

=2(2 -7)~. q Ll 2q-6 

Now, we perform Ilk:! _ s (1 + 7ka,) (Ll x)2 ILl 2q - 6 and im
pose that the result must be proportional to 

(Gx)2=Ll~ [_1_+ 2 
Llq-I (q-2)Llq-2 

2 ]2 
+ (q-2)(q-3)Llq-3 

The symmetric functions lTJ = .I7;, lT2 = .I7; 7), 

lT3 = .I7; 7) 7k , and lT4 = 7q _ 2 7q _ 3 7q _ 4 7q _ 5 are solutions 
of a linear system which determinant 
D = + 4(2q - 7) [2q4 - 15q3 + 45q2 - 62q + 36]1(q - 2) 
is nonzero. A unique solution exists, solution G = Gs.q of 
Table III, which we make explicit for q = 7. We find D = 

(56X 122x6)15 and 
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U 4 = liD, u3 = 194/5D, u 2 = 4074/5D, 

u 1 =! + 002 - 3003 + [(19 X 36)/5]u4 • 

2. Caseii 

Here we kill two terms at the first step and keep the two 
others during the (q - 6) next operations. We have 

(1 + 1'la t )12G = [(q - 1)/(q - 4)] 

XFfIJ(q - 3)(q - 2) - 2,q - 1], 

where 1'1(q - 4) = 1, a(q - 2) = 1,/3'(q - 4) =/3, q>6, and 
function F( p,rn) is defined in (4.1Od). With (4.10c), we per
form the (q - 6) next derivations 

( 1 +~)YI7(1 + a, ) 
q-4 1=0 q-2+1 

=2 (~~~) F[/3(q-3)(q-2)-q+4,2q-7] 

and determine the last three constants l' q _ 2' l' q _ 3 , l' q _ 4' or 
rather their symmetric functions U I>U 2'U 3' and parameter 
/3(q - 3) = B by performing the last three derivations. We 
get U 1,U2,U3 as solutions of a fourth-order linear system the 
determinant of which must be zero. We find conditions for 
B: 

-Either 

B= (q- 3) 
(q-2)' 

G=_1_[_I_+_1_+ 1 ] 
(q - 2) ..::1 q - 2 ..::1 q - 3 (q _ 4)..::1 q - 4 

is the solution G6,q of Table III and u J' U 2' U J are solutions of 
the linear system written on Table III. 

-Or B is solution of an equation of degree 3 

(q - 2)2(q _ 3)B3 _B2(q - 3)( - q2 + 9q - 10) 

_B(q3 - 3q2 - lOq + 18) - (q -l)(q - 3)(q - 4) = 0, 
(4.14) 

G=_I ___ I_+ B 
q-2..::1 q- 2 (q-3)..::1q-3 

B + . 
(q - 3)(q - 4)..::1 q-4 

As an illustration, for q = 6, we have 

111 
G 6(..::1)=-+-+-

6.q = 4..::1 4 4..::1 3 8..::1 2' 

with 

360 
v6 =--

47 

In this example (4.13) we have assumed that after every step 
1 + 1'ia" 1 <i<q - 5, we always remain with two..::1 terms. It 
implies that /3 (q - 3)(q - 2) is not an integer p with 
2<p«q - 5). One easily sees that, whenp in an integer, 
2< p< q - 5 (and q> 7) another process takes place: After 
the (p - 1 )th step, we remain with one,;j term and we are left 
with a problem similar to that of subsection IVCl, ifp = 2, it 
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is exactly case IVCl. More generally, for any integer p, 
2<:p<q - 5, it can be checked that 

( a )P-3( a) 
1 +-'- II 1 + ' 

q-4 /=0 q-2+1 

x
q -tf 6

(1+ at )i2G 
)=0 q+p-3+j 

_ 2(2q - 7)(q + P - 4)c ..::1 ~ 
- (q _ 2) :J 2q - 6 ' 

1 1 [1 pip ] 
G=(q_2)..::1 q- 4 ~ + q-3 ~+ (q-3)(q-4) . 

It remains to determine, as in IV C 1, the symmetric functions 
U 1,U2,U3,U4 such that (1 + ula, + u2a" + U3a,3 + U 4a,4) 

(..::1 x )21..::1 2q - 6 is proportional to (G a ). 2 

3. Caseii; 

We briefly indicate the solution when three..::1 terms are 
present during the (q - 4) first steps for the minimum case 
q = 5. 

We have 

G = 11..1 3 +/3/,1 2 +/3'/,1 

and 

We must choose the last two parameters 1'2 and 1'3 and coeffi
cients/3and/3' such that (1 + 1'3at) (1 + 1'A)(l + a,)i2G is 
proportional to 

(Gx )2 =..::1 ~ (3/..::14 + 2/3/,1 3 +/3'/,1 2)2. 

Eliminating 1'2' 1'3' and /3 " we get for /3 an equation of the 
sixth degree and then express /3' and 1'2 + 1'3 = U I and 
1'21'3 = U 2 in terms of /3. 

D. A solution with the logarithmic term 

By inspection of the lower orders q = 2,3,4,5 a peculiar 
solution appears which is connected to a peculiar form ofthe 
rhs, 

or, equivalently, 

q - 2 1 
G(..::1) = I - -log..1, 

k=l k..::1k 

denoted G4•q in Table II. 

(4.15) 

For q = 2, it is the Burgers solution, and, for q = 3, we 
recover solution (3.8). In the general case, we substitute this 
explicit solution in (4.1) and obtain 

H. Cornille and A. Gervois 2052 



                                                                                                                                    

q - 3 (q _ 1 - m) 1 

= m~o (q-1+m)(q+m) L1q-l+m 

In order to rewrite the 1hs, we recall the identity atK 
= ~~= I (..1 - 1)1 'G'i a"jl, Eq. (4.5), and introduce new coef

ficients (hi)' instead of(b l ): 

(4.16) 

where the (hi) are the linear combination of the higher-order 
coefficients bl + I , .•• ,bq _ 2' 

Then the rhs can be written as a sum of ..1 q - I + m terms 
and the coefficients give us (q - 2) numerical equations 

qi3 
hi (q - 2 + l)! C/( _ )I+m 

I=m (q - 2)! 

q-2-m (4.17) 
(q - 1 + m)(q + m) 

As (4.17) is a triangular system, there is one solution for the 
(hi) and, as (4.16) is triangular too, we derive a unique solu
tion for the (bj ) too. So the existence of the solution is proved 
but Iq _ 2 is too complicated to be written down here in the 
general case. Forq = 3, we recover b l = i, II = 1 + at /6, for 

I 

q = 4, Iz = 1 + M at + to a,2 , for q = 5, 13 = 1 + ~ at 

+ is at 2 + do at 1 • 

E. Solutions for q = 4 

Collecting all these results, we are able to list all the 
potential functions for q = 4 with the factorized linear oper
ator L4 = Iz(a, )Iz, Iz = 1 + blat + b2at 2, Iz = aat + bax 

+ ea~2' (a2/aL12) (1 + blat + bZat2 )G = V4(G"j)2 with 
v4=ebz(q-1)q(q+ 1)/(q-2)aq _ z and ..1 = 1 +WI +WZ, 
Wi = exp(t + YiX), a + bYi + el1 = O. 

We obtain six bisolitons, which are written in Table IV 
together with the associated L 4• We recover the solution G I.q 

= GI the two complex conjugate solutions G2•q = G ± and 
the peculiar solution G4•q = G4 , which were described in the 
preceding subsections. We obtain two supplementary poten
tial functions G5 and G6 with a logarithmic term which were 
not considered above. 

APPENDIX: RESEARCH OF THE BISOLITONS OF 
L3K = (..i + flax)K2 

Writing generally K as an expansion 
3 

K = I W~ FI(Z), 
1=0 

we get seven coupled equations (1.2) in the variable Z, for Fo, 
F I, Fz, F3. We derive the general formula: 

L3(wf FN) = wn(€ + Naol + NZaoz + N 3a03 ) + Zaz(a lO + azo + a30 + Na l1 + NaZI 

+ ZZ~2(aZO + 3a30 + NaZI) + a30z3a~, ]FN 

+ wf+ Ilaz [ - alO - azo - a30 + aOI - NaIl + (2N + l)aoz + (3Nz + 3 
+ Za~2 [a l1 - 2azo - 6a30 - (2N - l)azl + (2N + l)a 12 ] + ZZa~,( - 3, 
+ wf+zl~2 [ - a l1 + aZO + a02 + 3a30 + (N - 1)azl - (2N + l)a lz + 3 
+ Za~,(3a30 - 2azl + adJFN + wf+ 3( - a30 + aZI - alz + a03)a~, FN (AI) 

(where we have used Wi = eXl For example, Table V gives 
the coupled equations for Fo and FI when Fz=F3=O. 

By inspection, the only possible forms for Fo, F I, Fz, and 
F3 are 

deb a 
Fo(Z)=kl Z +ko+~+:l"2' FI(Z) = k z +~+?' 

f e g 
Fz(Z) = ~ +:l"2' F3(Z) = :l"2' (A2) 

where ko,kl,kz,a, ... , g are ten parameters and the numerator 

TABLE IV. Bisolitons for q = 4 and the nonlinearity KKx or (Gx )2. 

1'/2G = v(ax G f 

N of K = N /..1 z is a polynomial of degree 3 with ten param
eters 

N = ( g + f + k2)W~ 
+ (f + 2k2)W~ WI + ... + (e + d + ko)· 

In principle, one must put these ten parameters in Eqs. 
(1.2) and solve them. Great simplifications occur by noticing 
that 

(i) A preliminary condition is 

12 = aa, + bax + cau ' 0., = K, .:::I = 1 + tiJ, + tiJ 2, tiJ; = e' + Y"" a + by, + cr, = 0 

0., =.:::1 ~2. 
G± =.:::1 ~2+.:::I ~'f3±, f3± = -1 ±i, 
G.= -log.:::! +.:::I~'+l.:::l~2, 

G,= 11(.:::1 ~2_.:::I ~')-Iog.:::!, 

Go = -log.:::! +.:::1 ~, + j.:::l ~2, 
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12 =i1+a,12HI+a,l3), v=5c 
12 = 11 + a,HI += ia,l4), v = lfic 
12 = I + I),a, + (,oa,., v = C 

12 = I + kia, + kla,., v = C 

12 = I + I;l,a, + >ka,., v = C 
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Ll is a divisor of N L,u, Llx' - 6 L ai}(Ll x,)' (Llx'y, 
i+ j= 3 

providing relations between a, c, e, g, and the highest order 
coefficients a30, az" a,z, and a03 : 

g(,ul -,ud = 0, 

g,u, - e(,ul -,u,) = 6(a30 - all + a '2 - a03 ), 

e,u, - a(,uz - ,u,) = 6(3a30 - 2al , + a,z), (A3) 

a,u, - C(,ul -,ud = 6(3a30 - a2l ), c,u, = 6a30 . 

(ii) Fo(Z) gives the soliton to which K relaxes when 
Wl = O. Coefficients a 10' azo, a30 are known through the pa
rameters Ai aiO of Sec. II. If K (w"w z = 0) = 0, we have 
simply Fo-O. In the same way, ao" a02, a03 are known from 
the relaxation when w, = O. It is then enough to consider 
successively the nine reported solitons of Sec. II, plus the 
case Fo-O. We can divide the study into two cases. 

1. Research of the bounded bisolitons 

Numerator N has degree 2; we have g = 0 (F3=0) and 
ko = k, = kz = O. By adding a constant, which is necessarily 
c/ A if E, A =I- 0 and is arbitrary when E = A = 0, we can cancel 
the w~ term and get an equivalent bisoliton with! = O. 
[When E, A =1-0 we can suppress too the w~ term and get 
e + b = 0]. 

It can be proved that: 
-No bisoliton exist for K = FoIZ) (F, = Fz=O). 
-Bisolitons exist for K = Wz F,(Z) (Fo= Fl = 0), but 

they are the trivial bisolitons of L2K = K Z (see Ref. 6). 
-Bisolitons exist for K = Fo(Z) + W2 F,(Z). We re

cover trivial bisolitons, equivalent to the preceding ones, and 
the new bisolitons (5.11). These results can be checked by 
using the equations of Table V. 

-No other bisoliton exists up to all invariances when 
adding the third term w~ Fz(Z). 

-When E = A = 0, a supplementary bisoliton of the 
Burgers type exists. As an example, we check that bisoliton 
(3.6) is a solution of the equations of Table V and do not show 
here that it is the only nontrivial binomial solution for 
K = Fo + WZ FI when E, A =1-0. 

The relaxation to solitons [V] of Sec. II, both when 
(uz = 0 and WI = 0, gives successively 

E ,u~ 
a ---

30 - 6 A z' 

and similar results for Q03,a02 ,QOI with exchange,u I +--+ ,uz. 
Moreover, 

c=.!....,u, d='!""(l-,ul) 
A A' A A ' 

a = .!.... ,u I - ,u2 and b = O. 
A A ' 

Relations (A3) determine the symmetric parameters a 21 and 

a'2' 
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a =.!....,u1(2,uZ+,uI) 
21 6 A A A' 

a = .!....,uz (2 ,ul + ,uz) 
'2 6 A A A' 

and it remains to fix the only parameter a II; for instance, in 
equation F, (Z ) = FI (Z), at lowest order Ll -', we find 

and L3 is written in the form (3.6). As a final point, we can 
verify either that all other equations of Table V are now 
identities or more simply that Eq. (3.6) is actually satisfied. 
For E = A = 0, the supplementary solution corresponds to 
d = 0 and a = b [F3(Z) = F3(Z)], 

2. Bizarre bisolitons for q = 2,3 

In that case ,u, =,uz = ,u, A = - 2,u so that the mixed 
nonlinearity equation becomes 

Lq K =,u( - 2 + ax, + ax,)K Z 

(-2+ax +ax )K 2 
I 2 

=(-2+zaz)F~ 

+ 2wz( - 1 + Zaz)FoF, + w~ zaz F~ + 2w~ 

X(l + Zaz)(F,Fz + FoP3) + wi(2 + Zaz)(F~ + 2F,F3 ) 

+ 2w~(3 + Zaz)Fz F3 + w~(4 + zaz)FL 
(A4) 

whereas LzK (ai) = 0 ifi + j> 2) and L3K are sums of terms 
like (A I). In (A4) we call [/] the relation, telling that the 
coefficient of w~ must be zero. As a result, Lq is proportional 
tOEandK to c/,u, sothatc /,u factorizes in both sidesof(A4). 
We throwaway this unnecessary factor in the final results 
quoted in Table I. Although the calculations are performed 
in the Xi variables, in the table we come back to the original 
variables X and t by the changes x, = x + t and X 2 = x - t. 
We have found two bisolitons for q = 2 and six for q = 3. We 
do not give all details in all cases. If we seek a bisoliton relax
ing to a known bizarre soliton, we look at the factor E + Nao, 
+ N Z

a 02 + N 3a03 ofFN in (AI), which is specific to that soli
ton. We then know what are the necessary [/] linear (in F m ) 

relations. If the bisoliton relaxes to zero, we do not have this 
advantage. A relation [l] is said linear if only F m terms are 
present and nonlinear if the rhs of (A4) gives a contribution. 

q=2 

(i) K, = w~ F z and F2 = ! / Ll: the linear equation [2], 
[3], and [4] lead to a lO = all = a20 = 0, aoz = E/6, and 
a(ll = - 5c/6; the non linear equation [4) gives! = E/6,u: 

q=3 

(i)K, = w~ F3 andF3 = giLl 2: there1ation (A3) and the 
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TABLE V. (E + L,)K = (A + lla,)K' when K = F.,(Z) + w,F,(Z). 

(E + L,(F., + w2F,) = [E + (0)(, + 0'0 + a,o)za, + (0'0 + 3a,o)z'a .. + a",:r'a" ] F., 
+ w,l [(00 , + 0 0, + am - 0'0 - 0'0 - adaz + (a" - 20,0 - 60'0 + a" + a ,,)za .. + (a" - 3a,o)z'az' ]Fo 

+ k + 0 0 , + 0 0, + 0 0., + 101{) + 0'0 + a" + a,o + a" + a ,,)zaz + (0'0 + 3a,o + a,,)i'a .. + a",z'az' ]F,I 

+ wi I [(00, + 0'0 - a" + 3a,o - a" - a" + 3a'lJ)az' + (3a,o - 202, + a ,,)zaz' ] F., 
+ [(00 , - 0'0 + 3ao, - a,o - all - a", - a" - a" + 7aOJ)az + (a" - 2a,o - 6a,o - a" + 3a,,)za,' + 10" - 3a,o)z'az' ]F, I 
+ wi I (am - a" + a" - a,o)iJz' F., + [Ia2o + ao, - all + 3a,o - 3a" + 6a(1 )az' + (3aJo - 2a" + a ,,)zaz' ]F,I 

+ wi (aOJ - a" + a" - adaz,F, 

= (A +Il,zaz)F~ + w,[2(A +11, +Il,zaz)F,,F, + (II, -Il,)a,F~] 
+ wi [(A + 2112 + ll,za,)F; + 2( II, - 1l,)a,F.,F,] + wi I II, - 1l,)a,F; 

( E + ± a"a",,,,,) K = (A + I Il,a,,) K 2, K = F.,(z) + w,F,(z), z = (u, + w" w, = eX, 
1+-;- I 

linear equations [3], [4], and [5] lead to 
a30 = a 21 = a l2 = a20 = all = a lO = 0, g = €/10,u, 
a03 = - €160, a02 = €15, and aOI = - 47€160: 

KI = €liJ~/lO,uLl 2, 

L J = €(I - ax ,/3)(1 - ax,/4) (I - ax,/5) . 

(ii)K2 = liJ~ F2 andF2 = el Ll 2 + I ILl: (A3) and the lin
ear relations [2] and [3] give aJO = a 21 = a20 = 0, 
a 12 = a03 = ,ueI6, a II = - 5aoJ , a 10 = 6a03 , 
aOI = 6a03 - 5d6, and a02 = - 5aOJ + d6. The nonlinear 
[4] gives I = 5e and a03 = €16(23): 

(iii) K = liJ~ F2 + liJ~ F2, F3 = giLl 2, and F2 = el 
Ll 2 + IILl: (A3) and linear [2] and [3] give 
a30 = a 21 = a20 = O,,ue = 6a 12,,ug = 6(a 12 - a OJ)' 

€ + 2a01 + 4a02 + 8a03 = 0, a lO + 2a 1l + 4a 12 = 0, 
e(a ll + 5ad = 0, and e(aol + 5a02 + 19a03 ) = 0. We have 
two subcases following e = ° or e of 0. In the first case e of 0, 
the nonlinear equation [4] and [5] lead to a03 = 0, e = g, and 
51 + 4e = d,u, and still an equation (e + 1)(2e + I) = 0. If 
e of ° and e + 1= 0, we find 6a 12 = e,u = - € and 
K3 = €liJ~ liJII ,uLl2, L3 = €(1 - ax,) (1- ax,/2) (I - ax,/3). 
If eof0 and 2e + 1= 0, we find 6a12 = e,u = - € and 
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In the second case e = 0, [3] givesl = g and a 12 = ° and the 
nonlinear [4] and [5] give a II = a 10 = 0, a02 + 17a03 = 0, 
aOI + 6a02 + 22a03 = 0, aos = - 4d5, a02 = 17dl00, 
a03 = - €I 1 00, and,u I = 3d50: 

3liJ~ 
Ks = 50Ll 2 (I + liJ I + 2liJ2 ), 

(iv) K = liJ2 FI + liJ~ F2, FI = k2 + biLl + alLl 2, and 
F2 = I ILl + el Ll 2 leads to K6 = 6€liJ l liJ2(6 + 5liJ i + 5liJ2 )1 
23,uLl 2 andLJ = €[I + iMx, + ax,)] (I - ax,) (I - ax,). Let 
us recall that for these eight bisolitons (two for L2 and six for 
L 3 ) we can associate the same number by the transformation 
Ki - Ki = - d2,u - Ki satisfying Zq Ki =,u( - 2 + ax, 
+ ax )K~, with Zq = 2€ - Lq - €(ax + ax ) a nonfactor-, , 2 

ized linear operator. 
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Application of nonlinear operator theory to the Edwards-Freed equations in 
the theory of polymer solutions 
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Mathematical structure of nonlinear integral equations for "screened hydrodynamic interaction" 
and "self-energy" in the static version of Edwards and Freed's theory of polymer solutions with 
finite concentrations are analyzed and it is shown that algorithms developed by Lika and Altman 
for nonlinear operator equations without Frechet differentiability are applicable, Recipes for 
successive approximations are presented and questions to be investigated by those techniques are 
proposed. 

PACS numbers: 02.30.Rz 

I. INTRODUCTION 

In the theory of polymer solutions with finite concen
trations, Edwards and Freed 1-5 derived interesting nonlin
ear integral equations for the "screened interaction" and 
"self-energy." Here we neither repeat the derivation of those 
equations nor argue for or against assumptions and approxi
mations used in the derivation. Though attempts have been 
made to express quantities such as frequency dependent vis
cosity, etc., in terms of "known" functions, so far no other 
closed system of equations have been derived for the 
"screened interaction" and "self-energy." So it seems worth
while to investigate the mathematical structure of Edwards 
and Freed's integral equations more systematically than 

K (q,w) = ( ~~ ) 112 f f dr du exp(iwr + iuq) 

I 

done so far, in spite of some shortcomings of the Edwards
Freed theory pointed out by Muthukumar. 6 

In Sec. 2, we present alternative forms of nonlinear inte
gral equations to be considered. In Sec. 3, we present some 
relevant theorems from recent development of nonlinear op
erator theory, and recipes for application of those theorems 
to our problems is gi ven in Sec. 4. In Sec. 5, some questions to 
be investigated further are raised. 

2. NONLINEAR INTEGRAL EQUATIONS TO BE 
CONSIDERED 

In Edwards and Freed's theory of polymer solutions, I 
the equation for the averaged hydrodynamics interaction 
K (q,w) reads 

X [
4P(),ffd'." dq' fl (q')(1 - cos(q'u + w'r)) + 6 I I] -3/2 

LV 2 2 YJo r , 
q ! [w' - W2(q',W')] + WI(q',W')2) 

(2.1) 

where 

wl(q,w) = 3kB Tl- lq2 Re[K (q,w)(1 + rK (q,W))-lj. 
(2.2a) 

w2(q,w) = - 3kB Tl- lq2 Im[K (q,w)(1 + rK (q,W))-I]. 
(2.2b) 

It should be noticed that Eq. (2.1) has a structure very differ
ent from those for "propagators" in quantum field theory 
and the theory of condensed matters including the SCF ap
proximation 7 in the theory of polymer chains. 

For the hopping type model, Edwards and Freed2 de
rived the following expression for the "self-energy" 

.I (k,w) = - p,f dw' dq (iw'r + 3k
B 

TI-lq2)®(q,W') 
(21T)2 

X ffdudvexp! -iqu+i(w-w')v- ik2B(U,V)). 

(2.3) 

a) Alternative postal contact address: c/o Professor A. Vancura, FB Physik, 
University Kaiserslautern, D6750 Kaiserslautern, West Germany. 

In terms of the screened interaction 

K () I f dw' d 3k [" k 2 ~ (k ')]-1 q,w =:- lPW +YJo -~ ,W , 
bt (21T)4 

(2.4) 

® is expressed as follows: 

®(q,w) = [iw + K (q,w)(iwr + 3kB TI- lq2)] -I. (2.5) 

ReplacingB (u,v) by its static value as in the Kirkwood
RisemanR type approximation, Edwards and Freed2 got the 
following nonlinear integral equations for K (q,c) and~ (k,c): 

K(q,c) = ~ + -1-fk2dkr(k,q)[YJok2-~(k,C)j-" 
t 9r 

(2.6a) 

.I (k,c) = - ~c f dq r (k,q)[K (q,c)] -1, 

where 

(2.6b) 
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r(k,q) = ~k 2/ [it,(k 2)2/2 + q2] -I, 

9( = nN/ hrV, C = nNMAINA V. (2.7) 

From now on we suppress the parameter c in K and I. Elimi
nating I from Eqs. (2.6), one gets 

K(q) = .!...- + ~ f'''k,2dkT(k',q) 
; 37T Jo 

X { 1Jok ,2 + 9( 1'" dqT (k ' ,q')[K (q')]- I} 
= :St(K,q). (2.8) 

Or "equivalently," eliminating K instead of I, one gets 

I(k) = - 9( fdq r(k,q) 

{ 
/ 1 f }-I X -; + 3~ p2dpr(p,q)[1Jop2_I(p)]-' 

= :®(I,k ). (2.9) 

Edwards and Freed2.4.5 considered only negative definite I, 
but the situation is not so simple because of the nonlinearity 
of the equations. The screening constant 

K=:[ -I(O)/1J] 1/2 (2.10) 

and the specific viscosity 

1Jsp = :(/2NAIJ7TKMA {~dq[q2K(q)]-1 (2.11) 

must be positive, however. Another "equivalent" equation is 

L (q) = :[K(q)]-' = { ~ + 3~ f k 2 dkr(k,q) 

X [1Jok2 + 9( 1'" dp r(k,p)L (P)] -I} -I = :2(L,q). 

(2.12) 

In order to formulate existence theorems and successive 
approximation schemes, we regard Eqs. (2.8), (2.9), and 
(2.12) as operator equations in Banach spaces and try to ap
ply recently developed methods9

- " of nonlinear operator 
theory. 

3. RELEVANT MATHEMATICAL THEOREMS 

In this section we present several mathematical theo
rems about existence and uniqueness of solutions of nonlin
ear operator equations and convergence of successive ap
proximations. 

We write an equation abstractly, 

x - if> (x) =: PIx) = 0, (3.1) 

and denote the Frechet derivative of P at x operated upon x' 
as P '(x).x'. If the map if> is Frechet differentiable in a suitable 
domain, one may try to apply the Newton-Kantorovich 
type successive approximations. 12.13 

Recently, Lika9 and AltmanlO
•
ll developed successive 

approximation schemes for nondifferentiable maps. To for
mulate such successive approximation schemes one has to 
introduce the notion of Lipschitz approximation to a map. 
Map 'f/ is said to be a Lipschitz approximation to map if>, if 
11 (x) = : if> (x) - 'f/ (x) satisfies the Lipschitz condition 

1111(xd -11(x2)I!<A IIx l -X21! VXI,X2ED(if». (3.2) 

Now we have the following theorem adapted from Lika.9 
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Theorem 1: Suppose that the following conditions are 
satisfied: 

(1) The Frechet derivative tp' of the Lipschitz approxi-
mation tp to if> satisfies the condition 

IItp'(xd - tp'(x2l1l<Kllxl -x211 VX1,x2EMeX; (3.3) 

(2) 11 (x) = :if> (x) - tp(x) satisfies the condition 

1111 (xd - 11 (x2) I! <A Ilx, - x211 VXI,x2E MeX; (3.4) 

(3) Go = :[1 - tp'(XO)]-1 exists and 

IIGol/kbo, II Go(xo - if> (xo)) II <So; 

(4) boA < 1; 

(5) ho = :bo KSo < !(1 - bo A )2; 

(6) closed ball S (xo,ro) eM, where 

ro =:[ 1 - boA - [(1 - boA)2 - 2hol '/2 ]soh 0-
1 

(3.5) 
(3.6) 

(3.7) 

= : R (ho)So. (3.8) 

Then the equation x - if> (x) = Oadmitsasolutionx*E S (x,r), 
to which the sequence [x" I defined by 

x" + I = x" - [1 - tp '(x,,)] -I(X" - if> (x,,)) (3.9) 

converges. The error estimate reads 

Ilxo - x*ll< [1 - B"A - [(1 - B"A f - 2h"] '/2)/B"K. 
(3.10) 

In the case when the existence of [1 - tp '(x,,)] -I ,n;;> I 
is not guaranteed, we have the following theorem, which also 
asserts local uniqueness (Lika9

). 

Theorem 2: Suppose that the conditions (1)-(4) of 
Theorem 1 and the condition (5'), there exists a number 
NE((1 - boA )-1,2(1 - boA )-1) such that the inequality 

ho<2N-2[(I-boA)N-l) (3.11) 

holds, are satisfied, then the sequence [x" ) defined by 

x" + I = x" - [1 - tp '(xo) ]-I(X" - if> (x,,)) (3.12) 

converges to the unique solution x* in S (xo, NSo) of the equa
tion x - if> (x) = 0, and the rate of convergence is 

Ilx" - x*11 < (Nho - bo A no(l - Nho - bo A)-I. (3.13) 

If N>2(1 - boK)-' but ho<W - boA f, a solution exists 
but uniqueness is not guaranteed. 

We have also the following algorithm due to Altman. 10 

Suppose that a Lipschitz approximation tp to if> is Frechet 
differentiable, the Frechet derivative 'f/ (x) is continuous in 
U = : D (if> )n S (xo,r), and for any XE Uo = : D (if> )n S (xo,r) 
there exists an element h (x)EX such that 

[J - tp'(x)]h (x) - x + if> (x) = O. (3.14) 

Then one can define an algorithm as follows. Given 
XoE D (if», KC Ip </3 < 1, KC <p < 1, suppose that xl, ... ,x"' 
n;;> 1 are already defined. Then put E" = 1 if 

E(I,x",h,,)<pIIP(x,,)II, (3.15) 

where 

E(E,X,h) = :IIP(x + Eh) - (I - E)P(x)IIE- I
• (3.16) 

If E(l,x",h"»pl/P(x,,lll, there exists a number E"E(O,I) 
such that 

(3.17) 

Tetz Yoshimura 2057 



                                                                                                                                    

In either case, put 

(3.18) 

Now we have the following theorem (Altman lO
). 

Theorem 3: If IJI is a Lipschitz approximation to ef> in 
Uo' and 1JI'(x) is continuous in U and satisfies the condition 

lief> (x) - 1[1 (x) - ef> (x) + lJI(xlil <Kllx - xii 

in Uo with radius 

r>(I-p)-ICexp(l-p)IIP(xo)ll, 

(3.19) 

(3.20) 

then [x" 1 C Uo, and there exists at least one x* such that 
x* - ef> (x*) = 0. The error estimate reads 

Ilx" - x*II«1 - p)-ICb", 

b" = IIP(xo)llexp[(1 -p)(1 - t")!, 

"- I 

to = 0, t" = I Ci' 
i=O 

(3.21) 

Uniqueness is not guaranteed, however. Alternatively, we 
can apply the following theorem, also due to Altman, 10 

which is useful when it is difficult to solve Eq. (3.14) "exact
ly" at each step of successive approximation. 

Theorem 4: If there existspE(O, 1) such that for any XEUo 
there exists h (X)E X such that 

11(1 - 1JI'(x))h (x) - P(x)ll<pIlP(x)ll, 

Ilh (x)11 <C IIP(x)ll, 

(3.22) 

(3.23) 

then define an algorithm as follows. Given XoE D (ef» and 

KC+p<p<l, (KC+p)p-l<f3<I, (3.24) 

suppose that Xp ... ,X", n> I are already defined. Then put 
C" = 1 or choose C" < 1 in the same way as in the previous 
algorithm provided q and f3 are subject to the above condi
tions, and define x" + I = x" + c"h". If the radius r of Sis 
larger than (1 - p)-lexp(l - p)IIP(xo)ll, then [x" 1 C U and 
x,,--+x* as n--+oo. 

4. APPLICABILITY OF THE THEOREMS 

Let us begin with Eq. (2.8). The Frechet derivative 
~'(K,,) of the map st at K is expressed as follows: 

~'(K,K ',q) = ~ fdk (k 2)2fdP' 
91T2 

X( 3
1
6 (k2)2/2+p'2fl[K(P')1-2K'(P) 

X { 170k 2 + + 9C/e f dp 

X( 3
1
6 (k2)2/+pzf1[K(p)1-'} -2. 

(4.1) 

Therefore, ~'(O,,) is not well defined and one cannot find a 
Lipschitz approximation to ~ for K with small norm. So 
one cannot formulate an algorithm for Eq. (2.8). Now let us 
try Eq. (2.9) for L. Again, it can be easily seen that (0(L,O) is 
not well defined for almost all L, unless an "infrared" cut
off qo is introduced into the integration over q. In particular 

2058 J. Math. Phys., Vol. 24, No.8, August 1983 

(0(O,k) = - - 9Clk 2 dq I loc 
3 0 

(
I )-1(1 )-1 X I +1'q-1/2 36(k2)2/2+q2 , 

(4.2) 

where 

7 = (6l)-1/2(1T170)-1. (4.3) 

Hence, 

(0(0,0) = - - 9C/lim k Z dq 1 loo 
3 k.O 0 

( 
I )-I( 1 )-1 X I + 1'q-1/2 36 (k 2)212 + q2 

(4.4) 

is not well defined. The situation is similar for any L such 
that L (k ) - k-..oC' k 2 + 0 (k 3). For a successive approxima
tion to be applicable, the norm of (0(L,) with infrared cutoff 
must be sufficiently small for LE D ((0) :3 ° but this is not 
guaranteed and may be sensitive to the cutoff. In other 
words, the theory is "singular" at the weak interaction limit. 

Finally, we C0me to Eq. (2.12) for L. It can be easily seen 
that 

,I3(O,q) = (I IS + rq-1/2)-I, (4.5) 

,I3(C,q)={~ + ~fdk(k2)2(170k2+21T9(C)-1 
S 31T" 

X (n,(k 2)"12 + q2)-I} - 1 (4.6) 

so that ,I3(O,q) and ,I3(C,q),C>Co <O with certain Co are 
bounded. On the other hand, 

)J'(L,L ',q) 

= - [,I3(L,qW( 9(/27 )f(r 2fdi J.- (r 2)2/2 + i) -1 
271T- '\ 36 

X {17uY 2 + i9C1r2f dS(316(r2)2[2+s'r'L(S)} 2 

X f dt( ~(r2)2+t2rl L'(t). (4.7) 

In particular 

,I3'(O,L',q) = 

(4.8) 

so that ,13'(0, L ' ,0) is not well defined because ofthe "infrared" 
divergence, unless a cutoff is introduced, and may be sensi
tive to cutoff. Now, let us define a Lipschitz approximation 
A to,13 by 
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A(Lq)=:[~ + _/2_iook2dkOp(lk2_(k4)21_CT) 
, (; 271T 2 0 

X ( -A (k 2)2f2 + q2) -I 

X {770 + + IRI L'" ds L (S)O.,(S - SO) 

X( 3~ (k2)2[2+S2)-1 

+ - IRI ds ~(Lo,s)( 1 - 0., (s - so)) 1 i'" 
3 0 

X( 316(F)2+ S2f
l}-1 

+ ~i'" k 2dk p - Op(lk 2 - (k 4)21_ CT)J{770 
271T 0 

+ +lRlf dS~(Lo,S{ 3~ (k2)2/2+S2flrl 

X( 3
1
6 (k 2)21 + l) -Ir I, (4.9) 

where (k 4)2 is a (possible) real root of the transcendental 
equation 

q;(k) =:770+ +lRlfdS( ~(k2fI2+S2rl 
X! L (s)O",(s - so) + ~(Lo,s)(1 - Owls - so)) I = ° 

(4.10) 

and the "smooth step function" Op is defined as follows: 

Op(u) = J~ oc du Xp(u), 

{
O, lul;;;.p, (411) 

Xp(u)=: exp! _p2(p2_ U2)-Ij, lul<p. . 

[If (q;(k ) = ° has several real roots, the definition of A must 
be modified accordingly.] It is not difficult to verify that 
~(L ) - A (L ) satisfies the Lipschitz condition for L in certain 
domain and for some combinations of values of the param
eters p,UJ,CT and so' This precaution is necessary even if one 
accepts positive definite solutions only, because A '(L,.,.) 
must be defined for L in certain domain, not only for the 
solution. 

The Frechet derivative of A reads 

(4.12) 
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Now, one may take, for example, zeroth approximation of 
the form 

Lo(q) = ntoanqnC~!mqm) -Iexpcttlql). (4.13) 

and choose parameters an' f3 m' YI' So, CT, p, and UJ so that Lo 
and ~(Lo) coincide for certain values of q. If the values of the 
parameters 1, (;, 770' and IR are such that the conditions of 
Theorems 1,2,3, or 4 are satisfied, one can proceed, and the 
problem is reduced to solving a sequence of line~r integr~l 
equations or finding h (Ln) satisfying the followmg condI
tions: 

IIA (Ln)h (Ln) - ~(Ln)11 <pilL" - ~(LnJlI, 

Ilh (Ln )11 < C IILn - ~(Ln )11· 

(4. 14a) 

(4. 14b) 

It can be easily seen that these conditions are more easily 
satisfied for large 770 than for small 770' 

In order to ensure that the Lipschitz condition be satis
fied, one may have to add some seminorms to the original 
norm so that undesirable functions are removed from the 
domain. 

5. CONCLUDING REMARKS AND QUESTIONS TO BE 
INVESTIGATED 

As has been seen above, neither I nor K but L = : K -1 

is the suitable function to be evaluated as a solution of the 
nonlinear integral equation in the static version of Edwards 
and Freed's theory of polymer solutions of finite concentra
tions. Though, until and unless we obtain an (approximate) 
solution of Eq. (2.12) explicitly (in practice numerically) for 
various combinations of values of the parameters, we cannot 
say anything definite, we can raise some questions concern
ing possible outcomes. How do asymptotic behaviors of L (q) 
for q-.Q and for q-+oo depend on the parameters? For 

77 = '(1 2 N /31TKMA )S '" dq L (q)q - 2 not to be sensitive to sp • A qo 

the cutoff qo the solution L *(q) of Eq. (2.12) must behave 
asymptotically -q"', f3> 1. [It should be noticed that Eq. 
(2.12) without cutoff may have a solution.] Can it be inter
preted as a phase transition iffor certain combinations of the 
values of parameters the inequality f3> 1 ceases to hold? It is 
an interesting problem to find critical combinations of values 
of the parameters at which L (and K) cease to be positive 
definite or I ceases to be negative definite. It may be also 
worthwhile to use the correlation function 
A -IS3(exp ik.(R (s) - R (s')))eiq(s-:f1ds ds' = A -IS3 
X exp( - k 211s - s' I )cos q.('s - S')ds ds' instead of r (k, q) in 
Eq. (2.12) or introduce a cutoff.14 (Here A stands for the 
length of polymers.) 

It may be also an interesting problem to solve Eq. (2.9) 
or (2.12) with a r drastically different from (2.7). 

Anyway, even in the framework of the static theory, it 
seems to be relevant and interesting to find the k dependence 
of L (and K) and q dependence of I more accurately than 
done so far and compare the results with those based on 
qualitative arguments by Edwards and Freed. 2.4.5 
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Recent results concerning globally isometric mappings for arbitrary observers in flat space-time 
are generalized to space-times admitting a time orientation. Critical to the method is the use of an 
orthonormal tetrad which, when it is defined globally, allows the construction of a global 
isometry which generalizes the pointwise boost on flat space-time. Connection coefficients are 
obtained, thereby defining acceleration covariant differentiation for both particle and tensor field 
equations. An application to orbiting observers in exterior Schwarzschild geometries is presented. 

PACS numbers: 02.40. + m, 04.20. - q 

I. INTRODUCTION 

Recent work on accelerating observers in flat and gravi
tational space-time has centered on using invariant differen
tial geometric methods 1 and, in some cases, presymmetry 
arguments2

-
5 to obtain local expressions for the Fermi

Walker transport of an orthonormal tetrad associated with a 
differentiable timelike curve (observer trajectory). Similarly, 
Burghardt6 used a covariant projection method to obtain a 
decomposition of the Einstein equations for rotating observ
ers. Estabrook and Wahlquist 7 employed a dyadic formal
ism to obtain equations for acceleration near a general world 
line. A classic application of tetrads was the use of real and 
complex null tetrads by Newman and Penrose8 in treating 
zero-mass particles and gravitational radiation. 

This paper makes use of global space-time struc
tures9

-
13 to derive analytical methods for obtaining connec

tion coefficients associated with an observer congruence on 
suitable space-times. The orthonormal tetrad field of a 
space-time is used to construct a close analog of the flat
space Lorentz boost. The tangent and contangent space 
maps are shown to be isometries (global if the tetrad field is 
globally defined). The tangent space map is then used to de
fine connection coefficients for acceleration covariance of 
tensor equations for particles and fields. 

An application to orbiting observers in exterior 
Schwarzschild space-times is presented as a local coordinate 
calculation. Exact observer maps are found which predict 
the correct asymptotic limits for spin precession (geodetic 
precession) along with a precession reversal at the photos
phere radius. 

II. GLOBAL STRUCTURES 

We shall consider stably causal space-times 10 since they 
are time orientable by a global timelike vector field. Such 
space-times admit global observer congruences which are 
used to construct a simple isometric map associated with 
these congruences. The isometry is global if the space-time 
admits a global tetrad field. 9. 10 

Let (M,g) be a stably causal space-time and let a tetrad 
field Ka (x), a = 1,2,3,4 exist on some subset UCM. For an 
orthonormal tetrad, we have g(Ka ,Kb) = TJab for each xEM 
where TJ = (+ + + -). 

In a local coordinate chart, we have K~(x)gl"v(x)K ~(x) 
= TJab' Furthermore, let v(x) denote a timelike vector field 

on M, whose integral curves form an observer congruence. 
Relative to a local tetrad basis, let Ua (x) = g(Ka (x),v(x)). That 
is, using local coordinates, Ua (x) = K ~(x)vl" (x). It is this par
ticular expression for the observer velocity that is used to 
parametrize the "boost" associated with the observer. 

Clearly, due to the orthonormal nature of the tetrad 
field, Ka (x), a = 1,2,3,4 is a local Lorentz frame. 14 Tensors 
which are expressed relative to the tetrad basis may then be 
boosted to the local Lorentz frame of v(x) by a simple Lor
etnz transformation. 

Choosing local coordinates again, K ~(x) represents a 
nonsingular matrix which diagonalizes gl"v by the con
gruence mapKT gK = TJ. An arbitrary (1,0) tensor T(x) may 
be referred to tetrad components via 

Ta(x) =K~(x)TI"(x) 

or 

Pix) = K -I; (x)TI"(x). 

Using the observer velocity in tetrad form, u(x), a Lor
entz transformation matrix A :(u(x)), may be constructed 
which boosts to the observer Lorentz frame. That is, 

T'b(X) = A :(x)P(x). 

The boosted tensor T / is then expressed relative to the 
tangent space basis derived from the local manifold coordi
nate chart using 

1'1" (x) = Kt(x)T'b(X) 

= Kt(x)A :(x)K -'av(x)Tv(x). 

If the matrix KAK -I = J -I(X), then 
1'1" (x) = (J -'J!:(x)TV(x), and (0,1) tensors boost according to 
1'1" (x) = J~(x)Tv(x),whereJ(x) = KA -IK -'.Theconstruc
tion extends to the entire tensor bundle over U by simple 
tensor prod ucts. 

The isometric nature of the tangent space map is easily 
verified since JT gJ = (KA - 1 K - I) T gKA - 1 K - 1 = g for 
eachxEU. This is, of course, due to the isometry AT TJA = TJ. 

If the tetrad field is globally defined, 9,10 then the iso
metry associated with the observer congruence is also global. 
Also, the boosts J -I(X) and J (x) are tangent and cotangent 
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space maps, respectively, parametrized by the observer con
gruence u(x). But note that no manifold coordinate changes 
have been affected. 

A given choice of a tetrad field Ka (x), a = 1,2,3,4 on 
some UCM may be taken to represent a reference rest frame 
at each xC U. Tensors are then boosted relative to that 
choice of rest frames by the (J,J - I) mapping. The choice of 
tetrad field is, of course, arbitrary; hence no absolute rest 
frames are being defined. If an initial C I tetrad field Ka (x) is 
changed smoothly to K ~(x) for each xEUby a map L ~(x), 
this map is a pointwise proper Lorentz group basis change 
because these orthonormal tetrad fields are cross-sections of 
the orthonormal frame bundle O(M) which has real 0(3, 1) as 
its structure group. 

Similarly, a given coordinate atlas for (M,g), inducing a 
basis J I' for Tx for each x in some chart, then induces a cross 
section of L(M) (the linear frame bundle) for the chart. The 
(J,J - I) boosts are then changes of L(M ) cross section for the 
chart which are induced by the observer congruence u(x), a 
cross section of the tangent bundle T M' The nonsingular 
boost matrix J -I(X) on a chart is a cross section ofL(M) over 
the chart since L(M) is a principle fiber bundle with structure 
group GL(4,R ). This frame bundle cross section defines a 
connection for acceleration covariance which is developed in 
the next section. 

III. ACCELERATION COVARIANCE 

The connection coefficients needed for acceleration co
variance can be derived directly. Let T(x) be a (1,0) tensor 
field which satisfies a covariant differential equation 
V T = B, where B is a (1, 1) tensor. In local coordinates, 
'P;v = BI' v' The tetrad formalism is used to boost T, B, and 
the differential equation to the frame of an observer vector 
field u(x). A derivative pseudoterm is generated since av T I' 
becomes 

a TI' =JU a (J-'I'TfJ) v v a {3 

= JUJ -I ~aa T fJ + JUv(JaJ -'~)T fJ 
= J a J - II' a T fJ + J a (a J - I 1') J fJ J - I A T () 

v fJ a v a fJ A () 
= J a J - I I' J T fJ - J a (J - I I' (a J fJ )TA 

v fJ a v fJ a A • 

Acceleration covariance is obtained if the boosted equa
tion is written 

T" =aTI'+FI' Tf3=BI' ;v v vfJ v, 

with 

-BI' J-II' JU TfJ -a JA J 
v = fJ v ;u , v == v A 

and 

r-I' -J-II'J(}JE r A +J-ll'a JA af3 - A a fJ (}E A a f3. (3.1) 

Here r is the usual Levi-Civita connection which takes 
on the correct pseudoterm'2.'4.'5 under the boost. The ad
vantage of the present method of treating observers via a 
congruence, which may then be restricted for the connection 
coefficients associated with arbitrary observers is obtained 
via simple methods '3,'6 yielding exact results. 

The isometric nature of the ( J,J -I) boost is advanta
geous too, since self-frame quantities can be easily obtained. 
For example, boosting the observer congruence to its own 
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self-frame leads to a very simple result. Ifu(x) is the observer 
congruence, u(x) = K -I(X)U(X) is its local Lorentz expression 
(relative to the local tetrad basis). Then, parametrizing the 
boost via u(x) one obtains, in local coordinates, 

and 

u(x) = A ~(u(x))ua(x) = (O,O,O,c), 

where u is the observer's self-velocity relative to the tetrad 
basis. Mapping back to the tangent space basis defined by 
local manifold coordinates gives 

vtelf = K t(x)ub (x) = K ~(x)c. 

The observer self-frame velocity is then the same as the 
fourth tetrad field which is globally defined if (M,g) is at least 
stably causal. 10 In this case the fourth tetrad field can be used 
to define a time orientation and a global time function which 
naturally defines a local time axis for all observers (timelike 
smooth curves) relative to their self-frames. 

A tetrad field, defined on a given local coordinate chart, 
is then useful in several ways. The isometric boost is easily 
constructed from the observer congruence and the local tet
rad. The horizontal subspaces of TLIMI defined by the boost 
J -I(X) define the acceleration connection whose coefficients 
are simply given by - JaJ - I. Finally, self-frame calcula
tions are easily done. An example follows in the next section. 

IV. SCHWARZSCHILD GEOMETRY 

The exterior Schwarzschild geometry is considered as 
an application of the methods presented above. This space
time admits a global tetrad field. The standard Schwarzs
child solution 

ds2 = (1 - 2m*/r)-' dr + r dfl2 

_ (1 - 2m*/r)c2 dt 2, 

where m* = Gm/c2, leads to the diagonalizing tetrad with 
componentsk\ =((r-2m*)lr)1/2,k~ =kj = l,k! 
= ((r - 2m*J;r)-1/2, all other elements being zero. 

The metric reduces to Lorentzian spherical coordinate 
form 7] (r,e,¢,ct ) via the congruence transformation 
kT gk = 7]. A spherical-to-cartesian coordinate Jacobian} is 
needed to take g to 7] = (+ + + -) form yielding K = k} 
such that KT gK = 7]( + + + -). 

Routine calculation shows that 

K II = (x/r)((r - 2m*)/r)1 12, K 21 = (y/r)((r - 2m*)lr)' 12 

K23= -1Ir, K\= -y/r, K\=x/r, 

and 

K\ = (r/(r - 2m*))1/2 

with all others zero. Here, e = 1T /2 (z = 0) has been taken for 
simplicity. The inverse components (nonzero) are 
(K -1)11 = (x/r)((r/(r - 2m*))'12, (K -1)13 = - y, 
(K -If I = (y/r)(r/(r - 2m*))'12, (K -1)23 = x, 
(K -1)3

2 
= - r, and (K -1)\ = ((r - 2m*)/r)1/2. 

For a circular orbit, with r = (x 2 + /) I 12> 2m *, the co
ordinate increment is dx I' = (O,O,d¢,c dt ) and 
c2 dil = ((r - 2m*)lr)c2 dt 2 - r d¢ 2. Then 
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dr = dt ((r - 2m*)/r - rui /C2)1/2, where w = d¢ /dt and 
the covariant velocity of the observer, v = dx/dr, is 

V I' = (O,O,;w,;c), (4.1) 

where; = ((r - 2m*)lr - rw2 /C2)~ 1/2. The corresponding 
Lorentzian (tetrad) form ofv is u = k ~ IV which is, in compo
nent form, 

ua = (O,O,;w,;c((r - 2m*)lr)I/2). 

Since u4 = yc, Y = (1 - fJ2)~ 1/2 = ;((r - 2m*)lr)I/2. 

However, the Lorentzian y factor may be better expressed as 

y = (1 - (rw2/c2)(r/(r - 2m*)))~ 1/2 

from whichfJ = rlwl/c(r/(r - 2m*))I!2. Clearly for a time
like observer, fJ < 1, which reduces for large "r" to the flat
space condition riw I < c. 

The Lorentz boost matrix A ( /3) is then constructed 
from fJx = - fJ sin ¢ and fJy = fJ cos ¢. The tangent space 
boost is J - I = KAK ~ I and its dual is J = KA ~ IK ~ I, 
which is a global isometry from JT gJ = g. The structures of 
J and J- I are quite simple. The nonzero components of J ~ I 
are (J - I) II = (J ~ 1)22 = 1, ( J - 1)33 = ( J ~ 1)\ = y, 

(J -1)\ = ( - yfJ /r)((r - 2m*)/r)I12, and 
(J -1)4, = - yfJr(r/(r - 2m*))1/2. Similarly,J 11= J\ = 1, 

J\=J\=y,J\= -(J~I)~,andJ\= _(J~I)43' 

This boost ( J,J - I) is expressed in manifold Schwarzs
child coordinates and is a map of tangent-space ( J ~ I) and 
cotangent-space ( J) coordinates. 

Not unexpectedly, only ¢ and ct components mix under 
the boost since the observer three-velocity is in the ¢ direc
tion. Also, the fact that J", is a Killing field for g greatly 
simplifies the ( J,J - I) matrices, but the isometric properties 
of the mappings are not dependent on any symmetries. 

The limit oflarge r, the asymptotically flat region, leads 
to a Lorentzian boost withfJ~lwlr/c as expected, with 
rlwl <c as a natural limit for a timelike observer. 

The Levi-Civita connection in Schwarzschild coordi
nates has few nonzero components due to spherical symme
try (see Ref. 14). Under the observer boost (J,J- I), the con
nection coefficients transform as 

-r" - ( J - I)" J" J <T r I' + r a fiy - I' /3 y va p/3y' (4.2) 

where r"p(3y = J - 1"03/3 JOy is the pseudoterm form com
mon to any affine connection's transformation. 15 Here, 
~ = Ja {JJa and since J and J - I are functions of r only, 
J fi = J I(3Jr = (j I(3Jr . The only nonzero pseudoterms are 
r!13 = -r;14 =(-rfJ2/r )(r-3m*)I(r-2m*). 

The problem of the torque-free Fermi-transport of a 
classical spin S, carried by the observer in orbit, is examined 
via the Fermi-transport equation for S, namely, VS / 
Jr = vg(S,a c ) in the observer frame, the self-frame of the 
spin. Here, ae = Vv/Jr, the covariant acceleration. The co
variant velocity boosts to v = J -IV which is, in components, 

Vi' = k .t'c = (O,O,O,c(r/(r - 2m*))1/2). 

By inspection of Eq. (4.1), dv/dr = 0, so ae = Vv/ 
Jr = r(v,v). Using the tabulated r coefficients (Ref. 14), we 
obtain for the covariant acceleration, a I' e = (a Ie ,0,0,0) with 
ale = (m*e 2/r - w 2r)(1 - (rw2/c 2 )(r/(r - 2m*)))~I, which 
has the correct flat-space (ale = - w 2r/(1 - rw2/c2)) and 
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Newtonian (a\ = - w2r) limits. 
Also ac = ° for a geodesic orbit and a\ = ° in that 

case. Hence for geodesics, w 2r = m*c2/r. Combining this 
result with the timelike restriction onfJ 2, namely (rw2/c2)(r/ 
(r - 2m*)) < 1, results in r> 3m* for geodesic circles, which 
is the well-known photosphere limit for massive particle or
bits. One then has the option of considering geodesic or non
geodesic cases for r> 3m*; however, in the range 
2m* < r<,3m*, the orbits can be maintained only by anexter
nal force. The method applies to both types of orbit, how
ever. 

Boosting the acceleration ac results in lie 
= J ~ lac = ao since (J ~ 1)11' = (jll" In the self-frame, 

S4 = ° since ° = g(v,S) = g(v,S) = g44(~S4), where g = g 
from the boost isometry. Thus one needs to consider only 
parallel transport of8, viz., VS /Jr = ° in the self-frame 
case, since S = J ~ IS = (8,0) and v = (O,~). The transport 
equation then simplifies to 

dS i r- i ,(-4 -Sj) = ° + 4) v, . 
dr 

(4.3) 

No pseudoterms enter this problem since only 
rp 414 = - rp 311 #0, and thus the Levi-Civita coefficients, 
[first right-hand term of Eq. (4.2)] only need boosting. 

From J, J ~ I and Eq. (4.2), r!1 = r!2 = ° and r!3 
= - rfJ((r - 2m*)lr)I/2((r - 3m*)/r) in VSI/Jr = 0, 

which then becomes 

dS
I 

_ rfJc( r - 3m* )S3 = 0. 
dr r 

(4.4) 

Allrt = Ofore = 1T/'!::sodS 2/dr = Oasexpected,sinceS 2 

is the e component of S which is parallel to ro for the orbit. 
Finally, only Yil = (rfJ /r)((r - 3m*)/ 

(r - 2m*))((r - 2m*)lr)I!2 is nonzero among the r 3 compo
nents for e = 1T /2, so 

dS
3 + rfJc ( r - 3m* )s I = 0. (4.5) 

dr r r-2m* 
Taking second derivatives and combining Eqs. (4.4) and 

(4.5), the precession equations are d 25"" /dr + W;S a = ° for 
a= 1,3. Herewp = -rlwl(r-3m*)I(r-2m*)isthe 
precession frequency (sign to agree with flat-space limits). 
All results are still in spherical Schwarzschild coordinates. 
At the photosphere radius r = 3m*, there is no precession 
relative to the corotating spherical unit vectors, and the 
precession changes sign at that radius. 

Writingd¢ /drin termsofd¢ /dt = wand transforming 
to (x,y,z) coordinates, the proper-time precession frequency 
is 

w
T

= _[ y(r-3m*) -1] d¢. 
(r - 2m*r)I/2 dr 

(4.6) 

The flat-space limit (m* = 0) ofEq. (4.6) gives simple Thom
as precession 17 and the Newtonian limit is then WT~O as 
expected. In the limiting case r>2m* and rw<,c, Eq. (4.6) 
becomes 

w T = - [1 +!(rw2/c2)-2m*/r-1]w, (4.7) 

to first order in m* /r and rw 2/e2
• 

The separation ofEq. (4.7) into special and general rela
tivistic terms is then obvious. For a geodesic orbit, 
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w2r = m"'c2/r and W T = ~ m"'w/r in Eq. (4.7). This is the 
well-known "geodetic precession" result. 18 

v. DISCUSSION 

In this paper, a new method of treating arbitrary ob
servers on space-times has been presented. The method 
makes extensive use of observer congruences which exist 
globally if the space-times are at least stably causal. Also of 
critical importance is the use of a tetrad field which will exist 
globally if, for example, the space-time is orientable and glo
bally hyperbolic (a sufficient but not necessary condition). 

The tetrad field is used to map tensors expressed rela
tive to local tangent space bases defined by manifold coordi
nate charts to local tetrad bases, and vice versa. This is equi
valent to expressing tensors with respect to cross sections of 
the linear frame bundle L(M) or the orthonormal frame bun
dle O(M), respectively. 

The observer boost is isometric in all cases and is obvi
ously parametrized by observer trajectories which is comple
tely in accord with presymmetry requirements. 2-5 

Using an observer congruence initially and restricting 
to a single trajectory (integral curve) is advantageous because 
the connection for acceleration covariance can be obtained 
by simple calculations. The usual devices of Fermi propagat
ed bases, 1,2 etc. may then be appended to any given observer 
trajectory. 
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It is shown that every dynamical symmetry (DS) of the Euler-Lagrange equations derived from 
the Lagrangian L = ~ gabiti/ identifies a Jacobi field on each geodesic of the configuration 
manifold. Using the connections between Jacobi fields and DS's, it is proved that DS's always 
possess associated conserved quantities, whose expression is explicitly written down. An 
additional constant of motion concomitant with "pairs" ofDS's, independently of the choice of L, 
is also determined. Applications to general relativity are emphasized in the course of the 
discussion. 

PACS numbers: 02.40.Ky, 02.30.Jr, D4.20.Me 

1. INTRODUCTION 

As it is well known, Noether's theorem provides a well
defined procedure relating the constants of motion ofa given 
Lagrangian system to its symmetry transformations. I Re
cently, there has been a renewed interest in the problem of 
enlarging the class of generators of conserved quantities. On 
the one hand, this has led to the introduction of general non
Noether symmetries, such as point symmetries and DS's 
(dynamical symmetries), which are essentially defined as 
vector fields on the extended tangent space that may be re
garded as generators of transformations leaving the equa
tions of motion invariant. 2

-
5 On the other hand, turning to 

the connections between symmetries and constants of mo
tion, it has been shown that point symmetries identify first 
integrals (a brief survey of some basic results and definitions 
is given in Sec. 2); nevertheless, the relationships between 
DS's and conserved quantities seem to be so involved2

,4 as to 
require further investigation. 

It is the main aim of this paper to analyze the properties 
of the DS's of the Euler-Lagrange equations generated by 
the regular Lagrangian L = ~ gabiti/. Such a Lagrangian 
function is known to model the geodesic motion of freely 
falling particles in the general theory of relativity6; more
over, it characterizes the free motions of a mechanical sys
tem with a finite number of degrees offreedom in the field of 
analytical mechanics and may also be used to describe the 
evolution of a conservative Newtonian system, after a suit
able conformal transformation has been performed. 7 With a 
view to future applications of the techniques described in 
this paper to the case of geodesic motion, we shall adopt the 
usual terminology of general relativity, even though our 
analysis is not restricted to the four-dimensional case. 

Recalling that a practical procedure for the construc
tion of DS's has already been proposed elsewhere,8 we as
sume in Sec. 3 that an arbitrary DS, say Y, is given and we 
prove that Yidentifies a Jacobi field along every geodesic of 
the configuration space. This result shows that DS's could 
possibly playa distinguished role in general relativity, in 

alWork done under the auspices of the National Group for Mathematical 
Physics of CNR (Consiglio Nazionale delle Ricerche). 

view of the well-known fundamental importance of Jacobi 
fields. 6 

To emphasize this viewpoint, we remark that a careful 
analysis of the properties ofDS's leads to the conclusion that 
they yield the most natural framework for the extension of 
some recent results concerning the possibility of generating 
Jacobi fields. 9 Moreover, DS's also give a valuable insight 
into the geometrical interpretation of Killing tensors, gener
alized Killing tensors,9 and the various families of geodesic 
collineations,1O which may be regarded as generators of 
DS's.8 

The connection between Jacobi fields and first integrals 
of motion is then exploited in order to associate conserved 
quantities to an arbitrarily assigned DS (see Sec. 4). Actually, 
besides giving rise to almost all classes of first integrals of 
geodesic motion that had been previously determined by us
ing "ad hoc" methods, our approach yields also new con
served quantities by a very simple and easy procedure. In 
particular, we obtain a constant of motion that may always 
be associated with pairs of DS's, independently of the form 
of the Lagrangian function that generates the equations of 
motion. 

Additional general comments can be found in Sec. 5. 

2. SYMMETRIES OF A LAGRANGIAN SYSTEM 

In this section, we shall briefly review some basic con
cepts concerning Lagrangian systems and possible defini
tions of symmetry. 

Denote by M a real n-dimensional manifold represent
ing the configuration space of a mechanical system, and con
sider its associated extended tangent spaceR X TM, in which 
natural coordinates (s,qa,qQ) (a = l, ... ,n) have been intro
duced. 

Suppose now that a system characterized by a regular 
Lagrangian L has been given. The Euler-Lagrange equa
tions of motion can be written in the normal form 

dqa ab ( iflL. c a2L aL) 
-;;;=g - aqbaqC q - aqbas + aqb 

def 

=Aa(s,q,q), (2.1) 
where ~b denotes the inverse matrix of ifl L /(aqaaqb). It is a 
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straightforward result that the motions of the system are 
described by the projections onto M of the integral curves of 
the vector field r defined as 

r - a + 'a a A a a -- q-+ -. 
as aqa ait 

(2.2) 

Moreover, if we introduce the Cartan form 0 associated with 
the given L, namely,2.11 

o = L ds + aL (dqa - it ds), 
aqa 

(2.3) 

it is straightforward to verify2.11 that the definition (2.2) of r 
is equivalent to 

ir dO = 0, (r, ds) = 1, (2.4) 

which imply that r is a characteristic vector field of dO. 
A vector field Yon R X TM with local representation 

Y = r(s,q,q) ~ + Ka(s,q, q) ~ + rt(s,q,q) ~ (2.5) 
as aqa aqa 

is said to be a dynamical symmetry of r if and only if 2,4 

!f y r= [Y,r 1 =gr, (2.6) 

where g is a differentiable function and !f denotes the Lie 
differentiation operator. In view of (2.2) and (2.5), (2.6) is 
equivalent t02 

7Ja = r(Ka) - qaF(r), 

r(7Ja) -A ar(r) - Y(A a) = 0, 

g= -r(r). 

(2.7) 

(2.8) 

(2.9) 

A practical method for the construction ofDS's, which 
works under the assumption L = ! gabifqb has been de
scribed in Ref. 8. Namely, suppose that Ka, ... ap = K(a, ... apl is a 
generalized Killing tensor, i.e., a tensor defined over M such 
that there exists another tensor field ka, ... ap = k(a, ... apl related 
to Ka, ... ap by the condition9 

[( p + 2) V(b Va Ka, ... apl - 2Va VlbKa, ... apl ] /p 

= ga(bka, ... apl' (2.10) 

where Va is the covariant differentiation operator deter
mined by the metric tensor gab' Then it may be shown8 that 
there exists a OS Y such that K a is given by 

(2.11) 

and 7Ja is defined by (2.7), provided l' has been determined by 
solving the equation 

(2.12) 

This holds, in particular, if Ka, ... a
p 

is a Killing tensor, i.e., if 
V(aKa, ... apl = 0; indeed, in this case we may assume l' = O. It 
is also to be remarked for completeness that OS's may be 
related to the symmetries of the configuration manifold, e.g., 
to projective collineations and affine collineations, \0 because 
they belong to the class of generalized Killing tensors of or
der 1.9 

The OS Y degenerates into apoint symmetry of riff the 
components l' and K a depend only on the variables q and s. 3.5 

Examples of point symmetries can be found in Refs. 3. In 
general, point symmetries may be related to first integrals of 
motion ofthe form2

•
5 
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F=/-(Y,O), (2.13) 

where the function/is suitably described in terms of Yand L. 
A point relevant to our later discussion and more im

portant for practical purposes is that there exists a conserved 
quantity of the form (2.13) corresponding to a given OS Y if 
and only if/is defined as a solution of 4 

r(f) = r (Y, 0) = F(r) L + Y(L), (2.14) 

as follows from (2.13), (2.3), (2.4), and (2.6). Of course, the 
problem of finding a solution for (2.14) is rather formidable. 
To simplify, it has been suggested either to look for a func
tion/ depending only on sand q, or to add the further restric
tion Y (F) = 0.2,4 In Sec. 4, we shall find a canonical solution 
for Eq. (2.14) under the assumption L = ! gabqaqb. 

Finally, a Noether symmetry is generated by a vector 
field Yofthe form (2.5) having the property 

!f y dO = O. (2.15) 

Every Noether symmetry is a OS.2 Moreover, suitably de
fined classes of Noether symmetries can be put in one-to-one 
correspondence with arbitrary constants of the motion by a 
relation of the form (2.13), where/is now given by!f yO 
=df2.11 

3. JACOBI FIELDS ASSOCIATED WITH OS's 

Let us restrict our investigation to a system described 
by a Lagrangian of the form L = ! gab (q) qaqb, where gab is 
either an n-dimensional positive definite metric or a four
dimensional Lorentzian metric. The equations of motion 
(2.1) may be written in the form 

dqa _ r a' b' e _ A a( . ) ds - - be q q - q, q , (3.1) 

where the symbols r be a denote the connection coefficients of 
the metric form gab dqa dqb. Then it is easily seen that the 
integral curves of the field r project into the geodesics of M. 

Consider now a OS Y of the form (2.5). If r is an arbi
trary geodesic of M, we define a vector field Kover r by the 
relation 

(3.2) 

It will be shown that K is strictly related to a Jacobi field on 

r· 
To this aim, let us note first that the restriction to r of 

the scalar r (t/J ), where t/J is an arbitrary function on R X TM, 
coincides with the total derivative dt/J (S,qb (S),qb (s))/ ds. Then, 
substitution of(2.7) into (2.8) yields, in view of(3.1), 

d 2 K a dr. a d 21' 
~- Aa ds -q ds2 

_ A a ~ _ Y(A a) = O. 
ds 

(3.3) 

After substitution of the explicit expression for Y(A a), (3.3) 
reduces to 

d
2
K

a 
+Kdarbea 'b'e+2r adKb qC 

ds2 aqd q q bc ds 

. a d 21' 
=q d~ , (3.4) 
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that can be cast into the more significant form IZ 

D ZK o d2~ R 0 'bKcd _ '0 __ ' 

DS2 + bedq q - q ds2 ' (3.5) 

where we have set itV 0 = D / Ds and RObed denote, as usual, 
the components of the curvature tensor. Ifd 2r/ds2 = 0, then 
(3.5) reduces to the well-known equation of geodesic devi
ation.6 

Actually, an equation of the form (3.5) has already been 
dealt with in Ref. 9, where generalized Killing tensors have 
been characterized as the class of totally symmetric tensor 
fields over M that give rise to solutions of the form (2.11) for 
Eq. (3.5), along every geodesic of M. Indeed, taking also into 
account the connections between generalized Killing tensors 
and DS's (see Sec. 2), we can give a further contribution to 
the investigation made in Ref. 9; namely, we can reach the 
conclusion that DS's may be regarded as the most natural 
generators of solutions for Eq. (3.5). 

As to the practical value of(3.5), it may be used to verify 
that the field k = k 0 a/aqO = (K a - 7it) a/aqO is a Jacobi 
field along r, i.e., a solution for the equation of geodesic 
deviation 

We summarize the above discussion in the following 
theorem. 

Theorem 3.1: Every DS Y oflocal expression (2.5) iden
tifies a solution of the form (3.2) for the inhomogeneous 
equation of geodesic deviation (3.5) along every geodesic of 
M. In particular, the restriction of the vector field 
k = (K 0 - TIt) a/aqO to an arbitrary geodesic of M is a Ja
cobi field. 

To comment on the meaning of the theorem, let us first 
remark that, in general, the class ofDS's is not empty, since 
it contains at least the field a/as. Unfortunately, the Jacobi 
field associated to a/as does always coincide, up to a sign, 
with the tangent vector to the fiducial geodesic. 

Secondly, the connections between DS's and Jacobi 
fields will be used in the following section in order to find 
conserved quantities canonically associated with DS's. In so 
doing, we shall obtain a significant extension of recent re
sults concerning the possibility of relating generalized Kill
ing tensors to first integrals of geodesic motion. 9 

4. OS's AND CONSERVED QUANTITIES 

It is now straightforward to write down the explicit 
expression for first integrals of geodesic motion derivable 
from Jacobi fields associated to DS's. Namely, multiplying 
(3.6) by goAe, we deduce that the quantity 

I '0 DKb T() 'a'b (=gobq -n;- - r gab q q (4.1) 

is constant along each geodesic of M. Furthermore, if we 
notice that 

(4.2) 
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we conclude that also 

I z = 7gabi/i/- gab i/ K b 

[ 'a DKb T() .a'b] (43) +s gabq -n;- - r gobq q . 

is constant along every geodesic of M. 
The conserved quantities (4.1) and (4.3) depend only on 

the DS Y, in the sense that they can be determined once Y is 
known, no further integration being required. 

If the DS Y is associated with a generalized Killing ten
sor through (2.11), then the first integrals I( and I z reduce to 
conserved quantities already described in Ref. 8. In addition, 
if Y is related to a Killing tensor, I( vanishes identically and 
12 yields, up to a sign, the well-known homogeneous polyno
mial that is known to be conserved along the geodesics. 

Finally, when considering the case Y = a/as, it turns 
out that I( vanishes and 12 corresponds to the well-known 
energy integral, as was to be expected. 

To clarify the meaning of I( and I z, we remark that a 
straightforward calculation yields 

I( = Y(L). (4.4) 

Recalling that T(L) = ° and taking (4.4) into account, we 
may rewrite (2.14) in the form 

T(f) = T(7L) + T[sY(L)), 

from which it follows that 

f = 7L + sY(L) = Y(sL). (4.5) 

Accordingly, substitution of (4.5) into (2.13) yields 

F = Y (sL ) - < Y, 0 ) = 12 , (4.6) 

where the last equality can be proved by substitution of the 
expressions (2.3) and (2.5) for Yand Ointo the pairing < Y, 0), 
and by comparison with (4.5) and (4.3). Equation (4.6) shows 
that 12 may be regarded as a Noether-type conserved quanti
ty, in the sense of a definition recently given by Lutzky.4 

Suppose now that another DS Z oflocal representation 

Z = TJ(s,q,q) ~ + HO(s,q,q) ~ + A a(s,q,q) ~ (4.7) 
as aqa aqa 

is given, and define the vectors H = H a a/aqa and 
n = n a a/aqO = (HO - TJfl) a/aft· A 

In view of the fact that both K and H satisfy (3.6), it may 
be shown that the quantities 

Dka A Dna A 

13 = --H - --K (4.8) 
Ds a Ds a' 

I (
Dka HA _ Dna KA) 'c'b 

4 = Ds b Ds b gac q q (4.9) 

are constant along the geodesics of M. In order to obtain the 
proof of the above statement, it suffices to evaluate the D / Ds 
derivative of both sides of(4.8) and (4.9), and to take (3.6) into 
account. It is also to be noticed that the expression of 13 and 
14 in terms of K a, Ha, 7, and TJ is given by 

I] = gab {[ D~a -T(7)qa](Hb_TJqb) 

_ [D~a _ T(TJ} qa] (K b _ 7qb)}, 
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14 = gab gcd {[ D~ a - r(1") tt] (HC -TJit) 

_[D!a -r(TJ) if] (KC_7tt}qbt/. (4.11) 

As a first comment, let us remark that a rather straight
forward calculation shows that 14 is not independent of the 
remaining conserved quantities, since we have 

14=121; -1)1;, (4.12) 

where I; and 12 denote, respectively, the first integrals of 
the type (4.1) and (4.3) corresponding to Z. 

Secondly,I3 and 14 reduce to the first integrals already 
described in Corollary 3.1 and in Theorem 3.3 of Ref. 9, 
respectively, under the assumption that both Yand Z are 
OS's associated with Killing tensors through (2.11). 

Thirdly, let us consider the first integral Is defined by 

Is = 14 - gab qaqbI 3 

.a'b(K DHd H DK
d

) = gab q q d -- - d--
Ds Ds 

(
DH DK) a K a H 'a'b 

- -- b - -- b qq. 
Ds Ds 

(4.13) 

In view of(4.12),1s is essentially equivalent to 13 , More
over, the detailed expression of Is shows that it does not 
depend on 1" and TJ. Accordingly, in the particular case that 
both Yand Z are determined by generalized Killing tensors, 
it is possible to write down Is explicitly, without any need for 
a further integration of (2.12); furthermore, the conserved 
quantity (4.13) reduces to the one already found and com
mented on in Theorem 3.4 of Ref. 9. In addition, we want to 
emphasize that, under the more severe restriction that Yand 
Z correspond to Killing tensors, Is coincides with the first 
integral generated by the well-known Schouten-Nijenhuis 
bracket 13 of the given tensors, up to a factor gab qaqb, which, 
of course, is constant on every geodesic. 

It follows from the above discussion that, besides giving 
rise to new classes of previously unknown conserved quanti
ties, OS's also provide a unified approach yielding almost all 
known first integrals of geodesic motion. In addition, it is to 
be noticed that some results can be extended to general La
grangian system, as will be shown below. 

Theorem 4.1: Suppose that Yand Z are OS's of a gen
eric Lagrangian system. Then the quantity 

(Y A Z, de) (4.14) 

is a first integral of motion. 
Proof Making use of the identity r (Y A Z, 

de> = !f r (Y 1\ Z, de ) and recalling the definition of 
OS, we have 

r (Y A Z, de) = r(1")(r A Z, de) + r(TJ)(Y A r, de) 

+ (Y A Z, !f r de ). (4.15) 

The terms (r A Z, de ) and (Y A r, de ) vanish in conse
quence of (2.4a). Moreover, we have 

!f r de = ir d de + d (ir de) = 0, 

in view of (2.4a). The proof follows after substitution of the 
previous results into (4.15). • 
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Coming back to the case L = ! gab qail, it may be 
shown that 

(Y 1\ Z, de) = F3' (4.16) 

where 13 is given by (4.10). This result may be rephrased by 
saying that the first integral 13, which is essentially equiva
lent to Is in the case of a quadratic Lagrangian, can be ex
tended to arbitrary Lagrangian systems using the formula 
(4.14). 

One last remark is in order now, before the end of this 
section. The vector field [Y, Z] is a OS, because it is related to 
r by the condition 

[[Y, Z],r] = r[Z(1") - Y(TJ)] r. (4.17) 

It follows that 

I; = [Y, Z ](sL ) - ([ Y, Z ], e ) (4.18) 

is a conserved quantity. The question now arises as to 
whether I; is a new independent first integral or not. The 
answer is negative, because making use of the identity 14 

2(Y A Z, de) 

= Y (Z, e) - Z (Y, e) - ([Y, Z], e), (4.19) 

it may be shown that the following identity also holds: 

Y(I;) - Z(I2 ) = I; - 2(Y A Z, de). (4.20) 

Recalling that, in general, the derivative of a conserved 
quantity along the direction of a OS is a conserved quantity, 8 

we conclude by inspection of (4.20) that I ; is linearly related 
to the constants of motion Y(I;),Z(I2 ), and (Y A Z,de). 

5. COMMENTS 

We hope to have shown in this paper the theoretical as 
well as practical advantages that can be achieved by the in
troduction of the concept of OS as a tool for the analysis of 
geodesic motion. We shall summarize here a number of ar
guments in order to support our claim. 

(i) A OS identifies a Jacobi field along every geodesic of 
the space-time manifold (configuration space). 

(ii) There exists a canonical correspondence showing 
that well-known classes of symmetry generators defined 
over the space-time manifold (configuration space), such as 
projective collineations, affine collineations, homothetic 
motions, and Killing vectors, can be viewed as OS'S.8 

(iii) Killing tensors and generalized Killing tensors, 
which are known to give rise to conserved quantities and to 
Jacobi fields,9.15 can be reinterpreted as generators of OS's 
through (2.11) and (2.12). In particular, one can always asso
ciate quantities to generalized Killing tensors by means of 
the related OS. 

(iv) If Y denotes a OS corresponding to a projective col
lineation or to a Killing tensor, then the constants of motion 
11 and 12 [see (4.1) and (4.3)] reduce to the conserved quanti
ties concomitant with the given projective collineation and 
Killing tensor, respectively. 

(v) The first integral 13 [see (4.10)], which is essentially 
equivalent to Is, yields a proper extension of a family of con
served quantities that have been recently found in Ref. 9. In 
particular, it follows that when Yand Z are properly chosen, 
13 corresponds, vials, to the related integral theorem of Kat
zin and Levine. 10.16 
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Coming to more general considerations, we want to re
mark that in the course of the paper we have not given specif
ic examples, because they may be easily constructed using 
the connections between OS's and the projective collinea
tions or the Killing tensors of the given space-time manifold. 
As yet, we have made no systematic attempt to find exam
ples of OS's that do not come from tensor fields of the config
uration space. 

Similarly, the problem of extending the first integrals II 
and 12, or at least one of them, to arbitrary Lagrangian sys
tems is still a matter of investigation. On the contrary, it has 
been shown that the quantity 13 is conserved for arbitrary 
systems. 
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The asymptotic evaluation of a class of path integrals. II 
J. M. Luttinger 
Department of Physics, Columbia University, New York, New York 10027 
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The asymptotic behavior of a class of Wiener-like path integrals (functions of the "local time") is 
determined. These integrals are of interest in themselves and also arise very naturally in the theory 
of disordered systems. We show that by making use of a Grassman algebra (i.e., a set of 
anticommuting variables), the earlier treatment of this problem can be greatly simplified. In 
particular, the previous use of "replica trick" (which involves a difficult to justify analytic 
continuation in the number of field components) is thus avoided. 

PACS numbers: 02.50. + s, 02.30.Bi 

1. INTRODUCTION 

In a previous publication· we have shown that a class of 
Wiener path integrals (functionals of the "local time") may 
be asymptotically evaluated in the limit of large time by a 
version of the "replica trick." This involves a formal analytic 
continuation of an n-component field theory to the point 
n = O. Whereas there is little doubt that the method is cor
rect for a wide class of functionals, it has proved difficult to 
give more than a rather heuristic justification of it. In addi
tion, the actual carrying out of the continuation process in
volves first doing the problem for a field theory with an arbi
trary number of components. This is technically compli
cated, though straightforward, and makes the discussion of 
the corrections to the leading term almost prohibitive. 

In this paper we approach the same problem from an
other point of view. The new approach involves no analytical 
continuation in n, and is also technically somewhat simpler. 
The method is due to Parisi and Sourlas2 and McKane,3 
making use of anticommuting variables (a Grassman alge
bra) in a form familiar from field theory.4 In Sec. 2 we give 
the new formulation of the problem. This seems interesting 
in its own right. (Although we shall not exploit it here, the 
theory has a very suggestive "supersymmetry.") In Sec. 3 we 
evaluate our expressions for large t using the Laplace meth
od for integrals containing a large parameter, and recover 
the results of I. 

2. GENERAL FORMULAS 

We consider first the Green's function G,(x, x') asso
ciated with the Hermitian operator H in d-dimensional 
space. x, x' are points in the d-dimensional space, t> 0, and 

H=Ho+ V(x), 

aG,(x,x') , 
+HG,(x, x) = 0, at 

lim G, (x, x') = 8(x - x'). 
,--0+ 

(2.1) 

(2.2) 

(2.3) 

(In I we took Ho = - ~ V;, which yields results for the usual 
Wiener integral. Our formulas will be slightly more general.) 
G, has well-known representation 

G, (x, x') = L ifil' (x) ifi !(x') e - 'E", (2.4) 
I' 

where the ifil' are the complete orthonormal set of eigenfunc-

tions of H: 

Hifill=El'ifi'l' 

J dxifi ;(x) ifi'l(X) - (ifiv' ifi'l) = 8,1l•• 

(2.5) 

(2.6) 

We confine our system to a volume fl in R d and discre
tize the operator H on a set of N equispaced points in fl. 
Ultimately, we will go to the limit N-oo, fl-oo. Now in
troduce (at each of these points x) 1](x) and 1]*(x) which are 
elements of a 2N-dimensional Grassman algebra, i.e., all 
these 2N elements anticommute with each other. We define 
along with Berezin4 an operation of "integration" on any 
elements 1],1]* at the same point 

J d 21](ao + a.1] + a21]* + a31]1]*) = a3 ! . (2.7) 

We will now show that 

x8((ifi,ifi) + (1],1]) - I), 

where 
/Ii 

!?Pifi!iJ21] = IT d (Re ifi (x) d (1m ifi (x)) d 21](X). 
x=l 

[The range of integration for Re ifi (x) and 1m ifi (x) is 
(- 00, (0).] 

(ifi,Hifi) = J ifi *(x) Hxy ifi (y) dx dy, 

(ifi,ifi) = f ifi *(x) ifi (x) dx, 

(2.8) 

(1],H1]) = J 1]*(x) Hxy 1]( y) dx dy, (1],1]) = f 1]*(x) 1](x) dx. 

Hxy is the (discretized) matrix element (xlH I y) of H, and we 
write everything (as usual) as if we'd already gone to the 
continuum limit. 

The 8-function in (2.8) is a finite sum of derivatives of 8-
functions [obtained by expanding in (1],1]), (1],1]) /Ii being the 
highest power that comes]. It is easy to see that we can mani
pulate this 8 in all the usual ways. 

Writing 
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¢ (x) = L bv ¢v(x), 
v 

(2.9) 

1]"'(x) = L a~ ¢ ~(x). 
v 

The av , a~ again form a Grassman algebra. It is easy to see4 

that we can write 

fi)2¢ fi)21] = fi) 2b fi) 2a 

= II d (Re by) d (1m (bv)) d 2av 
v 

so that the right-hand side of (2.8) becomes 

J fi) 2
b fi) 2a( L, ¢v(x) ¢ ~(x') av a~ ) 

v,v 

x IJ (e - 'EJb ~ b, + a~ a v)) 8( ~ (b ~ b v + a~ av ) - 1) 
= _1_ Joc dw eiw J fi) 2b fi) 2a 

21T - 00 

X(~, ¢v(x) ¢ ~(x') av a~ ) 
x II (e - (,E, + iwllb ~ b, + a~ a,)). (2.10) 

Using the integration formulas 

J d 2 - A a~ a v - ~ ave -, 
1T 

(2.11) 

J d 2 * - A a~ a v _ 1 av ava" e - -, 
1T 

the right-hand side of (2.10) becomes5 

Joo dw eiw 

~ ¢v(x') ¢ ~(x) _ 00 21T lEv + iw 

= L ¢v(x) ¢ ~(x') e - ,E, = G,(x, x'). (2.12) 

Again, just as in I, we use for G, (x, x') the Feynman
Kac representation as an average over Brownian paths6 

G( ')-G(O)( ')( -'SL,(Y)V(Y)dYIX(I)~X') 
I x, X - ,x, x e x(O) ~ x , (2.13) 

G ~O)(x, x') = exp - - , 1 {Ix x'12} 
(21TI )d /2 21 

(2.14) 

1 i' L,(y) = "Local time" = - 8(y - y(r)) dr, 
I ° 

and the angular bracket represents the conditional average 
over all Brownian pathsy(r) starting aty(r) = x for r = 0 and 
ending aty(r) = x' for r = I. Therefore, we may write (2.8) as 

( 
-, S L,(y) V(y)dy I x(l) ~ X') 

e x(O)~x 

2071 

= [G ~O)(,;, x')] - I J fi)2¢ fi)21]1](X) 1]"'(x') 8((¢,¢) 

+ (1],1]) - 1) exp { - I [ (¢,Ho¢ ) + (1],Ho1]) 

+ J dy(¢"'(y)¢(y) + 1]"'(Y) 1](y)) V(Y)dY]} .(2.15) 
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Exactly the same reasoning as in I [discussion following 
(2.18)] now allows us to conclude that 

(e - ,F,[ L'(')ll;') = [G ~O)(x, x')] - I 

X J fi)2¢ fi)21]1](X) 1]"'(x') 

X8((¢,¢)+(1],1])-l)e-'s, (2.16) 

S= (¢,Ho¢) + (1],Ho1]) + F, [¢ "'(.) ¢ (.) + 1]"'(-) 1](-)1. (2.17) 

where F, [ L, (.)] is an "arbitrary" functional of L, (y) such 
that both sides of (2.16) exist. We also note that the same 
method shows that (2.16) is also valid if 1](x) 1]"'(x') is replaced 
by ¢ (x) ¢ "'(x') (this is related to the "supersymmetry" of the 
theory). For our purposes, however, (2.16) proves a little 
more convenient. 

3. ASYMPTOTIC EXPANSION FOR LARGE t 

Although we can easily consider more general cases we 
consider (as in I) for simplicity the case where F, is indepen
dent of I, F, = F. First, we make a slight change in variables. 
From (2.7) we see at once that if we replace 1]-1]/1, 
1]"'-1]'" d 21]_ld 21] all 1],1]'" integrals are left invariant, so 
that (2.16) may also be written 

G~O)(x, x') (e - 'F[Lklll;,) 

= IN-I J fi)2¢ fi)21]1](X) 1]"'(x') 8((¢,¢) 

+ l..(1],1])-l)e- 'S , 
I 

S -(¢, H o¢ ) + (lit )(1], H o1]) 

+ F [¢ *(.) ¢ (.) + (111 )(1]"'(-) 1](')]' 

(3.1) 

For large t the leading term of S will be a functional of ¢,¢ '" 
alone and therefore (as in I) it is natural to use the Laplace 
method, i.e., put 

¢ (x) = "'o(x) + "'(x), (3.2) 

where "'0 is normalized to unity [the 8 in (3.1)] and will be 
determined by the Laplace method. '" will be of the order of 
11ft, so we may expand in it as well as 1]"'1]/1 terms. A 
simple calculation gives for the right-hand side of (3.1) the 
expression 

IN - I J fi)2¢ fi)21]1](X) 1]*(x') e -, [S" + S, + S,] 8((",0'''') 

+ ("""'0) + ("',"') + + (1],1])) [ 1 + 0 ( +)] , 
So = ("'o,Ho"'o) + F ["'0(-) "'0(')], (3.3) 

SI = ("',Ho"'o) + ("'o,Ho"') 

+ J dx U(x) ("'~(x) tP(x) + "''''(x) "'o(x)), (3.4) 

S2 = ("',Ho"') + + (1],Ho1]) + J dx U(x)("''''(x) "'(x) 

+ 1.. 1] "'(x) 1](x)) + 1.. J dx dx' U (x, x') ("'~(x) "'(x) 
I 2 

+ "''''(x) "'o(x))("'~(x') "'(x') + "''''(x') "'o(x')), (3.5) 
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where 

U(x) - 8F [tP~(·) tPo(·)] , (3.6) 
8(tP~(x) tPo(x)) 

, 82F [tPt(·) tPo(·)] 
U(x, x) = 8(tPt(x) tPo(x)) 8((tPt(x') tPo(x')) (3.7) 

tPo is determined by making So minimum subject to the 
constraint (tPo,tPo) = 1, i.e., 

HotPo(x) + U(x) tPo(x) = EotPo(X), (3.8) 

where Eo is the Lagrange multiplier corresponding to the 
constraint. Using (3.8) SI becomes 

SI = EO [(tP,tPo) + (tPo,tP)] 

(3.9) 

because of the 8-function in (3.1). Thus we may write for the 
right-hand side of (3.1) 

t N - 1 e - ISo f !iJ2r/J 8((tPo,tP) + (tP,tPo)) 

Xe- IA f !iJ27]7](X) 7]*(x') e- B [1 + a (+)] , (3.10) 

A = (tP, htP) + ~ f dx dx' U(x,x') (tPt(x) tP(x) 

+ tP*(x) tPo(x))(tPt(x') tP(x') + tP*(x') tPo(x')), 

B = (7], h7]), 

h=Ho+ U-Eo' 

(3.11) 

(3.12) 

(3.13) 

In Eq. (3.10) the 7]-integration is Gaussian and therefore 
trivial. To keep things as simple as possible let H o and F be 
real so that h is real, and let X" (x) be a real complete orthon
ormal set of eigenfunctions of h: 

hX" =h"X,,· (3.14) 

Clearly Xo satisfies (3.8) with ho = O. Put 

7](x) = I c" X.< (x), 

" (3.15) 

7]*(x) = I c! X A (x). 

" c" , c! are again a Grassman algebra and 

f !iJ27]7](X) 7]*(x') e - B 

= f !iJ 2c(I X,,(x) X",(x') c" c!,) II e - hAC! cA 

A.A' " 

=~ I x,,(x)X,,(x') II h", (3.16) 
rr " "',",,, 

on using (2.11). If ho = 0 is the only zero eigenvalue of h 
(which we assume--only in special cases will there be degen
eracy) then (3.16) becomes 

f !iJ27]7](X) 7]*(x) e - B = ~ Xo(x) Xo(x') II h" 
rr A ,",0 

= _1_ Xo(x)Xo(X') Det'(h), (3.17) 
rr N 
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where Det'(h) means the determinant of h calculated in the 
space orthogonal to X 0' 

The r/J-integration in (3.10) is a bit more complicated for 
two reasons: the presence of the 8-function and of a degener
acy not previously mentioned. Any solution of (3.8) multi
plied by an arbitrary constant phase factor ei

(} (0 real) is an 
equally good solution. Therefore the minimum of So is not a 
point in function space but a line, and we must take this into 
account. (This is analogous to, but much simpler than a simi
lar problem which arises in I.) 

Expand r/J (x) in the X.< (x), 

r/J(x) = Ia" X.< (x) =aoXo(x) + I aAx,,(x), (3.18) 
" ",",0 

and put au = p ei(} (p, 0 real, p > 0, 0.;;;0.;;;2rr). Writing 

r/J(x)=ei(}Xu(x)+(p-l)ei(}xo(x)+ I a"X,,(x), 
A ,",0 

(3.19) 

Eq. (3.19) isjust (3.2) with the arbitrary phasefactore i
(} made 

explicit, i.e., 

tPo(x) = ei(} Xo(x), (3.20) 

tP(x)=(p-l)ei(}xo(x)+ I a"x,,(x). (3.21) 
" ,",0 

Further since (3.18) is a unitary transformation we have 

!iJ2r/J = II d 2
a" = d 2

a o II d 2a" " ,,~o 

=p dp dO II d 2 a". 
" ,",0 

(3.22) 

We also have for the argument of the 8-function in (3.10), 

(tPo,tP) + (tP,tPo) = 2(p - 1). (3.23) 

Therefore the r/J-integral in (3.10) becomes (after doing the p
integration) 

f !iJ2r/Jf>((tPO'tP) + (tP,tPo)) e - fA 

- 1 i21Tdn II d 2 -IA' 
-- 0 a" e , 

2 ° ",",0 

(3.24) 

A'= I la,,1 2 hA +~ I L"",(a"e- ilJ 

",",0 2 '" ,,',",0 

+ a! eilJ)(a" , e - i(} + a!, e,IJ), 

LA,,' = f dxdx' U(x,x')Xo(x)Xo(x')X,,(x)X,,·(x'). (3.25) 

Set a" = ei
(} {3". This is just a rotation of the real and imagi

nary axis through 0, so that d 2a" = d 2{3". Putting{3" = u" 
+iv" (U", v" real),A'becomes 

A' = I (U~ + v~) h" + 2 I L"", u" U,t. (3.26) 
" ,",0 ,t." '",0 

and 

II d 2 {3" = II dUA dv,t. 
,t ,",0 " ,",0 

The integral over 0 is now trivial and the u" , v" integrals are 
Gaussian: the right-hand side of (3.24) becomes 
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(1TN It N-I) [det'(A')] -112 [Det'(A' + 2L)] -112. (3.27) 

Combining all these results (3.1) becomes 

G~OI(X, x') (e - 'F[L'('III :') 

, _ - [det'(A')] 112 
- X (x) X (x ) e 'So -"':""---'--'-=---,:-
- 0 0 [det'(A'+2L)]1I2 

(3.28) 

which is exactly the result [(3.36) and (3.40)] of I. 
It is not difficult to go to the next order [ 0 ( 1/ t )] by this 

method, but the resulting formulas are quite complicated 
and we won't give them here. We can also treat the case of 
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translational invariance very easily by this same method giv
ing of course the same result as I. 

'J. M. Luttinger, J, Math. Phys. 23, 1011 (1982). Henceforth we shall refer 
to this paper as I. 

2G, Parisi and N. Sourlas, Phys. Rev. Lett, 43, 744 (1979). 
3A. J. McKane, Physics Lett. A 76,22 (1980). 
4F. A, Berezin, The Method o/Second Quantization (Academic, New York, 
1966). 

'We assume that (""H",) is bounded from below, so that without loss of 
generality we can take Ev > O. This assumption is almost certainly not 
necessary, but simplifies the derivation of (2.8). 

"This is the usual Wiener integral if Ho = -! V2
. For more general Ho 

(representing, for example, a particle in a magnetic field) we get a general
ization (not necessarily real) of the Wiener integral. From now on for con
creteness we take the usual Wiener case. 
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The rotating harmonic oscillator eigenvalue problem. I. Continued fractions 
and analytic continuationa) 

D. Masson 
Department of Mathematics, University of Toronto, Toronto, M5S IAl Canada 

(Received 12 January 1983; accepted for publication 11 March 1983) 

The continued fraction approach to the solution of the rotating harmonic oscillator eigenvalue 
problem is examined in detail. It is shown how one may obtain eigenvalue information only from 
an analytic continuation of the continued fraction accomplished with the aid of modified 
approximants. 

PACS numbers: 02.60.Lj, 02.30.Mv, 02.30.Lt, 02.30.Gp 

1. INTRODUCTION 

In a recent paper Singh et al. I claim to have obtained the 
eigenvalues A of the rotating harmonic oscillator in terms of 
the poles of a convergent continued fraction. Further, by 
applying Worpitzky's theorem to the continued fraction 
they claim that in the strong coupling limit the eigenvalues 
are bounded below by the angular momentum I. This latter 
claim contradicts the phase integral results of Froman and 
Froman,2 which coincide with the earlier results of Dun
ham3 and Rosenthal and Motz4 and are further substantiat
ed by the calculations of Froman et al. 5 

The present paper resolves this discrepancy by observ
ing that the continued fraction must be analytically contin
ued before it yields eigenvalue information. We show how 
this may be accomplished in a limited sense restricted to the 
weak coupling region. 

The basic error in Ref. 1 is in their implicit assumption 
that the continued fraction is directly related to the physical 
eigenvalue problem. The coupling parameter is denoted by 
a> 0 with a-o + representing the strong coupling limit. 
The reciprocal of their continued fraction converges for 
larg al < rr to a functionf(A, a,l) which (except for special 
values of A ) has a square root branch cut along the negative a 
axis. Their assumption thatf(A, a,l) = 0 is the eigenvalue 
condition is not correct. The correct eigenvalue condition is 
given by g(A, a,l) = 0, wheregis the analytic continuation of 
f onto the second sheet. For special values A = I + n, 
n = 1,2,.·· one hasfequal to a rational fraction, and the two 
conditions coincide since one then hasf = g. 

The boundedness proof of Ref. 1 is also in error. In 
order to use Worpitzky's theorem, they need a domain 
D= ta:0<8a<l(n+I-A)I- 1,n= 1,2,. .. ]::J (0, E) for 
some E> O. Since D = 0, this is clearly impossible. Their 
boundedness proof can, however, be corrected. The contin
ued fraction in question [Eq. (28) of Ref. 1] can be shown to 
converge for A <I + 1 and all finite a with arg a = 0 (in fact 
for I arg a I < rr) by using the theory of real J-fractions (see 
Ref. 6 and Sec. 3). Thus the continued fraction can have no 
poles for A,,;;j + 1 on the first sheet in a cut along the nega
tive real axis. One would conclude that all eigenvalues A are 
bounded below by I + 1 for any value of a> 0 unless one 

a) Research partially supported by NSERC. 

took into account the fact noted above: In order to yield ei
genvalue information, the continuedfraction must be analyti
cally continued to arg a = 2rr. 

Also in Ref. 1 it is suggested that the values A = I + 1 
should be excluded from the eigenvalue spectrum. Now for 
the special values A = 1+ n, n = 2,3,.·· there exist radial ei
genfunctions which are Gaussian weighted polynomials (the 
I = 0 ones being the familiar Hermite functions) and the con
tinued fraction terminates to become a rational fraction in a. 
For these special values of A the poles of the rational fraction 
in a do yield values of a which produce those special values 
of A as eigenvalues. These values of a are correctly given in 
Ref. 1. Their claim that A = I + 1 should be excluded from 
the eigenvalue spectrum is based on these observations. The 
exclusion of A = I + 1 is actually true only for I = O. For 
I> 0 one does indeed obtain the eigenvalue A = I + 1 for I 
values of a and each of the eigenvalues A = 1+ n, n = 2,3,.·· 
for I additional values of a which are not poles of the rational 
fraction in a. These extra integer eigenvalues have corre
sponding eigenfunctions which are not Gaussian-weighted 
polynomials. Thus the conditionf(A, a,l) = 0 is only a suffi
cient condition for eigenvalues even for the special values 
A = 1+ n, n = 1,2, ... ,1 #0. 

In Sec. 2 we solve the I = 0 radial Schrodinger equation 
in terms of the parabolic cylinder function and obtain the 
eigenvalues in the weak and strong coupling limits. 

In Sec. 3 we obtain an exact expression for the I = 0 
continued fraction of Ref. 1 and prove that it converges for 
I arg a I < rr while the interval of physical interest is 
arg a = 2rr so that one requires an analytic continuation of 
the continued fraction. 

In Sec. 4 we examine the possibility of modifying the 
continued fraction so as to accomplish this analytic continu
ation and show that, although this is possible theoretically, it 
is not of practical interest except in the weak coupling limit 
(a- (0). With the modified continued fraction we are able to 
reproduce the weak coupling results of Sec. 2 and generalize 
them to arbitrary I. 

In Sec. 5 we use differential equation techniques to 
prove that the eigenvalue trajectories A (a) are monotonic 
increasing. Also an exact solution to the "undisplaced" os
cillator problem with potential! ? + I (I + 1)/? is obtained 
which allows one to solve the "displaced" oscillator prob
lem, in principle, for unrestricted values of a. 
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In Sec. 6 we use the above results to graph the / = ° 
eigenvalue trajectories and give a schematic picture of the 
trajectories for arbitrary I> 0. 

2. THE I = 0 SOLUTION 

We use the notation of Refs. 1 and 2, where the reduced 
radial Schrodinger equation for the rotating harmonic oscil
lator is given by 

dlF [A+~ _ (r_l)l _ 1(1+1)]F=O (1) 
dr + a 4a l r 

with r the radial variable, A the eigenvalue, 1= 0,1,2,.··, the 
rotational quantum number, and a> 0 a coupling param
eter. One requires that the solution vanish at r = ° and in the 
limit r--+ 00. 

For I = ° we put z = (r - I)lra to obtain 

with boundary conditions F = 0 at z = - lira and 
limH = F=O. 

(2) 

Equation (2) may be solved exactly in terms of confluent 
hypergeometric functions. s We prefer to consider here the 
two linearly independent solutions given by D;. ( ± z), where 
D;. is the parabolic cylinder function 7 

D;.(z) = 2-;'/2e-
hz I (_l)m r ((m-A)l2)(z/it. 

r( -A) m~O m! 
(3) 

Thus 

F=AD;.(z) +BD;.( -z), (4) 

where, in order to satisfy the r = ° (z = - lira) boundary 

condition, one may choose A = CD;. (lira) and 

B = - CD;. ( - lira). 
For large values of Izl one has asymptotic expansions7 

D;.(z)_e- h4 ~ 

[
I _ A (A - 1) A (A - I)(A - 2)(A - 3) + ... ], 

X 2z1 + 2.4z4 

(5) 

and 

D;. (z) -e - z'l4 

X ~ [ I _ A (~-; I) + A (A - I )~4~/)(A - 3) + ... ] 

,fiii +;'1Ti z"/4 -;'-1[1+ (A+I)(A+2) - e- e z 
r( -A) 2z1 

+ (A + I)(A + 2)(A + 3)(A + 4) + ... ] , 
2.4z4 

l 7T < ± arg z < ~ 7T. (6) 

(Note that in a standard reference, Ref. 8, Eq. (6) is given 
incorrectly on p. 123.) 

From (4), (5), and (6) it follows that, in order to satisfy 
the r--+ 00 (z --+ 00) boundary condition, it is necessary and 
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sufficient to have 

D;.( - lira) = 0 

so that 

F= CD;.(lIra)D;.((r-l)1ra). 

The above formulas remain valid when A = n, 
n = 0,1,2,···, excepting (3) which is then replaced by the 
simpler and more familiar expression 

Dn (z) = 2 - nl2 e - h4Hn (zl/i), 

where Hn is the Hermite polynomial of degree n. 

(7) 

(8) 

(9) 

Thus the I = 0 eigenvalues for the rotating harmonic 
oscillator are given by 

A=Am(a), m=0,1,2,··., 

a countable set of zeros ofEq. (7) which we will order so that 
Am + 1 > Am' The corresponding eigenfunctions are given by 
(8). That is 

F= Cm D;'m(ad(r-l)/ra), (8') 

where Cm is a suitable normalization constant. 
In the weak coupling limit (a--+ 00) one may solve the 

eigenvalue condition (7) using (3) to obtain 

Am(a) = 2m + I + (_l)m 2..fflCl + O(a-I), 
m!r( -m -!) 

(10) 

m = 0,1,2,···. 

In particular, one obtains 

Ao(a) = 1 + abl)lra + a~11 a + a~l/a3/2 + 0 (a- 2), 
(10') 

ag l = - flhr = - 0.797885, 

a~1 = (2/7T)(1 -In 2) = 0.195349 

a~1 = - ~2hr(! + 2hr - (617T) In 2 

+ (317T)(ln 2)2 - 7T/12) = - 0.007824. 

In the strong coupling limit (a--+ 0 + ) one may solve 
the eigenvalue condition (7) using (6) to obtain 

a - m - 1/2 e - 1/(2a) 

Am(a)=m+ [1-a(m2+m+l) 
,fiiim! 

+ 0 (a2 )] + 0 (a - 2m - I e - 1/a). (11) 

We note that (11) is consistent with the results of Refs. 2-4 
and is in good numerical agreement with the calculations of 
Ref. 5. For example, (11) yields A 0::::: 7.65 X 10- 3 for a = 0.1 
as compared with the Ref. 5 value of 7.5 X 10-3

. 

Equations (11) and (10) yield integer and odd integer 
eigenvalues in the limits a--.. 0 + and a--.. 00, respectively. 
Integer eigenvalues are obtained also for intermediate values 
of a. I This can be seen from (7) and (9), from which it follows 
that one has A = n whenever a = l/(2x~.i)' i = 1,2, ... ,[n12], 
where Xn,i is the ith negative zero of Hn (x) the Hermite po
lynomial of degree n. Thus one has A = n for exactly [nI2] 
distinct values of a> 0 where [ . ] is the greatest integer func
tion. This latter statement may be extended to more general 
values of A > 0. 
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The zeros of D" (z) appear to have been first investigated 
by Milne,9 who showed that the number of real zeros was 
given by [A + 1] and that a new negative zero makes an ap
pearance at z = - 00 as A increases through integer values 
and an old negative zero disappears to the right of z = 0 
when A increases through odd integer values. It follows from 
Milne's work that the eigenvalue A = 2n - C is achieved for 
n distinct values of a> 0 while A = 2n + C for n + 1 distinct 
values of a> 0 with 0 < C < 1. Also one has 
A = 2m + 1 - € m and A = m + €;", where € m and €;" are 
arbitrarily small and positive for a > 0 sufficiently large and 
small, respectively. Equations (10) and (11) are a more pre
cise formulation of this last statement. 

3. THE CONTINUED FRACTION AND ANALYTIC 
CONVERGENCE 

A. The continued fraction 

One may attempt to solve (1) together with the bound
ary condition at r = 0 by putting 1 

F= rl+ 1 exp[ - (r - 1)2/2a] X. (12) 

One obtains 

d 2X + ( 21 + 2 _ (r - 1)) dX 
dr r a dr 

(
A-I-l 1+1) 0 + + -- X= 

a ar 

and a convergent power series solution (co#O) 

where the Cn satisfy the three-term recursion relation 

a(n+ 1)(n+2/+2)cn + 1 +(n+l+ l)cn 

+ (A -1- n) cn -I = 0, 

From this one obtains 

C/Co = - l/(2a) 

n = 0,1,2, .... 

(13) 

(14) 

(15) 

(16) 

and if Cn _ I' Cn , and A -1- n are nonzero one may write 

(15) as 

(I + n - A )/(n + 1 + 1) Ln _ 1 = -------'--'--------'-'-'----'--'------'-----
1 + [a(n + l)(n + 21 + 2)/(n + 1 + 1)] Ln 

(17) 
whereLn =cn+l/cn · 

Using (17) recursively together with (16), one obtains 
the equation 

/(a, A,/) = 0, 

where/is the continued fraction 

w aan(A,l) 
/(a,A,/) = 1 + K 

n ~ 1 1 
with 

2(1 + 1 -A) 

(l + 2) 

n(21 + n + 1)(1 + n - A) an = ----'------'-'------'-, n = 2,3, .. , . 
(/+n+l)(/+n) 

(18) 

(18') 

(19) 

Equations (18), (18'), and (19) are equivalent to the van
ishing of the infinite Hill determinant of the coefficients of 
the C n .10.11 In Ref. 1, Eq. ( 18) is wrongly interpreted as yield
ing the eigenvalues associated with the boundary condition 
F-+ 0 as r-+ 00. That this is not the case can be seen by the 
following argument. 

For A not equal to an eigenvalue one has the large r 
behavior 

(20) 

and the eigenvalue condition must eliminate this exponential 
growth. Now the tail of the continued fraction in (18') is 

a(n + l)(n + 21 + 2) Ln 

(n+I+1) 

where Ln = Cn + 1 /cn· If one assumes that Ln ;::::.Ln _ 1 for n 
large, then (17) has L n satisfying the approximate equation 

a(n + l)(n + 21 + 2) L 2 + L _ (I + n - A) ;::::.0 
(n+l+l) n n (/+n+l) 

(21) 

so that 

- 1 ± [1 + 4a(n + l)(n + 21 + 2)(1 + n - A )/(n + 1 + 1)2] 1/2 L n ;::::. L n± = ----'=-.!'---'------'--'------''-'---'----'---'-'---'----'--'---'-------'--=--- (22) 
2a(n + l)(n + 21 + 2)/(n + 1 + 1) 

In order to eliminate the exponential growth of (20), one 
must choose the negative sign in (22). This will then allow for 
a cancellation between the even and odd parts of (14) which 
would otherwise both contribute to this exponential growth. 
The continued fraction in (18'), however, chooses the wrong 
sign in the sense that its tail converges to the Ln associated 
withL n+. Thus (18) with/given by (18') cannot yield correct 
eigenvalues except for special cases where the continued 
fraction terminates, i.e., A = 1 + n, n = 2,3, .... 

One might hope to circumvent this restriction by modi
fying the continued fraction in (18'), that is, by replacing the 
tail Ln by an approximately correct tail such as L n- . This 
procedure of mOdifying a continued fraction is known to 
yield a correct analytic continuation for special types oflimit 
periodic regular C-fractions. 12 We will show in Sec. 4 that, 
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I 
although such a modifying procedure is possible for (18'), it 
is, however, not practical, except in the weak coupling limit 
(a-+ (0). 

Our heuristic argument concerning the inappropriate
ness of(18) as an eigenvalue condition may be rigorously 
justified for the case 1 = 0 by obtaining an explicit represen
tation for the continued fraction (18') and comparing the 
condition (18) with the correct eigenvalue condition 

D" ( - lira) = 0 given by (7) in Sec. 2. 

B. Analytic convergence 

One has D" (z) satisfying the recursion relation 7,8 

D,,(Z) - zD,,_ dz) + (A - 1) D" _2(Z) = O. (23) 

If D" (z) and D" _ 1 (z) are not zero, one may write this as 
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D). _ I (z) = (Z + (1 _ A ) D). _ 2 (Z)) - I 

D).(z) D)._I(z) 
(24) 

Using this recursively yields 

D). _ dz) (1 - A ) (2 - A ) 

D,,dz) z + z + z 

+ 
(N -A _ 1) D)._N(Z) 

+ D)'_N+dz) 
(25) 

and in the limit as N---+ 00 one obtains the formal continued 
fraction representation 

I-A 2-A 

z + z + z + 
(26) 

The continued fraction in (26) is the J-fraction (or S
fraction) associated with the asymptotic series 

D). _ I (z) -Z-I (1 + A-I + (A - I)(U - 3) + ... ) , 
D).(z) r Z4 

(27) 

- ~ 1T < arg z < ~ 1T 

obtainable from (5). We are able to justify (26) for Re z> 0 by 
establishing certain properties of D). _ I (z)! D). (z) and then 
applying the theory of the Hamburger moment problem.6 

An important property is the following. 
Lemma 1: If v < 1, then D" (z) has no zeros in the half

plane largzl<1T/2. 
Proof D" (z) has no real nonnegativezerosifv< 1.9 D,,(z) 

has no pure imaginary zeros for v < 1 (more generally for 
1m v = 0) since this would contradict the general Wronskian 
identity (Ref. 8, p. 117) 

d d 
D,,(z) dz D,,( - z) - D,,( - z) dz D,,(z) 

= fiii/r( - v). (28) 

That is, Dv(ia) = 0 with a real and a¥=O implies that 
Dv( - ia) = D,,(ia) = O. Suppose now thatD,,(z) has a com
plex zero zo(v) in the region larg zl < 1T/2 for some 0 < v < 1. 
limv~o Dv(z) = exp( - r/4) certainly has no zeros. In order 
for zo(v) to have left the region larg zl <1T/2, it would have 
had to either pass through the boundary of that region 
IRe z = 0) or move out to Izl = 00. The former is impossible 
since Dv(ia) ¥=O for v < I and a real while the latter would 
contradict the asymptotic formula (5). Knowing the region 
to be free of zeros for O<v < 1, it follows via the same argu
ment that it will be free of zeros for all v < 1. Actually, the 
more general statement that for v real Dv(z) has only real 
zeros in the half-plane larg zl <1T/2 also follows. 

Since it is more convenient to deal with the variable 
; = iz, we now consider the properties of the function 

/v(;) = - iD,,_ 1 (- i;)!D,,( - it) 

and the corresponding J-fraction 

1 I-v 2-v 

t - t t 

(29) 

(30) 

Lemma 2: The function/" ( t) is asymptotically equal to 
the J-fraction (30) in the half-plane 1m t> o. 
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Proof For the definition of asymptotic equality we refer 
the reader to Wall,6 p. 316. The lemma follows immediately 
from (25) and (27). 

Lemma 3: If v and t are real, then 

Im/" ( t) = -1T[ fiiir(1 - v)1 D,,( - i;Wl - I. 

Proof Equation (29) yields 

2Im/,,(;) 

(31) 

- [D,,_ d - i;) D,,(i;) +D,,_ dit) D,,( - it)J 

I D,,( -itW 

Using the general formula (Ref. 8, p. 119) 

z d 
D,,(z) = -D,,_ dz) - -D,,_I (z), 

2 dz 

one obtains the identity 

D,,_llz)D,,( -z) +D,,_I( -z)Dv(Z) 

= W(D,,_ dz), Dv _ 1 (- z)). 

Equation (31) follows from (32), (34), and (28). 

(32) 

(33) 

(34) 

Lemma 4: If v < 1 and 1m t> 0, then/vI t) is analytic 
and is given by the Stieltjes transform 

_ Joo O'v(x) dx 
/,,( t) - _ 00 ; _ x ' (35) 

where 

O',,(x) = (fiiir(1 - v)1 Dv( -IXW)-1 > O. (36) 

Proof D" (z) is an analytic function of z and has no zeros 
in the half-plane Ilmzl<1T/2ifv< 1 (Lemma 1). Hence/,,( t) 
is analytic in the half-plane 1m ;;;.0 if v < 1. Using Cauchy's 
theorem and the fact that 1/,,( t)1 <ell; I [Eq. (27)] with a 
contour extending along the Re ; axis and out to 00 in the 
half-plane 1m ;;;.0, one obtains 

/v( ; ) = _1 . foo /vlx) dx (37) 
2m - 00 x -; 

and 

0= _1_ Joo /,,(x) dx (38) 
21Ti - 00 x -; 

valid for 1m t> O. From (37) and (38) one has 

/,,(;) = ~ Joo Im/" (x) dx, 1m ;>0. (39) 
1T -00 x-t 

Equations (35) and (36) follow from (39) and (31). 
Lemma 5: If v < 1 and 1m t;;.O, then Im/,,( t) < O. 
Proof If 1m t = 0, this follows from (31). If 1m; > 0, 

one may use (35) to obtain 

foo O'v(x) dx 
Im/,,(t) = - Imt 2 

-00 It-xl 
which is negative definite from (36). 

Theorem 1: If v < 1 and 1m t> 0, then 

I-v 

t 
2-v 

t 
(40) 

Proof The continued fraction in (40) is a real J-fraction 
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(Ref. 6, p. 114) for which the determinate case holds since 
l: (n - V)-1/2 = 00 (Ref. 6, p. 109). HencetheJ-fractioncon
verges for 1m ; =1= ° to a functionf( ; ), which is uniquely de
termined by the properties that for 1m; > ° one hasf( ;) 
analytic, Imf( ;) < 0, andf asymptotically equal to the J
fraction (Ref. 6, p. 320). Thus (40) follows from Lemmas 2, 4, 
and 5. 

One should note that the continued fraction in (40) con
verges to the Stieltjes transform in (35) also for 1m; < 0. 
However,fv(;) is not represented by (35) [or (40)] for 
1m; < ° but is instead an analytic continuation of the 
Stieltjes transform (or the J-fraction) into the lower half
plane. 

Corollary 1: If A is real, Re z> ° and z is not a zero of 
DA(z), then 

I-A 2-..1, 

z + z + z + 
(41) 

Proof For A real and A < N, the tail of the S-fraction in 
(41) is given by 

i(N -A - 1) (~ I-v 

with; = iz and v = 1 - N + A < 1. For Re z > ° this tail 
converges to - iDA _ N(z)lDA _ N + I from Theorem 1. Equa
tion (41) follows from (25) since, although (25) was derived 
under the assumption that z was not a zero of D A _ I (z), 
DA (z), ... ,DA _ N + I (z), it may be analytically continued to any 
value of z such that z is not a zero of either D A (z) or 
D A _ N + I (z). That D A _ N + I (z) has no zeros for Re z> ° and 
A - N + 1 < 1 follows from Lemma 1. 

The connection between the eigenvalue condition (18) 

and the actual condition D A ( - lira) = ° can now be made 
by noting that the reciprocal of (41) may be rewritten via an 
equivalence transformation to state that if Re z > ° and z is 
not a zero of DA _ I (z), then 

-I D,dz) (I-A)z-2 (2-A)z-2 
z = 1 + -'-----'--

D,\_I(z) + + 
(42) 

If in (42) one puts z = lira, one obtains 

=1+ (I-A)a 
1 + 

(2-A)a 

1 + 
(43) 

Since the continued fraction in (43) is identical tof(a, ..1,,0) of 
(18/), it follows that (18) for I = ° is the condition 

ra D,\(lIra) = 0, (44) 
D,\_dllra) 

which, of course, is not the correct eigenvalue condition. 
To obtain the correct I = ° eigenvalue condition, one 

must first make an analytic continuation off(a, ..1,,0) [i.e., 
(43)] to arg a = ± 21T and then set it equal to zero. Since we 
are dealing with a square root branch point, either continu
ation will suffice. In the next section we consider how to 
obtain this analytic continuation by a modification of the tail 
of the continued fraction. 12 
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4. ALGEBRAIC CONVERGENCE AND ANALYTICAL 
CONTINUATION 

A. Convergence via the difference equation 

Letfbe the C-fraction 

f=I+ (I-A)a 
I + 

(2-A)a 

1 + 
(45) 

where unless stated otherwise we will consider A real but 
noninteger and a > 0. Letfn be the tail off given by 

/, = (n + 1 - A) a (n + 2 - A ) a (46) 
n I + + 

From (43) one has 

(47) 

and 

fn = raIn + I - A) D,\~ n _ 2 (lIra)ID,\ _ n _ I (lira) 
(48) 

with 

fn = (n + 1 - A ) a/( 1 + fn + I ). 

Consider the nth approximant off given by 

S = 1 + (I-A)a (2-A)a 
n 1 + 1 + + 

and the modified approximant 

Sn(lU)=I+ (I-IA)a + (2-
I
A)a 

(49) 

(n -A)a 

1 
(50) 

(n - 1 - A ) a (n - A ) a 
(51) 

+ + 1 + I+lU 

One obviously has 

n~ 00 

Let 

g= -raD,\(-lIra)lD'\_d-lIra). (53) 

This g is the required analytic continuation off If we define 

gn = - raIn + I-A )D'\_n_2( - lira) 

IDJ-_n_l( -lira), 

then (25) implies that 

Sn(gn)=g 

(54) 

(55) 

and that gn satisfies the same recursion relation asfn , name
ly, 

(56) 

The recursion relations (49) and (56) may be solved ap
proximately as in (21). The approximate solutions are now 
given by 

lUn± =(-I± ~I+4(n+I-A)a)l2. (57) 

Our remarks following (22) will be further justified when we 
show that for large n 

gn = lUn- + 0 (11m) (58) 

while 

(59) 
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We will also examine the convergence of Sn (wn±) and find a 
necessary and sufficient condition on Wn in order to have 

(60) 
n~ 00 

An important estimate for (5S), (59), and many later 
estimates is the following (Ref. 13, 19.9.1 and 19.9.2): 

Dy( + 1I[(1) 

2
y12J1i --'---exp[ ± ~ - via + o (lI/=V)] (61) 

r(! - ! v) 

provided that va -( - 1. 
Using (61), (47), and (54), one has 

In = ~(n + 1 - Ii) [r (1 + ~(n - Ii ))1 r (~ + !(n - Ii ))] 

(62) 

and 

gn = - ~(n + 1 - Ii )[r(1 + !(n -li))I 

r (~ + ! (n - Ii ))] exp [1I2{tUl + 0 (n- 3/2
)]. 

(63) 

From (62), (63), and the Stirling series for r, one obtains (5S) 
and (59). One may also verify that w n±_ 112 are actually better 
approximations since 

gn = Wn-- 1I2 + O(n- 3/2
), 

In =Wn+- 1I2 +O(n- 3/2
). 

(64) 

(65) 

It is also important to recall from the basic theory of 
continued fractions (Ref. 6, p. 15) the following formula for 
the modified approximant (51): 

Sn (W) = (An + wAn _ d/(Bn + wBn _ d, (66) 

where An and Bn are the numerator and denominator re
spectively of Sn' the nth approximant off They may be ob
tained from the difference equations 

An+' =~n+(n+l-li)aAn_" A_,=Ao=l, (67) 

Bn+,=Bn+(n+l-li)aBn_" B_,=O, Bo=l. 

(6S) 

Before proceeding with our main results, we emphasize 
the close connection between the difference equation [such 
as (67) and (6S)] and the recursion relation [such as (49) and 
(56)] associated with a given C-fraction. 

Lemma 6: If Cn , Cn _ I' and (n + 1 - Ii ) a are nonzero, 
then there is a one-to-one correspondence between solutions 
to the difference equation 

Cn + I = Cn + (n + 1 - Ii ) aCn _ I (69) 

and the recursion relation 

hn = (n + 1 - Ii ) al( 1 + hn + I) 

given by 

hn = - CnlCn _ I' 

Proof From (69) and (71) one has 

(70) 

(71) 

Cn Cn+ I Cn - -- + --'--- =(n+l-li)a=hn(l+hn+d, 
Cn_ 1 Cn_ICn 

(72) 
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which on dividing by (1 + hn + I) yields (70). On the other 
hand, (72) follows from (70) and (71) and multiplication of 
(72) by Cn _ I yields (69). 

A remarkable feature of the difference equation (69) is 
that it may be solved exactly in terms of the parabolic cylin
der function. One has: 

Theorem 2: The general solution to (69) is given by 

Cn =aC~ +bC~, 

where 

and 

and 

C~ = 2na n12r(1 + !(n - Ii)) 

Xr(~ + !(n-li))DA _ n_ 2 (-1I[c1) 

C~ = ( - 1)"2n a n12r(1 +! (n - Ii)) 

Xr(~ + !(n-li))DA _ n_ 2 (1I[c1). 

Proof From (74), (75), (4S), and (54) one has 

gn = - C~/C~ __ I 

In = - C~/C~ _ I' 

(73) 

(74) 

(75) 

(76) 

(77) 

It follows from Lemma 6 that C ~ and C ~ satisfy the differ
ence equation (69). They are obviously linearly independent. 

One should note that C ~ is the dominant solution for 
large n since from (73), (74), and(61) one has 

C ~ = a n122ln + A 112 J1i r (1 + ! (n - Ii )) 

Xexp[~nla + o (1I[,l)] (78) 

and 

C~ = ( - 1)" a n
/

22ln 
-t A 112 J1i r(1 +! (n - Ii)) 

Xexp[ - ~nla + o (1I[,l)] . (79) 

Thus 

C~/C~ = ( - 1)" exp(2~nla) [1 + 0 (1I[,l)]. (SO) 

If one considers complex a, then C~ remains dominant for 
larg al < 1T'. For a < 0, C~ and C~ are competitive while on 
the second sheet 31T' > ± arg a > 1T' the dominant and subdo
minant roles are interchanged. 

SinceAn and Bn are also solutions to the difference 
equation (69), one has 

An = aC~ + a'C~ (SI) 

with 

aC~ I + a'CS_ I = 1, aCg + a'Cb = 1 (S2) 

from (67) and 

with 

bC ~ I + b I CS_ 1 = 0, bC g + b 'c b = 1 

from (6S). From (SO), (Sl), and (S3) one has 

AnlBn = (alb) 11 + ( - 1na'la - b 'ib) 

xexp( - 2~nla)[ 1 + o (1I[,l)] j, 
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and one can check from (82), (84), (74), and (75) that 

alb = / = J(iD).(1/J(i)lD). _ I (1IJ(i). (86) 

Thus (85) and (86) give one an alternative algebraic proof of 
results of Sec. 3 such as Eqs. (40)-(43) but with the additional 
feature that one now has an estimate of the rate of conver
gence of the approximants of the continued fraction. 

One can also check that the analytic continuation 
which we are seeking is just [from (82), (84), (74), and (75)] 

a'lb '= g = - J(iD). ( - lIJ(i)ID). _ 1(- 1IJ(i) (87) 

with the a' and b I "hidden" in the subdominant parts of An 
and Bn, respectively. An analytic continuation of An and Bn 
to the second sheet accomplishes nothing, of course, sinceAn 
and Bn are polynomials in a. It is, however, possible to gain 
access to these subdominant terms by using a suitably modi
fied approximant. With respect to the modified approxi
mants, the following identities are extremely useful: 

Sn(cV)-Sn(liJ')=(lU-liJ') (An_IBn -AnBn_,) 
(Bn + lUBn _ I )(Bn + lU'Bn _ I) 

(88) 
and 

Sn(lU) - Sn(lU") 

( ") (B +lU'B ) = lU - lU n n - I [S ( ") _ S (')] (89) 
( 

II ') (B n lU n lU , lU - lU n + lUBn _ I) 

where (88) follows from (66) and (89) follows from (88). 
The principal results concerning the convergence of the 

modified approximants can now be obtained. 
Theorem 3: The modified approximant (51) has the fol

lowing convergence properties for fixed a > 0, A real but 
noninteger, and n_ 00: 

(i) Sn(fn) =/; 
(ii) Sn(gn)=g; 

(iii) Sn(O) =/ + 0 (e- 2;n7a); 

(iv) Sn (lUn+ ) = / + 0 (n -I e - 2,;;;,,); 

(v) Sn (lUn-) = / + 0 (.[il e - 2;;,/a); 

(vi) S (lU + ) = / + O(n- 2 e- 2~n/a). 
n n - t/2 ' 

(vii) Sn (lUn-_ 112) = / + 0 (.[il e - 2rnTcL); 

(viii) lim Sn (lUn) = g if and only if 
n~ 00 

lU - g = k .[il e - 2~/a n n n (90) 

with 

lim kn = O. (91) 
n~ 00 

Proof Properties (i) and (ii) are by definition. Property 
(iii) has already been discussed [Eqs. (85) and (86)]. To prove 
(iv), we use (89) to obtain 
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If one now uses the fact that 

BnlBn _ I = - gn II + ( - It (2b 'ib) 

xe- 2v'nl"[1 + o (1I.[il)]j, (93) 

which follows from (83), (80), and (76), then (iv) follows from 
(i), (iii), (92), (93), (57), (58), and (59). The proof of (v), (vi), and 
(vii) is similar. To prove (viii), we write 

Sn (lUn) - Sn (gn) 

= [(lUn -gn) Bnlgn(Bn +lUnBn_I)][Sn(gn)-Sn(O)]. 

(94) 

Since Sn (gn) = g and Sn (0)-J, it suffices to show that 

lim _(lU_n _-_g..:.:.,n..:.:.,) B..:.:.,II=---- = 0 
II~ 00 gil (BII + lUIIBn _ I) 

(95) 

ifand only ifone has (91). From (57) and (58) one may rewrite 
(93) to state that 

BIIIBII _ I = -gn+(-1),,2(b 'lb).[ile- 2Ma 

X[I+0(1I.[il)] (96) 

so that (95) is equivalent to having 

lim (lUll - gil) = o. 
II~ 00 [lUn - gn + ( - 1)"2(b 'Ib).[il e - rnTcL] 

(97) 

Equation (91) is obviously both necessary and sufficient in 
order to have (97). 

It is clear from Theorem 3 that there is no practical 
modification which will yield the desired analytic continu
ation. The use of lU n = lU n- merely "slows down" the conver
gence of SII(lUII ) to/while an lUll which will causeSn(lUn) to 
converge to g must be an exceptionally good approximation 
to gn' The condition (90) on lUn becomes, however, less strin
gent for larger values of a, and one can recover something 
useful by considering the limit a- 00 in the sense described 
below. 

B. Approximate analytic continuation 

One may obtain approximations to the first few terms in 
the series expansion of g in powers of a -I /2 by the following 
scheme. 

Consider the following expansions of gn' g, lUn, and 
Sn (lUn) in powers of a- il2

: 

gn = J(i( t~) + tnl)/J(i + t,,2)/a + ... ), (98) 

g = J(i( g(O) + g(l)/J(i + g(2)/a + ... ), (99) 

lUll = J(i(lU~) + lU~)/J(i + lU~)/a + ... ), (100) 

Sn (lUn) = J(i(S~)(lUn) + S~)(lUII)lJ(i 
(101) 

If the coefficients lU~' are a sufficiently good approximation 
to the coefficients t~, for large n, then the coefficients in the 
series expansion of Sn (lUn) will yield the coefficientsg (" in the 
large n limit. 

This scheme is of practical interest for our eigenvalue 
problem for instead of solving g = 0 and obtaining solutions 
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A = Am (a) with 

Am (a) = 2m + 1 + a~)lra + a~)la + .... (102) 

One may solve the approximate equation Sn (wn) = ° and 
obtain approximate eigenvalues A = A mn (a) with 

Amn(a) = 2m + 1 + a~vra + ar:!n1a + "', (103) 

where 

(104) 
n~ 00 

The essence of this scheme is precisely stated and proved 
below for i = 0,1,2 and m = 0. 

Theorem 4: Let 

W(i) = ..1i) + 0 (n - Pi) i = ° 1 2 n 15n " , . 

If A is non integer, then 

S~)(wn)=g(i)+O(n-qi), ;=0,1,2, 

with 

qo=Po+ !, 
ql = min(po,PI + !), 
q2 = min(po + !,PI,P2 + !). 

If 11.= 1, then 

S~O) = gIG) = 0, 

S~I) = gIl) = 1, 

S~) =g(2) + O(n -qO), 

dS(i) d..111 
dAn = :11. + O(n -q,), i = 0,1, 

d 2S(O) d 2g(O) 
n O( -qO) --;Ji2 = dA 2 + n . 

Proof From (89) one has 

S ( ) 
_ _ (wn -gnHBn + f"Bn_ dig - I) 

n Wn g - . 
(gn -In )(Bn + wnBn - d 

Expanding this in powers of a- 1I2 yields for n even 

S~)(wn) - g.0) = [(w~) - g.~))/2g.nO)] 2g0, 

S~I)(wn) - gIl) = [(W~I) _ g.ni))lg.nO)] gIG) 

(105) 

(106) 

(107) 

(108) 

(109) 

(110) 

(111) 

(112) 

(113) 

(114) 

- (w~) - g.~))(w~) + g.~)) B ~~ I g(O)Ig.nO)B ~), 

and 

S ~)(wn) - g(2) = [(w~) _ g.;))lg.nO)] gIG) 

- (w~i) - g.nl))(w~) + g.~)) B ~~ I g(O)Ig,~)B~) 

+ 2(w~O) - g,nO))( g(2)g.~) _ g,;) g.0))/( g,~))2 

- [(w~O) - g.nO))( g.nl ) + W~I)) B ~~ 1/g.~)B ~)] g(O). 

(115) 

(116) 

Here B~) is the coefficient of the leading a nl2 term in Bn and 
B ~o~ I is the coefficient of the leading a n/2 - I term in Bn _ I . 

It follows from (68) that 

B~) = (2 -11.)(4 -A) .. ' (n -A) (117) 
and 

B(O) r 
~ = 1- (! + !(n -A))r(I-!A) 

B ~O) r(1 + !(n - A)) r(! - !A) (118) 

2081 J. Math. Phys .• Vol. 24. No.8, August 1983 

Thus 

B~~ IIB~O) = 1 + o (11m). (119) 

The estimates (106) follow from (105), (115), (116), (117), 
(120), and the fact that 

-g~O)/m-l, g~i)=O(I), and g,;)=O(lIm). 

The proof for n odd is similar. When A = 1, one hasg(O) = 0, 
gIl) = 1, and dg(O)ldA #0. Equations (109)-(113) then follow 

as before if one notes that dg,~)1 dA = 0 ( 11m). 
Corollary 2: If w~) = g,~) + 0 (n - Pi), i = 0,1, then 

Sn(wn) = ° yields a solution 

11.= 1 + abl~/ra + a~~/a + 

with 

abl~ = - ~211r + 0 (n - r,), 

a~~ = (2I1r)( 1 - In 2) + 0 (n - r,), 

where 

(120) 

(121) 

(122) 

r l = Po +! and r2 = min(po + !,PI + !). (123) 

Proof If one expands Sn (wn ) = ° about A = 1 and 

ra = 00 using (108) and (109), one obtains 

[ 
dS(O) d 2S(O) ] 

ra (A - 1) _n + (A - 1)2 __ n_ + 0 (A - W 
dA dA2 

dS(I) 
+ 1 +(A_I)_n 

dA 

+ 0 (A - 1)2 + _1_ [S~) + 0 (A - 1)] + ... = 0. 
ra 

This yields 

11.= 1 + abl~/ra + a~~/a + ... 
with 

a(l) = _ __ n 
(
dS(O))-1 

On dA 

and 

( 
dS(l) d 2S(O)) a(2) = _ S (2) + a(l) __ + (a(1))2 __ n_ 

On n On dA On dA2 

(124) 

(125) 

(dS~))-1 X dA (126) 

The estimates (121) and (122) follow from (110), (111), (112), 
(125), (126), and (1O'). 

If one chooses W n = (jJ n- , then one obtains ag) and a~) to 
o (n - I) since one has 

wn-(Ol= -~n+l-A =g.nO)+O(n- 1/2) (127) 

and 

(128) 

The choice {jJ n = W n-_ 112 yields a better approximation since 

(129) 

so that one then obtains abll to 0 (n- 2
). 

With {jJ~1 = - ~ n + ! - A and {jJ~11 = -! one obtains 
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from (125) and (126) the explicit formulas 

and 

ag~ = - 1·3···(n - 2) Fn"=1 n odd, 
2.4···(n - 1) 

1.3··.(n - 3)(n - 1) 

2·4 ... (n - 2) ~n - ~ 
n even, 

aI21=(alll)2(~ _ ~ + ... +(-lr- I _
1_ 

On On 2 3 n _ 1 

+~(_tr_l_). 
2 n -! 

(130) 

(131) 

These values agree quite well with the exact values even for 
relatively small values of n. Some numerical values are dis
played in Table I. 

The above scheme can be improved upon since it is ac
tually possible to calculate the coefficients in (98) to any de
sired degree of accuracy and thus obtain (105) withpi as large 
as one wishes for i = 0, 1, ... ,Musing only the difference equa
tion (69). 

In (69) put 

to get 

_ 1 r(I+~(n-A)) E (133) 
En + I - En - I - .J2a r (~ + ! (n _ A)) n . 

Let 

E = EIOI + EIII/ 'a + E121/a + n n n -YU n (134) 

Then (133) yields the following recursive difference formula 
for E~ml: 

8E1ml = _1_ r(1 + Un -A )) E~m-II, (135) 
n .J2 r(~ + ~ (n -A)) 

where 8 is the central difference operator defined by 

8Yn =Yn+1 -Yn-I· (136) 

The difference equation (135) may be solved exactly while for 
a more general case (say I ;;60) it would only be possible to 
solve the corresponding equation approximately to order 

n - P for some desired p. Here, if one chooses E ~I = 2A12 [ii, 
then one generates in (132) the solution C~ [see (74)] while 

the choice E ~I = ( - 1 t2A /2 [ii generates the solution 

C~(ra) = C~( - raj. 

TABLE I. Approximate eigenvalue coefficients in Eq. (120) using 
cu" = OJ,,-_ 1/2" 

n alII 
On al21 

On 

3 - 0.790 569 0.187500 
4 - 0.801783 0.198979 
5 - 0.795 495 0.193359 
6 - 0.799 502 0.196603 
7 - 0.796 721 0.194493 
00 - 0.797 884 0.195348 
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Solving (135) with E~I = 1 yields for the first few terms 

E~II=.J2r(~ + ~(n-A))/r(I+~(n-A))+EIII, (137) 

E~I = ~ n + EII).J2 rG + ~ (n - A))/ 

r(I+!(n-A))+EI2I, (138) 

E~I= [.J2r(~ + !(n-A))lr(I+!(n-A))] 

X(n - 3 + U + 6E lzV3! +! nEIl) + E(31, etc. 
(139) 

One may choose the constants E iii = 0 or determine 
them so as to satisfy some specific condition such as 
Eo = h (a). One must, of course, avoid the homogeneous so
lution ( - 1 rE iii in order to keep a "pure" type C ~ solution. 

Knowing the E~I exactly, one would obtain 

(140) 

from (132) and (76). Having the expression (140), one could 
then use the property Sn (gn) = g and (66) to obtain 

g = (An + gnAn _ I )I(Bn + gnBn _ I) (141) 

with the An and Bn being polynomials in a calculated from 
the same difference equation (69) but starting recursively 
from n = - 1 with the initial values in (67) and (68). 

This method of solving the difference equation (69) both 
for large a and n on the one hand and small n on the other 
yields g in (141) as an exact ratio of two infinite series in the 

variable lira. If, however, one were to solve the recursive 
difference equation (135) approximately for m<,M, one 
would obtain an approximate g n and a natural choice for W n 

so as to get 

g::::;Sn (wn) = (An + wnAn _ I )/(Bn + wnBn _ I)· (142) 

Equation (142) could then be described as givingg in terms of 
an approximate Pade approximant in the sense that the 

right-hand side of(142) is ra times a ratio of polynomials in 

lira with coefficients that approximate the exact coeffi
cients in (141). This scheme is described more precisely with 
the following theorem and its corollary. 

Theorem 5: Let A. be noninteger and consider 

o (1 + F~II/ra + F~I/a + ... ) 
W = rawl I (143) 

n n (I+F~I_I/ra+F~~l/a+ ... ) 

If 
W~I =g~1 + O(n -P), 

F~m~ 1 = E~""-l + 0 (n -P), 

F~ml = E~ml + O(n -P), 

m = 1,2, ... ,M, M < 2p + 1, 
then 

D. Masson 
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with 

W~) = gig) + O(n ~p~ 112), 

F~m) = E~m) + 0 (n ~p~ 112 + m/2), 

FI:)I =EI:II +0(n~P~I12+m/2), 

m = 1,2, ... ,M. 

(148) 

(149) 

(150) 

Proof The proof is straightforward but tedious. It de
pends on the fact that (()~), F~m), and FI:I

I may be obtained 
from the same recursion relations as g~l, E ~m), and E (:1 1 , 

namely, 

and 

F~~ 2 = - F~m~ 111/w~O) + F~m) 
plus the fact that 

(151 ) 

(152) 

- g~)/rn ---> 1 and E~m) = o (nmI2). (153) 

We give only a partial proof for the case n even and m = 1. 
From (151) one has 

(154) 

Equation (148) follows from (153), (154), and (144). From 
(152) and (153) one has 

(01 

Fill _ Fill _ (_1_ _1_ ... _1_) ~ ° - n (0) + (0) + + (0) 101 . 
g2 g4 gn Wn 

( 155) 

Thus 

(156) 

and (149) for m = Hollows from (156), (148), (153), and (146). 
Corollary 3: With the conditions in Theorem 5 one has 

g - Sn(wn) = ,fa(e10) + elI)/,fa + e(2)/a + ... ) (157) 
with 

elml=O+0(n~p-I/2+m/2), m=O,I, ... ,M. (158) 
Proof One has 

g - Sn (wn) = g601 ,fa 

(I + EII)/,fa + E(2 1
/ a + ... ) 

X ° ° 
(I+EI~I/,fa+EI2)I/a+ ... ) 

c (1 + F~I/,fa + F~)/a + ... ) 
- w~lva ---~----=----~ 

(1 + FI~II /,fa + FI2) I/a + ... ) 
Hence 

(159) 

eiO) = g~) - w~), 

eill = - w~I(FUI + EI~ I) + glg)(E~11 + FI~ I) 
- eIO)(Fi~ I + E I~ I)' 

e(2) = glg)(E~) + FI2) I + E ~IIFI~ I) 

- (()~I(F~) + EI2) I + F~IIEI~ I) 
- eIO)(Ei2) I + FI2) I + EI~ I FI~ I) 
- e(1)(FI~ I + EI~ I)' etc. (160) 

The estimates (158) follow from (160) and the estimates 
(148)-(150). 

The results obtained for I = 0 generalize to I =j:. O. The 
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analysis is then, however, less transparent since one does not 
have closed form expressions for J, g,fn ,g n , C: , and C ~, and 
one must rely entirely on estimates of the large-n behavior of 
the solutions to the I =j:.0 difference equation which corre
sponds to (69). We will here only inform the reader that 
Theorem 3 remains valid as stated with the appropriate 
modification of (57). Theorems 4 and 5 and their corollaries 
also hold with, of course, appropriate changes such as the 
replacement of A by A - I. Thus one obtains the generaliza
tions of (102) with the large-a expansion of the eigenvalues 
,.1,= Am,,(a) given by 

Am,/(a) = 2m + 1 + I + a~)(/ )/,fa + at;.V)/a + .... 
(161) 

A general theory of analytic continuation which will 
apply to C-fractions 

/=bo + ala + ap + "', 
bl b2 

where an and bn are suitable analytic functions of n will be 
published separately. 

We may combine our knowledge of the large-a behav
ior of the eigenvalues given by (161) with the small-a behav
ior obtained in Refs. 2-4 to obtain a reasonable picture of the 
eigenvalues for the complete range of a if we have some idea 
of the behavior for intermediate values of a. This is the pur
pose of the next section where we show that A ;",/(a) > 0 and 
provide a method for calculating A m.1 (a), in principle, for any 
1';;.0 and a>O. 

5. DIFFERENTIAL EQUATION TECHNIQUES 

The theory of second-order linear differential equations 
may be used to discuss the general properties of the solutions 
to Eq. (1), which is a singular Sturm-Liouville problem. Our 
analysis is modeled after the techniques which were applied 
to the problem of complex angular momentum by De Alfaro 
and Regge in potential scattering. 14 

A. Monotonicity 

The eigenvalues Am.,(a) of the rotating harmonic oscil
lator will be called eigenvalue trajectories to denote their 
dependence on a> 0 for fixed 1';;.0. These trajectories have 
the following properties: 

(1) They are the zeros of an entire function of A. 
(2) The trajectories are distinct (simple zeros) with no 

accidental crossings. 
(3) Each trajectory is a strictly monotonic increasing 

function of a. 
To show property (1), let G be the solution to (1) which 

satisfies the boundary condition 

G(A, a,/,r) = r l + I[ 1 + O(r)]. (162) 

Since the coefficient of Gin (1) is an entire function of A and 
the boundary condition (162) is independent of A, one has 
that G is an entire function of A from Poincare's theorem 
(Ref. 14, p. 9). One can check that the large-rbehavior ofG is 
given by 

G -A (A, a,/) e ~ Ir- 1)'/14alr A 

+ B(A, a,/) elr~ 1I'/(4a) r- A -I. (163) 
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It follows that B (A, a,l) is an entire function of A and 
that the eigenvalues are the zeros of B. It also follows that 
A (A, a,l) = B( -A - 1, - a,/) since G( -A - 1, - a,l,r) 
= G (A, a,l,r). 

To show property (2), suppose that Am,l(ao) = Am',1(ao)' 
Then B has a multiple zero for a = ao. Let HI(r) 
= G (Am,/(aO)' ao,l,r) and Hz(r) = (aG laA )(AmJ(ao), ao,l,r). 

One has 

lim Hi (r) = 0, 
r~ 00 

Hi(O) = 0, i = 1,2, 

dZHI +[Am./(ao)+~ 
dr a o 

_ (r - 1 )Z _ I (I + 1) ] H = 0 
4a~ r I, 

(164) 

(164') 

(165) 

(166) 

From (164'), (165), and (166) one obtains the Wronskian 
identity 

W(Hz,Hl)(r)=ao-
1 f H~(t)dt, (167) 

which contradicts (164). 
To show property (3), we consider 

H3(Z) = G (Am,/(a), a,l,r) and H 4 (z) = (aG laa)(Am./(a), a,l,r) 

with z = (r - l)Ira. One has 

dZH3 + [AmJ(a) + 1..- _ r _/(/+1)a]H3=0 
dr 2 4 (1 + raz)z 

(168) 

and 

d2H4 + [Am,/(a) + 1..- _ r _ 1(/+1)a]H4 
dr 2 4 (1 + raz)z 

+ [~Am,da) - 1(1 + 1) ] H3 = 0, (169) 
da (1 + .,JaZ)3 

Hence 

~ W(H4,H3) = [~Am'l(a) - 1(1 + 1) ] H~. (170) 
dz da (1 + .,JaZ)3 

Integrating (170) from z = - lira to 00 and using the fact 
that, for I> 0, 

H i ( - lira) = 0 

lim Hi(z) = 0, i = 3,4, 

yields 

d 
da Am,/(a) 

fo G 2(Am I(a), a,l,r) r- 3 dr 
= I (I + 1) , > O. 

fo GZ(Am,/(a), a,l,r) dr 
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(171) 

(172) 

(173) 

for 1>0. 
For I = 0 one may either take the limit of (173) as 1-0 

or again integrate (170) using the fact that for I = 0 one must 
replace (171) by the boundary conditions 

H 3( - lira) = 0, H 4 ( - lira) = - lI(la). (174) 

Either method of calculation yields 

d ( ('" 2 ) - I 
da Am,o(a) = 2 Jo G (Am,o(a), a,O,r) dr > O. 

(175) 

B. A perturbation method 

One may obtain solutions to (1) in terms of the solutions 
to the "undisplaced" rotating harmonic oscillator equation 

dZy + [~_ ~ _ 1(/+ l)]y=o (176) 
dr a 4az r 

by means of a Volterra integral equation. 
Equation (176) may be solved exactly in terms of the 

confluent hypergeometric function IF1, where the general 
hypergeometric function is given by (Ref. 15, p. 1) 

(177) 

with (ao) = 1 and (a)n = ala + l) ... (a + n - 1). Thus one 
may verify that two linearly independent solutions to (176) 
are given by 

and 

YI(r) = r- I e- 1i4a IFd - W +A); ~ -I; r/(la)] 

(178) 

Yz(r) = r I + I e - 1i4a IFI U + W - A ); ~ + I; r I(la)] . 

(179) 

Let G be the general solution to (1) which we rewrite as 

d zG [A +! _ ~ _ 1(/+ 1) ] G 
dr + a 4az r 

= _ (2r - 1) G. (180) 
4az 

It follows from (180) and the general theory of second-order 
linear differential equations that one has 

G (r) = CI YI(r) + czyz(r) 

_ r k (r, x) (2x ~ 1) G (x) dx 
10 4a 

with 

k (r, x) = [yz(r)YI(x) - Yz(x)YI(r)}I(21 + 1) 

where 

W(YI'YZ) = 21 + 1. 

To obtain the boundary condition 

G(r)=rl+l[1 + o (r)], 
one must choose CI = 0, Cz = 1, and a = 0 so that 

G (r) = Yz(r) - r k (r, x) (2x ~ 1) G (x) dx. Jo 4a 
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This latter equation may be solved by iteration with 

G (O)(r) = h(r) 

and 

Glnl(r) = - f k(r,x) (~1) 

X G In - 11(x) dx, n = 1,2,.··, (184) 

to obtain 
00 

G (r) = L G In)(r). (185) 
n=O 

The method of solution may be justified by obtaining esti
mates which are sufficient to show that (185) is absolutely 
and uniformly convergent. 

To obtain these estimates, it is necessary to know also 
the large-r behavior of Yl(r) andY2(r). This may be obtained 
from (178), (179) and the asymptotic formula (Ref. 15, p. 60) 

IFI[a; b; t] - [rIb )/r(a)] e't a- b 2FO [b - a,1 - a;1/t] 

+ [r(b)lr(b-a)] e-irrat- a 

x 2Fo[a,1 + a - b; - 1/t]. (186) 

It follows from (186) and (177)-( 179) that one has (for 
A + I>Oandl#!, ±~, ±~,. .. ) 

I YI(r)1 < const [r/(1 + r)] -I e1-/4a (187) 

and 

I Y2(r) I < const [r/( 1 + r)] 1 + I e1-14a. 

From (182), (187), and (188) one obtains 

I k (r, x)1 < const [r/(1 + r)]1 + I 

(188) 

X [x/(1 + x)] -I elx2 + 1-)/I4a) (189) 

for x<;r, r~o, A + 1 > 0, and I #!, ~, ~,. ... Starting with the 
estimate (188) and using (184) and (189), one obtains by in
duction 

I Gln)(r)1 < (const)" [r/(1 + r)]/+ I 

X (2r + l)nrn e(2n + II 1-/14aI/n!. (190) 

Although this is an exceedingly crude estimate, it is clearly a 
sufficient justification for (185). 

To solve the rotating oscillator eigenvalue problem and 
obtain the eigenfunction F and the corresponding eigenvalue 
A, one must also consider the boundary condition G- 0 as 
r_ ~. In this connection it is important to note that there is 
a linear combination ofYI andY2 which also has a "good" 
large-r behavior. 

It follows from (186) that 

U(a;b; t) 

= [r(l-b)/r(1 +a-b)] IFI[a;b;t] 

+ [rIb - l)1r(a)] t I-b IFI [1 + a - b; 2 - b; t] 

(191) 

has the large-t behavior (Ref. 15, p. 60) 

Uta; b; t)-t -a zFo[a,1 + a - b; - 1/t]. (192) 

It follows from (178), (179), (191), and (192) that 
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(r) - r(! + I) (r) + r( -! -I)Y2(r) 
Y3 - r H + W - A )) Y I -r-( --..!....!(-A ..... +-I-))~(2a~)'-'1 +-1/-2 

= r- I e -1-/4a U( - W + A); ! -I; r/2a) (193) 

has the large-r behavior given by 

e -1-14ar A 

Y3(r) = [1+O(r- 2)]. 
(2a)(I+A)/2 

(194) 

From (182) and (183) one has 

G(r)= (r)(I- rYI (X)(2x-l)G(x)dX) 
Y2 Jo (21 + 1 )(4a2) 

(r) r Y2(x)(2x - 1) G(x) dx. (195) 
+ YI Jo (21 + 1)(4a2) 

Hence, in order to have G_ 0 as r_ ~, it would appear 
natural in lieu of(193), (194), and (195) to impose the condi-
tion 

lim ( r Y2(x)(2x - I) G~x) dX) 
H 00 Jo (21 + 1)(4a ) 

(
1- r YI(X)(2x-l)G(X)dx)-1 

X Jo (21 + 1)(4a2) 

= (2aV+ 1/2 r(! + I) r( - !(A + 1)) 
r (! + W - A )) r ( - ! - I) 

and use (193) to rewrite this as the condition 

r(!+/) _ (ooY3(x)(2x-l)G(x)dx 

r(! + W - A)) Jo (21 + 1)(4a2) 

(196) 

=0. 

(197) 

We are unable to justify (197) because of the long range 
nature of the perturbation term (2r - 1 )/(4a2

). Thus the inte
gral in (197) diverges for any approximate GN given by 

(198) 

Also the asymptotic behavior of GN cannot correctly match 
the exact asymptotic behavior given by (163). Thus, although 
(185) gives one a convergent expression for G for r < ~, it 
cannot be used in the limit r- ~. 

One may circumvent this difficulty by noting that if one 
defines 

Yi(r)=Yi(r-l), i= 1,2,3, 

then one has from (176) 

d
2
Yi [~ _ (r-l)2 _ 

dr + a 4a2 

(199) 

I (I + 1) J y = O. (200) 
(r- If I 

Thus the general solution to (180) may also be written as 
(provided that r, a > 1) 

G(r) = cIY3(r) + c2Y2(r) 

- r K(r,x)/(/+ 1) ( 1 2 Ja (x - 1) 
- 1.) G(x) dx 

x2 

(201) 

with 

K (r, x) = [Y3(r) Y2(x) - Y3(x) Y2(r)]lW(Y2,Y3) (202) 

where 

W(Y2,Y3) = -(2/+ l)r(! +I)lr(! + !(I-A)). 
(203) 
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If we denote by J the solution which satisfies the boundary 
condition J (r)---+ 0 as r---+ 00, then one has from (201), (199), 
and (194) 

J(r) = Y3(r) + roo K(r,x)/(/+ 1) 

X( 1 2 - ~)J(X)dX. 
(x -1) x 

(204) 

This may also be solved by iteration, yielding 
00 

J(r) = L Jln)(r) (205) 
n=O 

with 

(206) 

and 

Jlnl(r) = J"" K(r, x) 1(1 + I) ( I 
r (x - If 
XJ ln - II(x) dx, n = 1,2,.·· . (207) 

The fact that (205)-(207) yield a solution to (204) for 
r> 1 follows from the estimates 

!Y3(r)!<const [rl(r_l)]'e-lr-1)2/14alrA (208) 

and 

!Y2(r)!<const [(r_l)lr]l+lelr-1)2/14al,-A-I, (209) 

which yield for x;;;>r and A #-2m + 1 + I, m = 0,1,2,.·· , 

! K(r, x)! <const [rl(r - I)]' [(x - l)1x]'+ I 

X e [(x - 1)2 - Ir - 1)2 J /4a r AX - A - I. (210) 

With these estimates one obtains from (206) and (207) the 
estimate 

! Jlnl(r)! < (COnst)n [rl(r - I)]'+n 

Xe - Ir- 1I'/(4al rA - 3n In! . (211) 

One may obtain the eigenvalues A by requiring that 

W(J, G)(rO) = 0 (212) 

with ro> 1 or equivalently by requiring that 

(213) 

with r l #-ro and ro, r l > 1. 

Equation (213) is an exact eigenvalue condition which 
may be replaced by the approximate condition 

IN(r l ) GM(rO) = IN(rO) GM(rIl (214) 

with 
N 

L J lnl and GM = 
n=O 

Although this method of solving the rotating oscillator 
eigenvalue problem may not be of practical interest (com
pared, for example, with standard variational methods), it 
does show how the problem may be solved in principle for 
unrestricted values of a> 0 and 1;;;>0 using the solutions to 
(176). In Paper 11,16 we again use the exact solutions to (176) 
as the basis for a Rayleigh-Schrodinger perturbation expan-
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sion in 1/ ra to obtain 

oc al"V) 
Am,(a)=2m+l+1 + I _m_ 

• n= I (ra)" (215) 

together with an esimate for the radius of convergence of this 
expansion. 

6. COMMENTS AND CONCLUSIONS 

The rotating oscillator eigenvalue problem appears to 
have had a checkered history. The problem arose as a model 
for the rotational-vibrational energy spectrum for diatomic 
molecules (Ref. 17, p. 798). For this model the typical values 
of the parameter were exceedingly smail (a .;;0.0 1) and inter
est was focused on an expansion for small a. Such an expan
sion based on the WKBJ or phase integral method was ob
tained by Dunham3 in 1932 and duplicated by Rosenthal 
and Motz4 in 1937 by a different approach based on a differ
ential equation ansatz. At that time it was realized that the 
method of Wilson, 10 which relied on the continued fraction 
obtained from the three-term recursion relation (15), did not 
work for this problem. 

In 1949 Langer, 18 critical of the level of rigor of pre
vious work, proved that Am.!(a) = m + 0 (a In a). In 1978 
Froman and Froman2 (sceptical of the Langer result because 
of the nonanalytic nature ofln a in the estimate) reexamined 
the problem and showed rigorously by the phase integral 
method that Am.! = m + I (I + 1) a + 31 (I + 1) a 2(1 + 2m) 
+ 0 (a

3
) in unknown agreement with the earlier nonrigor-

ous work of Dunham, Rosenthal, and Motz. 
In 1979, Flessas l9 claimed that the eigenvalues were, in 

fact, integers independent of a. This prompted Froman et 
al.,5 to make numerical calculations which clearly exhibited 
the a dependence of A and confirmed their own previous 
results. 

In 1982, a full circle was twice completed when Singh et 
al., I having unknowingly rediscovered the Wilson method, 
drew false conclusions from it. 

The present paper has concentrated on understanding 
the limitations of the continued fraction approach and at
tempting to overcome these limitations. We have pointed 
out the necessity of analytic continuation and described how 
this may be accomplished in a limited sense. 

A reasonably clear picture of the general nature of the 
eigenvalues has emerged. Figure 1 displays portions of the 
eigenvalue trajectories Am,/(a) for I = 0 and 0.;;m.;;4. Both 
the small a and large-a expansions [Eqs. (10') and (11)] to
gether with intermediate points calculated from tables of the 
parabolic cylinder function 13 have been used. 

The behavior for I > 0 is similar and is depicted in Fig. 2. 
A minor difference occurs in the extremely-small-a region 
where the trajectories now rise linearly in accordance with 
the results of Froman et al. and earlier work. 

In Fig. 2 the region a<:[l (/ + l)(m + m- I is the large 
coupling region where the asymptotic expansion for small a 
is valid. The region a;;;>l + 2m + ~ is the small coupling re
gion where the large-a expansion ( 161 ) can be shown to con
verge. 16 We have assumed that nothing spectacular occurs in 
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lim =5 

lim = 3 

lim =1 

2 3 
a 

FIG. 1. Portions of the first five eigenvalue trajectories Am (a) for I = O. 

the intennediate region in analogy with the I = 0 calcula
tions. 

The present investigation has also revealed several facts 
which seem to be worthy of emphasis: 

with 

(a) Equation (34), which may be rewritten as 

DA_1(z) 

DA(z) 

U,.(x) = [-/21T r(1 - A)I DA ( - ixWl -I 

(216) 

appears to be new. It may be further generalized by consider
ing an analytic continuation in A. The special case A = 0 is a 
standard representation of the error function (Ref. 8, p. 137) 

(b) Related to (a) is the continued fraction representa
tion given in Eq. (41). Namely, 

1 -A 2-A 

z + z + z + 
ImA = 0, Rez>O, 

which we have found in the literature only for the special 
case A = 0 (Ref. 6, p. 358). 

(c)Related to (a) and (b) is the difference equation (69) 
whose general solution is given in Theorem 2 in tenns of 
parabolic cylinder functions, This "model" difference equa
tion and its exact solution provide an important insight into 
the general problem of analytic continuation for C-fractions 
since the results of Sec. 4 can be generalized to a large class of 
C-fractions. 

(d) The exact solution of the "undisplaced" oscillator 
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t+2m+3 

t+2m+ I 

o [l(t+I)(m+t)r' 

a 
FIG. 2. Schematic picture of the eigenvalue trajectories A"'.I(a) for I> O. 

equation 

d
2
y + [A +! _ ~ _ 1(1 + 1)] = 0 

dr a 4a2 r y 

in tenns of confluent hypergeometric functions appears to 
have been overlooked in the literature. Its eigenvalue solu
tion on the interval [0,00) yields integer eigenvalues 

A = 2m + 1 + I, m = 0,1,2,... (217) 

and corresponding eigenfunctions 

y = em r'+' e-?/4a ,F, [ - m; ~ + I; r/2a] , (218) 

which may also be written in tenns of generalized Laguerre 
polynomials (Ref. 13, p. 509). The solutions to the "un dis
placed" oscillator problem are important for obtaining solu
tions to the "displaced" oscillator problem [see Eqs. (183) 
and (204)]. In Paper n'6 they fonn the basis for a Rayleigh
Schrodinger perturbation expansion which yields a conver-

gent expansion of Am,/(a) in powers of lira, thus generaliz
ing (10), supporting our claim (161) and justifying our re
marks concerning what is the weak coupling region in Fig. 2. 
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The rotating harmonic oscillator eigenvalue problem. II. Analytic perturbation 
theorya) 

D. Masson 
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The theory of self-adjoint analytic families is applied to the rotating harmonic oscillator 
Hamiltonian in L 2(0,00 ) to obtain weak and strong coupling expansions of the eigenvalues. 
Various estimates on the radius of convergence of the weak coupling expansion are obtained. The 
strong coupling expansion is shown to be an asymptotic series which, with the neglect of 
exponentially small terms, is expressible in terms of a simple formal perturbation of the ordinary 
harmonic oscillator Hamiltonian in L 2( - 00,00). 

PACS numbers: 02.60.Lj, 02.30.Tb, 02.30.Lt, 02.30.Mv 

1. INTRODUCTION 

There has been a recent renewal of interest in the rotat
ing harmonic oscillator eigenvalue problem 1-5 given by 

d
2
¢ + [A,+~ _ (r-l)2 _ 1(1+1)]¢=0 (1) 

dr a 4a2 r 
with boundary conditions ¢ = 0 at r = 0 and ¢-o as r_ 00 . 
It is assumed that 1';,,0. 

Although this appears to be a simple and standard 
enough problem with a history dating back to the 1920's,6-8 
it remains not well understood. Recent claims made con
cerning the properties of the eigenvalues A, are certainly in
correct. 2,4 We examine the problem here from the point of 
view of analytic perturbation theory. 9.10 

In Sec. 2 we discuss the large-a expansion of A, and 
obtain various estimates for the radius of convergence of this 
expansion using the standard theory of analytic perturba
tions together with some modifications which yield im
proved estimates. 

In Sec. 3 we obtain an asymptotic expansion of A, for 
small a which agrees with previous expansions.5

•
7

•
8 How

ever, with the present expansion we are able to discern the 
presence of nonanalytic terms which are exponentially 
small. The neglect of these exponentially small terms is 
shown to yield a simple, equivalent, but formal perturbation 
problem which allows one to easily calculate higher order 
terms in the expansion. 

2. THE LARGE-a EXPANSION 

Let a > 0 and put x = rlja. Then (1) may be written as 

H¢=E¢, (2) 

where 

d 2 x 2 1(1 + 1) x 
H= - - + - + --- (3) 

dx2 4 x 2 
2ja 

and 

E=A +! - l/(4a) (4) 

with H a self-adjoint operator on the Hilbert space L 2(0,00), 

-) Research partially supported by NSERC. 

which is essentially self-adjoint on the core C 0"(0,00), the set 
of infinitely differentiable functions with compact support in 
(0,00) (Ref. 9, p. 346). 

H has a discrete nondegenerate spectrum of positive 
eigenvalues !Em J:=o, which we order so that Em + I >Em. 
It is known that for large a one has I 

Em = I + 2m + ~ + o (l/ja). (5) 

To obtain the large-a expansion of Em, we consider H 
as a perturbation of Ho with 

Ho = _ ~ + x
2 + I (I + 1) . 

dx2 4 x 2 (6) 

Thus one may write H = H ( fJ ) with 

H(fJ)=Ho+fJV, V=x, and fJ= -l/(2ja). 
(7) 

This decomposition is useful because the eigenvalue 
problem for the unperturbed self-adjoint operator Ho is ex
actly solvable. I It has eigenvalues 

E~) = I + 2m +~, m = 0,1,2,. .. , (8) 

and a complete set of corresponding eigenfunctions 

A. (0) = C e - x
2
/4X l + I F [ - m·1 + 3'X

2/2] 
0/ m mIl '2' , (9) 

where ,F, is the confluent hypergeometric function. Also the 
operatorsH ( fJ ) form a self-adjoint analytic family of type (A) 
having a constant domain !iJ withH (fJ)u analyticforu E !iJ. 
More particularly, one has: 

Lemma 1: Let Ho be given by (6) with V = x. Then Vis 
Ho-bounded with 

1/ Vul/«2/J I + ~)llHoull, u E !iJ(Ho)C!iJ(V). (10) 
Proof One has Ho;,,1 + ~ from (8) and H o>x2/4 from (6) 

so thatH~>(1 + ~)Ho>(1 + ~)x2/4. 
Corollary 1: H ( fJ ) is a self-adjoint analytic family oftype 

(A) for IfJl <2/JI + ~. 
Proof See Kato,9 pp. 378 and 386. 
Vis actually infinitesimally small with respect to Ho 

because of the following: 
Lemma 2: LetHo be given by (6), V = xandab = 2 with 

b>O. Then 

(11) 
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Proof From x2/4<oHo one obtains for any u E §jJ (Ho) 

II Vull <0 [4(u,Hou)] 1/2 <o2(1lull IlHoull)1/2 

<oallull + b IIHou11 (12) 

with ab = 2. 
Corollary 2: H ( 13 ) is a self-adjoint analytic family of type 

(A) for all 13 (an entire family). 
An important aspect of analytic families is the justifica

tion of the Rayleigh-Schrodinger perturbation series for the 
eigenvalues and eigenfunctions of H ( (3). One has 

(13) 

near 13 = 0 and estimates for 130 the radius of convergence. 
The standard result is: 

Theorem 1: Let Ho be self-adjoint. Let Vbe symmetric 
with (a,b>O) 

IlVull<ob IIHoull + allull, u E !iJ(Ho)CfiJ(V). 

ThenH (13 ) is a self-adjoint analytic family for 1131 < lib. Fur
thermore, if Ho has an isolated non degenerate eigenvalue E 
separated from the rest of its spectrum u(Ho) by an amount d, 
then H ( 13 ) has a nondegenerate eigenvalue E (13 ) such that 
E (0) = E and E ( 13 ) is analytic for 1131 < 130 with 

f3o>[b(2+2IElld)+2ald]-I. (14) 
Proof The proof is given in Kato (Ref. 9, pp. 288 and 

384). The Ho-boundedness of V is used to obtain analyticity 
of the projection associated with E (13) for 1131 <130 with 

f3o>min[all(z - Ho)-III + b IIHo(z - Ho)- 111]-1 (15) 
Z~ r 

and T a contour enclosing and separating E. With the choice 
of contour To = I z: Iz - E I = d 121 one obtains for z E To 

II(z - Ho)-III<o2ld and IlHo(z - Ho)-III<o2 + 21E lid. 

A different choice of contour will, of course, yield a different 
estimate. 

In the present case one has E = Em (0) = I + 2m + ~, 
d = 2, and one may use either (from Lemmas 1 and 2) 

a = 0, b = 21 ~ 1 + ~ 
or 

ab = 2. 

From (14) and (16) one obtains (13) for 1131 <130 with 

f3o>~ 1 + ~ 12(1 + 2m + ;), 

(16) 

(17) 

(18) 

while the use of (17) yields a family of estimates, with the 
sharpest one being 

f3o>1I2Y2(l+2m+;)1/2 (19) 

corresponding to the values a = Y2 [2 + Em (0)) 1/2 and 
b = Y2[2 + Em(Ol] -1/2. 

One should note that (19) is sharper than (18) for small 1 
and m and large m while (18) is sharper for large I. Both these 
estimates may be improved on. In this connection it is useful 
to consider contours other than the standard one To. 

Lemma 3: Let Ho be a self-adjoint (or normal) operator 
with isolated eigenvalue E having isolation distance d. Let 
Tl and T2 be circular contours enclosing E defined by 

TI = jz: Iz-EI = IE Idl(21E I +d)j (20) 
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and 

Te = !z: Iz - E I = JlETIfkl + d) - IE II· (21) 

Then 

supIIHo(z-Ho)-111 = 1 +2lElld 
ZE r l 

(22) 

and 

suplllHoII/2(z-Ho)-11l = (~IEI +d +JIEI)ld.(23) 
ZE r1. 

Proof One has 

IIHo(z- Ho)-III= sup IE'I 
E·Ea(Ho) Iz - E'I 

If E E u(Ho), E' #E, and z E r l , then 

Iz-E'I>IE-E'I-lz-EI>d-IEld(2IEI +d)--I 
= d (d + IE 1)I(d + 21E D. 

Also 

IE'I Iz-E'I- 1 

= IE' -z+zl Iz-E'I-I<o1 + Izi Iz-E'I-I 
and 

Izl<olEI + Iz-EI 

=2IEI(IEI +d)(2IEI +d)-l. 

Thus, 

IE'I Iz-E'I- 1<o1 +2IElld= lEI Iz-EI--1. 

If z E r 2, one similarly has 

Iz-E'I>IEI +d-~IEI(IEI +d) 

and 

IE'I Iz-E'I- 2 

<o(J[EI +d + JfEI)2Id 2 = lEI Iz-EI-2. 

Corollary 3: If in Theorem lone has a = 0, then ( 14) 
may be replaced by 

130> [b (1 + 21E lid )]-1. (24) 
Proof If one uses the contour r = rIO then (24) follows 

from (15) and (22). 
Applying (24) to the present problem yields the estimate 

f3o>~ I + ~ 12(/ + 2m + ~), (25) 

which is an improvement over (18). To improve (19), it is 
necessary to make a change in the assumptions of Theorem 
1. 

Corollary 4: If the Ho-boundedness condition (11) in 
Theorem 1 is replaced by the condition 

II Vull<oc([luli IIHou11l1/2
, u E 9(Ho)C9(V), (26) 

then the conclusions are unchanged excepting that one may 
now take ab = c (so that b can be made arbitrarily small) and 
one may replace (14) by the estimate 

f3o>(d /2c)(d + IE 1)-112. (27) 

Proof Equation (26) implies (11) with ab = c. Also in 
the proof of the estimate for 130 it suffices to have 

f3o>min[ II V(z - Ho)-III]-1 (28) 
ZEr 
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with F a contour enclosing and separating E. From (26) one 
has 

II VIz - H o)-III<c[II(z - Ho)-III IIHo(z -Ho)-III) 1/2, 

and (27) then follows from (28) with the choice of contour 

F=Fo· 
For the present problem one has (26) with c = 2 [see 

(12)], and (27) yields 

(29) 

which improves (19) and is sharper than (25) even for large l. 
However, an even sharper estimate can be obtained by using 
the inequality 

x~<~. (~ 
Corollary 5: If the Ho-boundedness condition (11) in 

Theorem 1 is replaced by the condition 

II Vull<c(u,I Holu)1!2, u E !:0(Ho)C!:0(V), (31) 

then the conclusions are unchanged excepting that one may 
now take ab = c and replace (14) by the estimate 

,8o>(d /c)(~IE 1 + d + JTET)-I. (32) 
Proof See the proof of Corollary 4 noting that (31) im

plies (26) and that one now has 

IIV(z-Ho)-III<cll IHoll/2(z-Ho)-III. (33) 
Thus 

,8o>min[cll IHoll/2(z - Ho)-III]-I. (34) 
ZE r 

If one chooses the contour F = F 2, then (32) follows from 
Eq. (23) of Lemma 3. 

For the present problem (31) with c = 2 follows from 
(30) and estimate (32) then yields 

,8o>(~l + 2m + ~ + ~/ + 2m + ~)-I, (35) 

which is sharper than all the previous estimates. 
Thus the Rayleigh-Schrodinger perturbation expan

sion (13) converges for 1,81 <,80' and (35) gives one a lower 
bound on the radius of convergence. In terms of the original 
variable a one then has Em (a) expanded in a convergent 

Taylor series in powers of lira for 

a>(~/+2m+~+~/+2m+~)2/4, (36) 

which may be replaced by the more convenient estimate 

a>/ + 2m + ~ (37) 

without much loss of sharpness. 
One final estimate will be derived which is not as sharp 

as (35) for small / and m or large m, but which is an improve
ment of (35) for large /. 

Lemma 4: If q>27p4/256, then X4 - px3 + q>O. 
Proof One hasx4 

- px3 + 27p4/ 
256 = (x - ipf[( x + p/4)2 + p2/8]>0. 

Corollary 6: If Ho is given by (6) and V = x, then 

V<bHo 
with 

b = (27)1/4(21 + 1)-1/2. 

(38) 

(39) 

Proof On C ;' (0, OC) ) one may use the basic inequality 
(Ref. 9, p. 345) 

(40) 
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to obtain 

Ho> x
2 + 1(/+ 1) + ! 

4 x 2 
(41) 

The inequality 

x<b (x; + 1(1 +x~) +!) <bHo (42) 

with b given by (39) then follows from Lemma 4. This ex
tends to !:0 (Ho) since C ;(0, OC)) is a core for Ho. 

To exploit the inequality (42), it is necessary to consider 
the theory of analytic families of type (B) or (C). One has the 
following result for type (C). 

Theorem 2: If Ho is self-adjoint and Vis symmetric with 
(b>O, a + b IHol>O) 

l(u,vu)1 <b (u,IHolu) + allul1 2
, u E !:0(Ho) C !:0(V), 

(43) 

then there exists a unique self-adjoint analytic family H ( ,8 ) 
-:J Ho + ,8V for 1,81 < b - I. In particular, if E is an isolated 
nondegenerate eigenvalue of Ho with isolation distance d, 
then there exists an isolated nondegenerate eigenvalue E (,8 ) 
ofH (,8 ) such thatE (0) = EandE (,8 ) is analytic for 1,81 <,80 
with 

,80> [b (2 + 21E lid) + 2ald] -I. (44) 

Proof The theorem as stated is a weakened version of 
one in Kato (Ref. 9, p. 413), where (43) is assumed to hold 
only on !:0(V)C !:0(Ho) with !:0(V) a core of IHo11/2. Unique
ness is concluded only if !:0(V) is also a core of Ho. For our 
purposes it suffices to take !:0(Vp!:0(Ho). The estimate on 
,80 is obtained by using the standard contour Fa of Theorem 
1. 

Corollary 7: If in Theorem 2 one has a = 0, then one 
may replace (44) by the improved estimate 

,80> [b (1 + 21E lid)] -I. (45) 

Proof the contour FI of Lemma 3 is used instead of Fo. 
Using the estimate (45) for the present problem with 

a = 0 and b given by (39), one obtains 

,80>fil+T/(27)1/4(/ + 2m + ~), (46) 

which is sharper than (25) for f> 1.353 ... and sharper than 
(35) for sufficiently large f. 

The large-I behavior of (46) can be further improved to 
obtain 

,80>(11$)[ 1+ 0(/-1)) 

by modifying (38) so as to get 

V<bHo +a 

(47) 

for suitable b > 0 and a < 0 and using the Theorem 2 estimate 
(44). Since the estimate one obtains is sharper than previous 
estimates only for sufficiently large I, we omit the details. 

Having obtained various estimates on the radius of con
vergence of the Rayleigh-Schrodinger series (13), we would 
be remiss in not calculating at least the Born approximation. 
One has 

E~)= L'" x[<p~j(x)]2dx /L= (<p~)(x)]2dx (48) 

with <p ~) given by (9). 
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The numerator in (48) can be obtained from the formula 
(Ref. 11, p. 54) 

1'" e-'tl+1 F2[ -m·l+ 3·t] dt I I '2' 

° 
F(l + 2)F(l + ~)F( -! + m) 

F(l + ~ + m)F( -!) 

X 3F2[ - m,/ + 2'~;1 + q - m;I], (49) 

where 3F2 is a generalized hypergeometric function. 
To obtain the denominator in (48), we note that (Ref. 12, 

p.509) 

IFI [ - m;1 + ~;t] = [m!F(1 + ~ + m)lF(1 + ~)]L ~+I)(t), 
(50) 

where L ~ + I) is the generalized Laguerre polynomial which 
satisfies (Ref. 12, p. 775) 

l' r(/+J+m) 
t l + le-' [L ~+I)(t)]2 dt = 2 • 

° m! 
From (9) and (48)-(51) it follows that 

E(I) = Vlr(1 + 2)F( -! + m) 
m m!r(1 + ~)r( _!) 

X 3F2 [ - m,1 + 2,~;~ + q - m; I], 

which for m = 0 reduces to 

E~) = V'lr(l + 2)/r(1 + ~). 
For I = 0, Eq. (52) becomes 

E(I)= Vlr(-!+m) F [-m2.3-m'I]. 
m m!r Wr ( _!) 2 I , '2 , 

Using the formula (Ref. 13, p. 104) 

2Ft [ - m,2;~ - m;l] 

= r(~ - m)r( - Wrmr( -! - m), 

(54) becomes 

E(1) = Vlr(~ + m) = (- It+ t4V2 , 
m m!r2m m!r( _! - m) 

agreeing with the I = 0 calculation of Ref. 1. 

3. THE SMALL-a EXPANSION 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

Let a > 0 and put x = (r - 1)1..;a. Then (1) may be ex
pressed as 

H(l)¢ = E(I)¢, (57) 

where 

H(f3) =Ho +f3V, (58) 

d 2 x2 
(59) H---+-0- dx2 4' 

V= 
1(1 + l)a (60) 

(1 + rax)2 
, 

and 
E(l)=A+! (61) 

with H, H 0' and V self-adjoint operators on the Hilbert space 

L 2( - lira, 00) which are essentially self-adjoint on 

C:( - lIra,oo). 
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The eigenvalue problem for H o is exactly solvable in 
terms of parabolic cylinder functions D" ( X).I One has 

Ho¢~) = E~) ¢~I, 

where 

E~I =Am(a) +! 
and 

A. (01 = C D ( x) 
¥J m ttl Am 

with A m (a) a root of the equation 

D" ( - lira) = O. 

From the estimate [see Sec. 2, Eq. (40)] 

a/4(1 + rax)2<;Ho, 

one obtains 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

which implies (using Theorem 2 and Corollary 7 of Sec. 2) 
thatH (f3 )haseigenvalueEm (f3 ) with Rayleigh-Schrodinger 
series 

Em(f3) = E~) + f3E~) + f32Ef;,1 + ... 
convergent for 1f31 <f30 with 

f30>4d (a)/I (I + 1) [d (a) + 2E~I(a)]. 
It is known that 1 

m + !<E~)(a)<2m +~ 
with E~)-2m + ~ as a-oo and E~~)(a)-m +! as 
a-O + monotonically. Also one empirically has 

(68) 

(69) 

(70) 

I < d (a) < 2. Thus, even in the most favorable case a-O + , 
Eq. (69) yields the inadequate lower bound 

f30>2//(l + l)(m + 1) (71) 

so that it is not known if (68) with f3 = 1 converges even for 
I = I and m = 0 and a--+O + . Hence 

Em(l) = E~) + E~I + Ef;,) + .,. (72) 

with E ~ given by the Rayleigh-Schrodinger expressions 

E~) = (¢~),V¢~))I( ¢~), ¢~)), 

E 121 = _ "" (E (.a) _ E (0)) - 1 V V t 
m £... J m mJ Jm' e c., 

j#m 

where 

Vij = ( ¢ ~Ol, V¢ )°))/(11 ¢ ~ollill ¢ fill) 

(73) 

(74) 

(75) 

(see Ref. 9 and Ref. 10, p. 8) may only be a formal expansion 
evaluated outside the interval of convergence. 

Equation (72) is certainly an asymptotic expansion for 
small a since we will show that 

E(i)(a)=O(a2i - I
), i= 1,2,.··, (76) 

and one has Em (f3) analytic in a strip which includes the 
positive real axis. [Perturbing Ho + f31 V by /12 V with 
0</11 </10 and /12 > 0 yields an analytic continuation of 
Em (/1). By successive steps one may analytically continue 
Em (/1) to any 0 <f3 < 00. See also Ref. 10, Theorem XII. 10, 
p.20]. 

To show (76), it is necessary to examine the Rayleigh
Schrodinger terms in more detail. One has 
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(77) 

E';.) = - [I(l + I)af I (Aj - Am)-l 
j#m 

X [f~ II,,, D,J) x)D"J x)(1 + [clX)-2 dx r 
II(Joo ,_ D l) x) dX) (Joo r:: D lj x) dX), 

/ ~ - l/"a - l/ .. a 
etc. 

(78) 

If one neglects terms that are exponentially small, then there 
is considerable simplification in the formulas for E~. We 
iIIustate this in the expressions (77) and (78) for E~) and E~). 

It is known that I 

Am(a) = m + O(a-- m+ 1e -1I12a l). (79) 

From (79) and the Taylor expansion 

00 d n I (Am - mr , 
D" (x)=Dm(x)+ "--D,,(x) 

'" n~1 (dA t A=m n! 

(D" is an entire function of A ), one obtains 

D"rn( x) = Dm( x) + O(a - m +le- 1112a1). 

(80) 

(81) 

The estimate (81) is, of course, not necessarily uniform in x. 
However, since D" (x) is an entire function of x and [dn 

/ 

(dA r]D" (x)-+O as Ixl-oo with largxl <1T/4 [see Ref. 1, 
Eq. (5)], the estimate is uniform for x E [ - M, (0). To obtain 

an estimate uniform on [ - II [cl,oo ) with a-+O, one must 
considerthebehaviorof[dn /(dA nD" (x)l" = m asx- - 00. 

From Ref. 1, Eq. (6), one has 

d nD" (x) I -n( _ I)m + n - If[iim!ex2/4 
dAn "=m 

X ( - x) - m - I [In( - xW - I, n = 1,2, ... , 

(82) 

as x- - 00. Thus from (82) and (80) 

D"jx)-Dm(x) + (- I)mf[iim!ex'/4(Am - m)( -xr-"rn 
(83) 

as x- - 00 so that 

D"rn( x) = Dm( x) + O(a -m+ le- 1114a l) 

uniformly for x E [ - lI.ja, 00 ). 

From (84) and the fact that 

I_oo", IDm(x)1 dx< 00 

one obtains 

foo Dljx) = f'" _ D;,,(x)dx 
- i/"a - l/,'/u 

(84) 

+ 0 (a - m + Ie - 1/14al). (85) 

Thus in all the denominator terms (normalization integrals) 
in the expressions for E ~ one may (with the neglect of ex
ponentially small terms) replace 

J oo D l) x) dx by Joo _ D J( x) dx. 
- 1 1-.. a - l/,/a 
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Noting also that (Ref. 12, p. 691) 

Dm (x) = 2 - m/2e - x2/4Hm (x/Y2), (86) 

where H m is the Hermite polynomial of degree of m, one has 

foo _ D;,,( x) dx = f'" D;,,( x) dx - lI,a - 00 

+ 0 (a - m - Ie - 1112a)). (87) 

From (85)-(87) and the fact that 

I: 00 e- x'/2H;,,( x/Y2) dx = 2mm!f[ii 

one obtains 

to order a - m + Ie - 1/14al• 

(88) 

(89) 

In the numerator integrals for E ~ one has quantities 

Ijk = f~lI,a D")x)D,,,(x)(I + [clx)-2dx. (90) 

Here one may not replace D". and D" by DJ. and D k because 
} k 

of the presence of the singular term (1 + rax)-2. However, 

if one expands the singular term in powers of ra, one obtains 
the asymptotic expansion 

00 

Ijk - I (- I)n (n + l)an/2 
n=O 

(91) 

and in each term of this asymptotic expansion one may now 
(with the neglect of exponentially small terms) replace D" 

} 

and D", by Dj and Dk and take each integral over the inter-
val ( - 00,(0). The calculations are further simplified by re
calling (86) and using the recursion relation 

xHm (x/Y2) = (lIY2)Hm + I (x/Y2) - Y2mHm _. I (x/Y2) (92) 

and the orthogonality relation 

f:",Hj(~)Hk(~)e-X'/2dX=0, j=fk. (93) 

Thus Eq. (76) follows from the general formula for Eli) (Ref. 
9 or 10), (84), (86), (88), and (90)-(93). 

As an illustration we now calculate E ~I and E~) to or-
der a 3

• One has from (77), (84), (86), (88), and (91) 

E III- 1(1 + I)a [ '''F 2 C2- m fcc --x'12 m - m.-v£.1T - -va xe 
f[iim! -- 00 

XH~ (:)dx+3a2- m foo x 2e- x
'/2 

v2 - 00 

XH;" (~)dX-4([cl)32-m 

X J'" x 3e - x'
12H;" (~) dx + 5a22 - m 

-00 Y2 

X f~ 00 x
4
e-

X

'

12H;" (~) dX"-]' (94) 

Using (92), (93), and (88) this becomes 

E~I = 1(1 + I)a[l + 3a(2m + I) 
+ 15a2(2m 2 + 2m + I) + O(a3

)]. (95) 
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Similarly from (78) one obtains 

E~I= - [/(/+ l)a]2 L 2- IJ + ml12 (j_~)~1 
j#m 21Tj.m. 

X [J: ~ e-X'/2Hj(x)Hm(x) 

X(1 - 2{ax + 3ax2 + ... )dx]2, 

which [using (92) and (93)] yields 

E~I = - [(l + l)a]2[4a + O(a2)]. 

(Since only j = m ± 1 contributes to the order a term). 

(96) 

(97) 

Thus from (63), (72), (76), (79), (95), and (97) one has 

Em (1) = m + ~ + l(l + l)a[ 1 + 3a(2m + 1) 
+ 15a2(2m2 + 2m + 1)] 

-4a[l(/+ l)a]2+0(a4
), (98) 

which agrees with previous calculations. 5
,7,8 

One may circumvent much of the tediousness of these 
and higher-order calculations by considering the following 
formal perturbation problem. 

In the Hilbert space L 2( - 00,00) let H 0 be the harmonic 
oscillator Hamiltonian 

d 2 x 2 

Ho= - - + 
dx2 4 

with eigenvalues 

E~I = m +~, m = 0,1,2, .. · 

and corresponding normalized eigenfunctions 

2 - ml2e - x'/4 ( X ) 
cplOI= H _ 

m (21T)1/4Jmf m v1 ' 

Let 

HF =Ho+ VF 

be a formal perturbation of Ho with 

VF = 1(1 + 1) 

2094 

X a( 1 - 2{ax + 3ax2 + ... + ( - 1 t 
x(n + l)a n12

xn + ... ). 
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(99) 

(100) 

(101) 

(102) 

Then we have shown the following: 
Proposition: The formal Rayleigh-Schrodinger expan

sion of the eigenvalues of H F in terms of the eigenvalues and 
eigenfunctions of Ho in L 2( - 00,00) yields an asymptotic 
expansion of the eigenvalues Em (1) of the rotating harmonic 
oscillator in powers of a which neglects exponentially small 
terms. 

One should note that, although the formal perturbation 

VF contains powers of (ax the perturbation series for Em (1) 
will contain only powers of a. This follows from (92) and (93) 

since in order to have an odd power of ,fa one must have an 
nth order perturbation term of the form 

V· .. ·V ... ·v. 
lll~ l/p -+ I Inln + I 

with 

p = odd integer, 

± odd integer, j = 2, ... ,p + 1, 

ij - ij _ I ± even integer, j = p + 2, ... ,n + 1, 

where in + I = il' This yields a contradiction since 
i2 - i l = ± odd integer while i l - i2 = ~; ~ J\ - ij _ I 
= ± even integer. 
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Symmetries, conservation laws, and time reversibility for Hamiltonian 
systems with external forces 
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A system theoretic framework is given for the description of Hamiltonian systems with external 
forces and partial observations of the state. It is shown how symmetries and conservation laws can 
be defined within this framework. A generalization of Noether's theorem is obtained. Finally a 
precise definition of time reversibility is given and its consequences are explored. 

PACS numbers: 03.20. + i 
I. INTRODUCTION 

In the last century the mathematical formulation of 
classical mechanics has culminated in the elegant theory as 
described for instance in the books of Abraham and Mars
den' and Arnold.2 However, the emphasis in this approach 
has been put on analytical mechanics, i.e., Hamiltonian sys
tems which can be described without external forces. If 
forces are present, they are assumed to come from a potential 
field, and therefore can be incorporated in the system by 
adding a potential function to the Hamiltonian function. 
Since external forces do come up at various places, for in
stance experimental devices and technical applications, and 
mostly cannot be derived from a potential function, this en
tails indeed quite a loss of generality. 

In this paper we elaborate a framework, which can in
corporate external forces on a conceptual level. At the same 
time we also formalize the idea that we may only partially 
observe the state of a system. Our basic notions stem from 
system theory, the discipline that explicitly deals with sys
tems with inputs and outputs which in this context are called 
external forces and observations, respectively. 

A simple example will make things more clear. Consid
er Newton's second law F = mij. Notice already that this law 
cannot be adequately formulated in a framework without 
external forces. We will look at it as a system with external 
force u = F, 

q = (l/m)p, 
p=u, 

and an observation functiony of the state (q,p) given by 

y=q. 

We will give, using the language of symplectic geometry, a 
general framework for the description of such systems. Fur
thermore we will show how in this framework symmetries, 
conservation laws and time reversibility can be defined and 
treated in an appealing way. 

The paper is a further elaboration of previous work,3-7 
which was in turn much inspired by work of Brockett,8 Ta
kens,9 and Willems. 10 The first definitions in Sec. II were 
basically given in/ while Sec. III is already partially con
tained in.5 We have tried to make the paper more or less self
contained, at least with respect to definitions and statements 
of theorems, but for more background and detail we refer to 

-) Current address: Department of Applied Mathematics, Twente Universi
ty of Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands. 

the references mentioned (see also the survey"). 

Some notation: For symplectic geometry we refer to 
Refs. 1 and 2. If (M,w) is a symplectic manifold (of dimension 
2n) with symplectic form w, and H:M~R a smooth function, 
then the Hamiltonian vector field X H on M is defined by 
w(XH, -) = dH. Let F,H:M~R be two functions, then the 
Poisson bracket I F,H 1 is again a function on M defined by 
IF,H I: = W(XF,xH)' LetF" ... ,Fk be functions onM. Take 
all functions on M which are functions of the F;, i.e., all 
functions cpo (F" ... ,Fk ): M~R. This generates a linear sub
space Y of the space of functions on M. We call Y a Poisson 
algebra (or "function group," see Ref. 12) if If,gIEY for all 
j,gEY. For every xEM we define dY(x) as the linear sub
space of T~M, given by dY(x) = I df(x)lfEY I· 

A submanifold N eM is Lagrangian if WiN = 0 and if 
the dimension of N is n. If (q" ... ,qn ,p" ... ,Pn) are symplectic 
coordinates (i.e., w = L7~ ,dq; /\ dp;) and N can be parame
trized by q", .. ,qn' then there exists (locally) a function 
S (q" ... ,qn) such that N = I (q,p)W; = as laqj> i = 1, ... ,n I. S 
is the generating function of N. 

Iffis a function on a manifold W, we can define the 
functionf on TWby i(v): = df(v), for vETW. Therefore if 
(x" ... ,xn ) are coordinates for W, then (x" ... ,xn, x" ... ,xn ) are 
coordinates for TW. Given an one-form a on W, in local 
coordinates given by a = L7~ Ii; dXj> with/;: W~R, then 
we can define the one-form it on TWby 
it = L7~, (i. dx; + /; dx;). Let w = L7~, (dq; /\dp; be a 
symplectic form on M, then w: = L7 ~ ,(dq; /\ dP; 
+ dq i /\ dp i lis a sym plectic form on TM. All these construc
tions can also be done in a coordinate-free way.'2-'4 LetXbe 
a vector field on M with one-parameter group X, :M-.M, 
tER and small. Then (X,). : TM-. TM is the one-parameter 
group of a vector field on TM, which we denote by X. If 
(Y" ... ,Ym) are coordinates for a manifold Y then the natural 
coordinates (y,,. .. ,Ym, u " ... ,um) for T* Yare defined by let
ting (Ji" ... ,Ym' u" ... ,um) correspond to the one-form 
L;"~, u; dy;. We recall that cotangent bundles have a canon
ically defined symplectic form. '.2 

II. HAMILTONIAN SYSTEMS WITH EXTERNAL FORCES 
AND PARTIAL OBSERVATIONS 

The usual description of a Hamiltonian system (see for 
instance Refs. 1 and 2 is that of a triplet (M,w,H), where M is 
a smooth symplectic manifold denoting the phase space and 
w is a symplectic form on M which formalizes the typical 
structure of the phase space, namely the existence of "conju-
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gate" coordinates qi and Pi' Finally, H is a smooth function 
on M which represents the energy of the system. The dyna
mical behavior of the system is in local coordinates x for M 
given by x = X H (x), where X H is the Hamiltonian vector 
field on M defined by 

OJ(XH' -) = dB. (Ll) 

Using Darboux's theorem we can take local coordinates 
(ql,· .. ,qn ,PI,· .. ,Pn) for M such that OJ = ~7 = I dqi I\dpi' Then 
(1.1) comes down to the familiar Hamiltonian equations 

ili = JH, P = _ JH, i = l, ... ,n. (l.2) 
JPi ' Jqi 

As mentioned in the Introduction, our starting point will be 
a generalization of this structure, incorporating the possible 
external forces on the system. Moreover, we will formalize 
the idea that we may not be able to observe the whole state of 
the system but only the values of some functions of the s~ate. 
Therefore we introduce, apart from the state space mamfold 
M, an observation (or output) manifold Y (dim Y = mI. Then 
we define the space of external forces (or inputs) in every 
point of Yas the fiber of the cotangent bundle T'" Y in that 
point. This seems natural since an element a of a fiber of T'" Y 
is a linear function on the tangent vectors y of Y in that same 
point. Therefore a()i) (force times velocity) is defined and 
represents the external work performed on the system. . 

Recall that T'" Y has a canonically defined symplectiC 
form which we denote by OJe . SinceM has a symplectic form 
OJ, w~ can also define (see the Introduction) a symple~tic 
form ciJ on TM. This enables us to define the symplectiC form 
[Jon TM X T* YbysettingJ}: = 1TI *ciJ - 1TiOJ

e 
(1TI and 1T2 are 

the projections of TM X T'" Y on TM, resp. T'" Y). 
Definition 1.1 (Hamiltonian system): Let (M,OJ) be a 

symplectic manifold. Let Y be an observation ~an~fold. A 
Hamiltonian system.I (M, T'" Y,L ) or shortly .I IS given by a 
submanifold L C TM X T'" Y such that 

(i) L can be parametrized by the coordinates of M and 
the coordinates of the fibers of T* Y. 

(ii) L is a Lagrangian sub manifold of(TM X T*Y,f}). 
(iii) The value of the Y-coordinates of a point on L is 

only a function of the M-coordinates of this point. 
Proposition 1.2: Let.I (M, T * Y,L ) be a Hamiltonian sys

tem as above. Then in local coordinates the system is given 
by 

m 

x=XH(x) + LUiXC,(X), 
i= I 

Yi = Ci(x), i = l, ... ,m, (1.3) 

with x local coordinates for M, Y = LYI""'Ym ) local coordi
nates for Y, and u = (u 1'''''Um ) the corresponding natural 
coordinates for the fibers ofT· Y. We will call Ci : M-lR the 
observation (or output) functions. 

Prooj3,6; Because of(ii) L has a generating function. Be
cause of (i) and (iii) this generating function has the form 
H (x) + ~7'= 1 u i Ci (x), which we will abbreviate as H + u T C. 
Therefore the x-coordinates of a point on L are given by 
x = XH(x) + ~7'= 1 uiXC, (x) and they-coordinates by 

Yi = C;(x), i = l, ... ,m. 
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Remark 1: If we drop the assumption that M is a sym
plectic and the conditions (ii) and (iii) in Definition 1.1, we 
call.I (M,T* Y,L )just a system (see Refs. 15 and 4 and refer
ences therein). 

Remark 2: Without condition (iii) we arrive at the more 
general class of Hamiltonian systems where the external 
forces (inputs) enter the equations in a nonlinear way. In this 
case we can also replace T * Yby a general symplectic mani
fold (cf. Ref. 3). 

Remark 3: From a mathematical point of view the 
above definition stresses again the importance of the concept 
of Lagrangian submanifolds, as already done before by many 
authors. The use of Lagrangian sub manifolds in formulating 
"reciprocity" and "symmetry" in the description of static 
systems is successfully advocated in many works (see for 
some references Ref. 1, Sec. 5.3; a partiCularly nice account 
is given in Ref. 15). If we generalize Definition 1. I in the 
direction given in Remark 2, such static systems correspond 
to a Hamiltonian system without state space M; i.e., a La
grangian submanifold of T * Yor a more general symplectic 
manifold (see Ref. 3). The description ofa Hamiltonian vec
tor field on M as a Lagrangian submanifold of (TM,ciJ) figures 
prominently in many works of Tulczyjew and co-
workers. 13,16,15 Definition 1. I (and its generalization indicat
ed in Remark 2, see Ref. 3) combines both aspects and gives 
more rigor to idea of external forces and observations by 
using a system theoretic framework. 

Another way to look at Eqs, (1.3) is to start from a tri
plet (M,OJ,H), to add an observation map C:M~ Y, and to 
define the input vector fields (the directions in which we can 
exert external forces) as the Hamiltonian vector fields with 
Hamiltonian functions C" where in coordinates for 
Y,C = (CI, ... ,Cm ). So we have formalized the idea that we 
may influence the system by adding to the internal energy H 
a Hamiltonian function ~7'= 1 U i (t )C;, depending on the ob
servations made on the system. 

Examples: 
1. Newton's second law as treated in the Introduction. 
2. Consider the Euler-Lagrange equations 

!!.- (aL) _ JL = F. 
dt aqi aqi ' 

Assume that the Legendre transformation q-+p: = JL / Jq is 
nondegenerate (otherwise see Ref. 3), giving the Hamilton
ian function 

( 
aL ) . JL L ( . ) H q, aq = q aq - q,q. 

Then the Euler-Lagrange equations can be written as 

. JH 
qi=-a' 

'Pi 

. aH 
p=--+Fi , 

I aqj 

together with the observation functionsYi = qi' . 
3. Consider a capacitor C and inductance L, coupled III 

series with an external voltage Ve' With qc the charge on the 
capa;itor and CfiL the magnetic flux on the inductance we 
obtain 
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and the observation functiony = qc (note that gc is the ex
tenral current). 

As already announced, external work can be naturally 
defined in our framework. We need one more definition. 

Definition 1.3 (External behavior): Let.I (M, T * Y,L ) be a 
Hamiltonian system locally given by 

m 

x=XH(x)+ I u;Xc, (x), (1.4a) 
i= I 

y; = C;(x), i = l, ... ,m. (l.4b) 

Let iii: [0, T]-T * Y be a curve in T * Y which in natural co
ordinates (y,u) for T * Y can be written as 

iii(t) = (Y(t ),u(t )), tE[O,T] for a T> 0. 

Then iii belongs to the external behavior of the system, if 
there exists an xoEM such that when we apply the force func
tion u(.) to the system (l.4a) with x(O) = xo, Eq. (l.4b) yields 
the same observation function ji(.). 

Let now iii: [0, T]-T * Ybelong to the external behavior. 
Then the performed external work is equal to 

( i u;y; dt = (i u; {H + i UjCj,C;} dt 
Jo ; = I Jo I = I J = I 

= iT;~IU;{H,CJdt+ iT;JtIU;iij!C;,Cj)dt, (1.5) 

where for the first identity we use 

y; = (XH + j~IUjXC, )(Y;) = (H,C;) + j~IUj (Cj,C; J, 

sincey; = C;(x). Because (C;.Cj ) = - (Cj,C;) the last 
term of (1.5) vanishes and we obtain 

External work = j~JT u; IH,C; )dt. 

Definition (1.1) formalizes that we can exert external 
forces in the direction of the Hamiltonian vector field of 
every observation function. This might be too strong. For 
instance, we should also like to cover the situation 

x = XH(x), Yj = Cdx), i = l, ... ,m, 

i.e., a Hamiltonian system with partial observations of the 
state but without external forces. For this we give 

Definition 1.4 (Degenerate Hamiltonian system): Let 
.I (M, T * Y,L ) be a Hamiltonian system. Let PC T * Ybe a co
distribution on Y (i.e., in every point y of Ya linear subspace 
of T; Y, denoting the possible forces), which is involutive. 
Assume that L ': = Ln( TM X P ) is a submanifold of 
TM X T * Y. Then wecall.I (M, T * Y,L ') a degenerate Hamil
tonian system. 

In local coordinates we obtain the easily proved analog 
of Proposition 1.2. 

Proposition 1.5: Let .I (M, T * Y,L ' = Ln( TM X P )) be a 
degenerate Hamiltonian system. Since P is involutive, there 
exist local coordinates IYI,'''' Ym ) for Y such that P = span 
! dYI"'" dYk ), k<.,m. In these coordinates for Y the system is 
locally given by 
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k 

X = XH(x) + I ujXC, (x), 
i= 1 

Y; = C;(x), i = I, ... ,m. (1.6) 

Degenerative Hamiltonian systems are frequently en
countered as the result of an interconnection of Hamiltonian 
systems. 3 Apart from interconnections also notions like 
"coupling Hamiltonians" and "interaction potentials" can 
be naturally described in our scheme. A time-varying func
tion H, on M of the form H, (x) = L~~ I ii;(t )C;(x), with 
u(·) = (ii I(·),,,.,u m (.)) a certain force function, is sometimes 
called a coupling Hamiltonian. Consider two Hamiltonian 
systems.I (M;,T* Y;,L;), i = 1,2. The product is again a Ha
miltonian system.I (MI XM2,T*(YI X Y z), LI xLzl. If the 
generating function of LI is HI + u l TCI, and of 
L 2, H2 + u2 

T C2, then LI XL 2 has generating function 
HI + Hz + u l TC I + u2 TCz' A coupling Hamiltonian or 
interaction potential is a function V: YI X Yr·~R, which 
changes the generating function into 

We will now bring in some system theoretic concepts, the 
most important of which is minimality. Intuitively, one says 
that a system is minimal if the system cannot be reduced to a 
system living on a lower dimensional state space and with 
the same external behavior as the original system. 

Definition 1.6(Minimality):Let.I (M,T* Y,L )bea(possi
bly degenerate) Hamiltonian system . .I is called minimal, if, 
when there exists another system.I '(M',T* Y,L ') (not neces
sarily Hamiltonian) and a surjective submersion q:;: M_M' 
such that (q:;. ,id)(L ) = L '(with id the identity mapping from 
T * Y to T * Y), then necessarily q:; is a diffeomorphism. 

A local version of minimality, called local minimality4 

has the following neat characterization, which we will fre
quently use in the sequel. 

Proposition 1.7 4.6: Let.I (M, T * Y,L ) be a Hamiltonian 
system with generating function H + L;"= I U; C;. Define the 
Poisson algebra (see the Introduction) Y as the smallest 
Poisson algebfa containing the functions C I , ... , Cm and 
closed under taking Poisson brackets with Hand C;, 
i = I, ... , m. Then.I is locally minimal if and only if 
dim dY(x) = 2n, for every xEM. 

The proposition above has an interesting system theore
tic interpretation, since it implies that a locally minimal Ha
miltonian system is "observable" as well as "controllable." 
Observability means grosso modo that from the knowledge 
of the external behavior on an interval [O,T] we can deduce 
the value of the state on time 0. Controllability implies that if 
we look at Eq. (l.4a) for a certain x(O) = Xo and consider the 
set of points in M which are reachable from Xu by applying 
different force functions, this set has a nonempty interior in 
M. 

In Ref. 6 it is proven that a Hamiltonian system which is 
not locally minimal can be reduced to a locally minimal sys
tem which is again Hamiltonian. Therefore we could also 
have formulated Definition 1.6 with a Hamiltonian system 
.I (M ',T* Y,L '). Finally we note that we can give a characteri
zation similar to Proposition 1.7 for local minimality of de-

A. J. van der Schaft 2097 



                                                                                                                                    

generate Hamiltonian systems. However, we remark that if 
~ (M, T * Y,L ' = Ln( TM X P )) is degenerate Hamiltonian, 
then the local minimality of ~ (M, T * Y,L ) need not imply the 
local minimality of ~ (M,T* Y,L '). 

III. SYMMETRIES AND CONSERVATION LAWS 

We recall the usual definition of a symmetry for the 
triplet (M,w,H) (cf. Refs. 1 and 2): a diffeomorphism q;: 
M--M is Hamiltonian symmetry if (i) q;*w = w, (ii) 
q;*H=H. 

This generalizes in our framework to 
Definition 2.1 (Hamiltonian symmetry): Let 

~ (M, T * Y,L ) be a Hamiltonian system. A symmetry for ~ is a 
pairofdiffeomorphisms(q;,t,b), withq;:M--M, t,b: T*Y __ T*Y 
such that (q;. ,t,b) (L ) = L. A symmetry is called Hamiltonian 
if q;*w = wand t,b*we = we. 

Remark: Note that if (q;,t,b) is a symmetry, then the ex
ternal behavior of the system is invariant under t,b.5 

Example 2.2: 
Consider a particle in R3 with mass m in a potential field 

V, and subject to an external force F. Then the system is 
given by 

mq·=-+ . 
I aqi I i = 1,2,3. 

.. av F } 

Yi = qi (y is the observation) 

Suppose the equations mqi = av laqi are invariant under 
the rotation R around the el-axis (this is equivalent to 
H = ~mii + V invariant). Then we know that 
R *:T*R3 __ T*R3 (T*R3isthephasespace)isaHamiltonian 
symmetry for the system without external force. In this case 
also Y = R3, and so T*Y = T*R3. Thepair(R *,R *)isaHa
milton ian symmetry in the sense of Definition 2.1. It ex
presses the fact that for this system the observation corre
sponding to an external force which is rotated around the 
el-axis is obtained by rotating the observation in the same 
way. We can immediately prove the following 

Theorem 2.3: Let~ (M,T* Y,L ) be a locally minimal Ha
miltonian system. Let (q;,t,b) be a symmetry for~. Then (i) t,b is 
a fiber respecting bundle morphism and assuming 
t,b*we = we, then, (ii) q;*w = w, and hence (q;,t,b) is a Hamil
tonian symmetry. 

Prooj (see also Refs. 17 and 5): 
(i) follows from the structure of L. 
(ii) Since w - we iL = 0 and (q;* ,t,b)(L ) = L, also 

w - we i1cp .. tP)(L) = 0, and hence (q;*)* w - t,b*we iL = O. Be
cause t,b*we = we and w - we iL = 0, it follows that 
(q;* )*w - wk = O. 

Define a: = q;*w - w. Then aiL = O. Let L have as a 
generating function H + U T C. If fol.lows that a(X c, ' - ) 
= 0, i = 1, ... ,m, or equivalently, a (Xc, ' - ) = 0, i = 1, ... ,m. 

Since L XH w = 0 and Lcp. Xu w = 0, and therefore 
q; *(Lcp.xHW) = Lx"q; *w = 0, it follows that Lx"a = O. 
Hence 0 = LXH (a(Xc" - )) = a(Lx" (Xc,)) = a(X1H,C, J ' - ) 

for i = 1, ... ,m. In the same way we can prove by induction 
that for every functionjEY (see Proposition 1.7): 
a(Xf' - ) = O. Because ~ is locally minimal, 
dim dY(x) = 2n for every xEM and so a = 0, or q;*w = w. 
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As is common 1,2 we will concentrate in the sequel on 
infinitesimal symmetries, in which case the analog of Defini
tio 2.1 becomes 

Definition 2.4 (Infinitesimal Hamiltonian symmetry): 
Let ~ (M, T * Y,L ) be a Hamiltonian system. An infinitesimal 
symmetry is a pair (S, T), with S vector field on M and T 
vector field on T * Y, such that for every zEL, (S (z), T (z))ETz L. 
An infinitesimal symmetry (S, T) is an infinitesimal Hamil
tonian symmetry if Lsw = 0 and LTwe = O. 

Analogous to Theorem 2.3 we can prove that the vector 
field T is necessary fiber respecting, and that if ~ (M, T * Y,L ) 
is locally mininmal and (S,T) is an infinitesimal symmetry 
with LTwe = 0, then also Lsw = O. We also note that be
cause LTwe = 0 and T is fiber respecting the Hamiltonian 
function Ge corresponding to T [we (T, - ) = dGe] has the 
formGe(y,u)=~;"=luiKi(y)+ V(y)withKi and Vsmooth 
functions on Y. 5 

Now we will give a generalization of No ether's theorem 
in our framework. Recall the setting of Noether's theorem 
for a triplet (M,w,H). A vector field S on M is an infinitesimal 
HamiltoniansymmetryifLsw = OandS(H) = O.Afunction 
G:M __ R is a conservation law for (M,w,H) if X H (G) = O. 
Now let S be an infinitesimal symmetry, then since L s w = 0, 
there exists (locally) a G:M--R such that S = X G' Since 
XG(H) = S(H) = OitfollowsthatXH(G) = O. SoGisacon
servation law. Conversely, if G is a conservation law then 
LXG w = OandXG(H) = -XH(G) = O,soXG is an infinite
simal symmetry. We first derive 

Theorem 2.55
: Let ~ (M, T * Y,L ) be a Hamiltonian sys

tem with generating function H + ~;"= 1 U i Ci . Let (S, T) be an 
infinitesimal Hamiltonian symmetry. Let G:M--R and Ge

: 

T*Y--R with Ge(y,u): = ~;"= 1 UjKi(y) + V(y) the (locally 
defined) functions such that w(S, - ) = dG and 
welT, - ) = dGe

. Then [H(x) + uT C(x), G(x) 1 
= Ge (C (x),u), for every U or equivalently 

[H,G 1 = VoC, 

[CoG 1 = KjoC, i = 1, ... ,m 

with [ , 1 the Poisson bracket on M. 
The pair (G,Ge

) as above can be called a conservation 
law in our framework. The derivative of the function G (the 
conserved quantity) along trajectories of the system is a func
tion Ge of the behavior on the boundary of the system. 
Therefore we have proved in Theorem 2.5 that if(S,T) is an 
infinitesimal Hamiltonian symmetry, then (G,Ge), with 
S = XG and T = XG"' is a conservation law. Conversely, it 
can be easily seen that if (G,Ge) is a conservation law, i.e., 
Ge = ~;"=. 1 ujKj + Vand Eqs. (2.1) are satisfied, then 
(XG ,XG· ) is an infinitesimal Hamiltonian symmetry. 

Example 2.2 (continued): The group of rotations 
around the el-axis generates an infinitesimal Hamiltonian 
symmetry S on M = T *R3 for the system without external 
forces. The corresponding conservation law is the angular 
momentum G around the e)-axis. For zero external force we 
obtain dG Idt = 0, with G: = (qXmq,e l). However, for a 
nonzero external force F we obtain 
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Now Ge (y,u): = (yX u,e l ) is a function on T*Y = T*R3,and 
(G,Ge) is our conservation law. 

Using minimality we can sharpen Theorem 2.5 in the 
following way. 

Proposition 2.6: Let ~ (M, T * Y,L ) be a locally minimal 
Hamiltonian system with generating function H + ~;"~ I 
u;C;. Let (S; ,T;), i = I, ... ,k be infinitesimal Hamiltonian 
symmetries with corresponding conservation laws (GoG;), 
i = l, ... ,k. Let fft be the Poisson algebra on M generated by 
G;, i = I, ... ,k, and let ffte be the Poisson algebra on T*Y 
generated by G;, i = I, ... ,k. Then the map a: fft(modulo 
constant functions)-+fft e

, defined by a: 
G (x)-+[H (x) + uTC(x),G(x)) = :Ge(C(x),u)isaPoissonal
gebra isomorphism. 

Proof Let G I ,G2Efft and G ~, G ~ Effte, with G ~ (y,u) 
= ~j~ I ujKj(y) + V;(y) such that (H + UTC, G;) 
= G ;o(C,id), i = 1,2 with (G ~ o(C,id)) (x,u) 
= G;(C(x),u). The Jacobi identity implies 

(H + UTC,(G H G2 )} 

= (lH + uTC,Gd,G2 l - (lH + uTC,G2 ),Gd 

= (G~o(C,id),G2)- [G~o(C,id),Gd 

m aK: m av l 
= I u;-[Cj ,G2 ) + I-[Cj ,G2 ) 

;J~ I aYi i~ I aYi 

m aK; m av2 

- I u;-(Cj,G I )- I-[Ci,G I ) 

;J~ I aYj i~ I aYi 

~ (~aK: 2 aK; I) = L U L--K ---K 
; ~ I I . ~ I aYi J aYi J 

+ i: (aVI KJ - av
2 

KJ) 
i~ t aYi aYj 

= ttlU;K: + V\ttU;K; + V 2L.y 
= {G~,GnT*Y' 

where [ , ) T* Y means Poisson bracket on T * Y. 
Therefore the map a is a Poisson algebra morphism. It 

is immediate that constant functions are mapped to zero. 
Suppose that a function GEfft satisfies [H + uT C,G ) = 0. 
Then [H,G) =Oand(CoG) =O,i= I, ... ,m.Thereforefor 
every fEY (see Proposition 1.7, the algebra generated by C; 
under taking Poisson brackets with Hand C;), (J,G ) = 0. 
Since ~ is locally minimal, this implies G = const. So a is an 
isomorphism. 0 

Proposition 2.6 implies that for locally minimal systems 
our definition of a Hamiltonian symmetry really covers the 
ususal one for a triplet (M,w,H). Indeed, suppose that 
S = XG is an infinitesimal Hamiltonian symmetry, so 
[H,G) = 0, which cannot be observed, i.e., [C;,G) = 0, 
I, ... ,m. Then G is constant and therefore S = 0. 

A maybe unsatisfying feature of Theorem 2.5 is that we 
obtain {H,G I = VoC, instead of (H,G ) = ° as in the case 
without external forces. We will now show how by adding a 
potential P, only depending on the observations, to the Ha
miltonian H we can change [H,G I = VoC into 
{H +poC,G 1=0. 
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Theorem 2.7: Let ~ (M, T * Y,L ) be a Hamiltonian sys
tem. Let (S;,T;), i = I, ... ,k, be infinitesimal Hamiltonian 
symmetries such that tT. T;, i = I, ... ,k, are independent vec
tor fields on Y (tT is the projection of T * Y on Y), which are 
therefore nowhere zero. Let (G;,G;) be the corresponding 
conservation laws. Suppose that [G ;,G;J T*Y = 0, 
iJ = I, ... ,k. Then we can (locally) construct a function P: 
Y-R such that [H + poC, G;) = 0, i = I, ... ,k. 

Proof Since (G ;,G;J = 0, also [T;,1j] = 0. This im
plies [tT. To tT.1j] = 0, iJ = I, ... ,k. Therefore we can take 
local coordinates [YI, ... ,Ym ) for Y such that tT. T; = a IJy;, 
i = l, ... ,k. Denote V;: = G;, i = I, ... ,k. Then we have inde-
pendent functionsYw .. ,Ym and VI' ... 'V k , k<,m, such that 

(Y;'Yi) = 0, iJ = I, ... ,m, 

(v;,vi ) = 0, iJ = I, ... ,k, 

(Y;,vi ) = bij' i = I, ... ,m, j = I, ... ,k. 

Therefore (cf. Ref. 2 Darboux's theorem) we can construct a 
complementary set of independent functions Vk + 1""'Vrn 
such that 

[V;,Vi ) = 0, i = I, ... ,m, j = k + I, ... ,m, 

(Y;,vi ) = b;j, i = I, ... ,m, j = k + I, ... ,m, 

or equivalently, (YI, ... ,Ym, VI""'Vm ) are symplectic coordi
nates. The submanifold of T * Y given by VI = ... = Vrn = ° is 
Lagrangian and has therefore (locally) a generating function 
P: Y -R. Since ~ (M, T * Y,L ) has generating function 
H + ~;"~ t u;C; in the old coordinates (y,u), it has generating 
function H + poC + ~;"~ I V; C; in the new coordinates (y,v). 
Because G; = V; i = I, ... ,k it follows that [H + poc, G; J 

= 0, i = I, ... ,k. 
Remark: Notice that when we write C = (CI,···,Crn ) 

corresponding to the y-coordinates constructed above we 
obtain 

(Cj,Gj ) = bij, i = I, ... ,k, j = I, ... ,m. 

If dim T * Y = dim M = 2n, and if we have n symmetries 
(S;,T;) satisfying the conditions of Theorem 2.7, we can con
struct (locally) a function P: Y -+R such that B = H + poc 
satisfies (B, G;) = 0, i = I, ... ,n. Moreover, Proposition 2.6 

implies that since (G7,G;J T'Y = 0, also [G;,Gj)M = cij' 
with cij constants. Hence we are very near to the case of 
complete integrability (cfRefs. 1 and 2), for which we need n 
symmetries G; satisfying ( GoGj ) = 0. Therefore we cannot 
construct action-angle coordinates, 1,2 but using the remark 
above and assuming that ker dC is a Lagrangian submani
fold of M (think for instance of observation of the positions), 
it follows from a result in l8 that in this case we can take 
symplectic coordinates (ql, ... ,qn ,PI, ... ,Pn ) for M such that 

C; = q;, i = l, ... ,n, 

Since ° = (B, G; ) = (B,p; ) - ~~; ~ I cij [B,qj) the system 
in these coordinates, after adding the potential P, is given by 

i = l, ... ,n, 
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Yj = qj (Fj the external force). 
For degenerate Hamiltonian systems we obtain the fol

lowing definition of a Hamiltonian symmetry. 
Definition 2.8: Let..r(M,T*Y,L =L 'n(TM XP))be a 

degenerate Hamiltonian system. A pair of vector fields (S, T) 
is an infinitesimal Hamiltonian symmetry for ..r (M, T * Y,L ) if 
(S,T) is an infinitesimal Hamiltonian symmetry for 
..r (M, T * Y,L ') and the vector field T is tangent to PC T * Y, 
i.e., T(Z)ETzP, for every zEP. 

Hence we have formalized the idea that the symmetry 
should only work on the possible external behavior. In local 
coordinates we obtain 

Proposition 2.9: Let (S,T) be an infinitesimal Hamilton
ian symmetry for the degenerate Hamiltonian system 
..r(M,T*Y,L = L 'n(TM XP)).Thenwecanfindcoordinates 
Y., ... ,Ym for Ysuch thatP= span Idy., ... ,dYk I, k";;'m, and 
such that Ge [with we (T, - ) = dGe] has the form 

k 

Ge(y,u) = L UjKj(Y.,···,Yd + V(y.,···,yk) 
i= 1 

rn 
+ L ujKj(y.,···,Yrn)· 

j~ k+. 

Proof We know that Ge = ~;: • ujKj(y., ... ,y",) 
+ V(y., ... ,y",). Since Tis tangent to Pwe must have 

m aKj av 
~j_.Uj--+-=O 

- aYj aYj 
for Uk +. = ... = Urn = 0, j = k + l, ... ,m, 

or equivalently, 

and 

aK 
--' = 0 i= l, ... ,k, j= k + l, ... ,m 
aYj 

av = 0 k 1 , j= + , ... ,m. 
aYj 

o 
We see that the vector field T in this case projects to a vector 
field on T * Y, where Y has coordinates Y., ... ,Yk . It can also be 
seen that the additional potential P in Theorem 2.7 in this 
case only has to depend on Y., ... ,Yk. 

IV. TIME-REVERSIBLE HAMILTONIAN SYSTEMS 

Time reversibility of a system is a widely used but many 
times rather vaguely defined notion. In our framework it can 
be defined in the following way.·9 We say that the external 
behavior of a system..r (M, T * Y,L ) is time reversible if, when 
(V(t ),u(t )), tER belongs to the external behavior ofthe system; 
also the time-reversed signal (V( - t ),u( - t )), tER is a feasible 
external behavior. 

Let now..r (M, T * Y,L ) be a Hamiltonian system, locally 
given by 

{
X =XH(X) + ~t.UjXc;(X)' xEM, (3.1) 

Yj = Cj(x), I = l, ... ,m. 

If the external behavior of this system is time reversible then 
the Hamiltonian system 
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rn 
X = - XH(x) - L ujXC , (x), xEM, 

i= I 

y, = Cj(x), i = l, ... ,m (3.2) 

has the same external behavior. 
If the system..r is (locally) minimal it seems then reason

able to ask that there exists a diffeomorphism rp:M-M 
which carries Eqs. (3.1) over in (3.2). In the case of a linear 
Hamiltonian system this can actually be proven. 7 

Definition 3.1 (Time reversibility): Let..r (M,T* Y,L )bea 
locally minimal Hamiltonian system, locally given by (3.1). 
Then ..r is time reversible if there exists a diffeomorphism 
rp:M-M such that 

rp,XH = - X H, rp.Xc, = - Xc" 

and rp 'Cj = Co i = l, ... ,m. 

In this case we will call rp a time-reversing symmetry . 
Using local minimality we can prove two important 

properties. 
Theorem 3.2: Let rp be a time-reversing symmetry for a 

locally minimal Hamiltonian system ..r (M, T * Y,L ). Then 
(i) rp is an involution, i.e., rp2 = id. 
(ii) rp is an anti-symplectomorphism, i.e., rp*w = - w. 
Proof Denote A: = X H and B j : = Xc" 
(i) We will prove that every function/on M, generated 

by taking (repeated) Poisson brackets of Co i = l, ... ,m, and 
Hand Cj satisfies rp *f = ±f By assumption rp *Cj = Cj, 
and for instance 

rp*IH,Cjl =rp*(LACj)=Ltp. -IArp*Cj 

=L_ACj = -(H,Cj ). 

By induction it follows that rp *f = ±/. for every f construct
ed as above. Hence (rp2)*f = f for every fEY (see Proposition 
1.7). Since..r is locally minimal, this implies rp2 = id, if we 
assume that rp2 has at least one fixed point. 

(ii) Define a = rp*w + w. Since q;*w(Bj, - ) 
= w(rp.B;.rp. - ) = - w(Bj,rp. - ) = - dCj(rp. - ) 
= - rp.dCj = - drp *Cj = - dCj = - w(B;. - ), we ob

tain that a(B j , - ) = O. i = l, ... ,m. 
Furthermore 

LAa = LAW + LArp *w = rp *(Ltp.AW) = rp *(L _AW) = 0 

and 

0= LA (a(B;. - )) = a(LAB;. - ) = a(X1H.C , I' - ), 

and therefore by induction 

a(X!, - )=0 

for every f constructed as above. Local minimality implies 
a = 0, or rp*w = - w. 

Remark: Note that rp. X H = X H together with 
rp*w = - w implies rp * H = H + const. 

Maps rp:M_M with exactly these properties (i) and (ii) 
have been studied in Ref. 20 (see also the references cited 
there). It can be proved20 that the points pEM such that 
rp (P) = p form a Lagrangian submanifold Q of M. Further
more we can find a neighborhood U of Q and local coordi
nates (q., ... ,qn ,P., ... ,Pn) for U such that Q is the submanifold 
given by theequationsp. = ... =Pn = O,W = ~7~ .dqj I\dpj 
and rp is given by 
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rp:(ql,···,qn ,PI, .. ·,Pn )-(ql, .. ·,qn' - PI'"'' - Pn)· 

Consequently if Hand Ck, k = 1, ... ,m are at most quadratic 
in the Pj -coordinates, it follows from rp* H = H + const and 
rp *Ck = Ck that Hand Ck have the form 

n 

H(q,p) = I gij(q)PiPj + V(q), 
iJ. ~ I 

n 

Cdq,p) = I h t(q)PiPj + Wk(q), k = 1, ... ,m, 
iJ~ I 

withgji = gij and h t = h;. Especially the form of His very 
appealing; it denotes a Hamiltonian consisting of the sum of 
a potential V(q) and a kinetic energy given by a "Riemannian 
metric." 
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Representation theory of Lie algebras is called upon to develop a procedure for normalizing a 
dynamical system with two degrees of freedom in the neighborhood of an equilibrium when the 
HamiltonianH (x,y, X, Y) in the coordinates (x,y) and their conjugate momenta (X, Y) is of the type 
H = (X2 + y2)12 + V(x,y, X, Y), the potential energy V being a sum of homogeneous 
polynomials in the phase variables of degree strictly greater than 2. The fact that the resulting 
potential V I is a polynomial in the new coordinates (x', y') and the angular momentum 
G I = x' Y I - y' X I implies that the normalization is a rotation in the configuration space from a 
fixed frame to an ideal frame. The technique is intended for normalizing an Hamiltonian in 
equilibrium at the origin when the Lie derivative associated with the quadratic part is not 
semisimple, e.g., the planar restricted problem of three bodies at the equilateral equilibrium L4 
when the basic frequencies are equal (Routh's singular case). 

PACS numbers: 03.20. + i, 02.20. + b 

1. INTRODUCTION 

The literature about normalization deals mainly with 
semisimple systems in equilibrium at the origin. The Hamil
tonian being a formal series 

1 
H=H(x,y,X, Y)= I-Hn 

n>on! 
(1 ) 

whose terms Hn are homogeneous polynomials of degree 
n + 2 in the coordinates (x, y) and their conjugate momenta 
(X, Y), it is generally assumed that the dominant term H 0 is a 
quadratic form reducible to the type 

(2) 

in which the frequencies (J), and (J)2 are real and > 0, the 
factors e, e" and e2 being either + lor - 1. Such systems 
are called semisimple because their dominant term leads to a 
linear Hamiltonian vector field that is semisimple. Let 

LJ:F-+LJ(F) = (F;J) 

be the Lie derivative associated with the Hamiltonian linear 
vector field derived from J. For any n;;.2, the restriction of 
the differential operator 

( a 2a) (a 2a) L J = .X-+el(J)IX- +e Y-+e2(J)2Y-ax ax ay ay 
to the vector space P n of homogeneous polynomials of de
gree n in (x, y, X, Y) is an endomorphism of P n that is semi
simple; hence, with respect to L J , P n may be decomposed 
into the direct sum 

(3) 

The concept of normalization for semisimple systems in 
equilibrium at the origin must be credited to Whittaker, I 
who created it first by adapting a method proposed by De
launay2 for eliminating periodic terms from the main prob-

a) On leave from the University of Rochester, Rochester, N.Y. 14627. 

lem oflunar theory. Later, Whittaker3 carried out the nor
malization as a canonical transformation (x,y, X, Y)~(X', y', 
X', Y') defined through the implicit equations 

X= as 
ax ' 

Y= as ay , x' = as y' 
ax' ' 

derived from a generating function 

S S(x,y,X', yl) = ISn, 
n:,;.O 

as 
ay' 

where So = xX' + yY' and, for any n;;. 1, the term Sn is a 
homogeneous polynomial of degree n + 2 in (x, y, X', Y'). 
Although devised by Poincare4 as one of his "methodes nou
velles," the procedure is referred to in some quarters of celes
tial mechanics as von Zeipel's method. Nowadays5 the nor
malization is executed as a Lie transformation6 to convert 
the formal power series (1) into a formal power series 

H' H'(x',y',X', yl) = I~H~ 
lI#'on! 

(4) 

such that (i)H b = J(x',y',X', Y')and(ii),foreachn > O,H ~ 
belongs to the kernel ofLJ • In action and angle variables (if!, 
t/!, 4>, tJI), a polynomialin (x,y, X, Y) becomes a trigonometric 
sum in (if!, t/!), its component in 1m LJ consists of short-peri
od terms whereas its component in Ker LJ groups the terms 
which are either secular or oflong period. The normalization 
is justified in this framework as a technique for removing 
short-period effects from the perturbation. The requirement 
that (H'; J) = (H b; H ') = ° implies at once that the domi
nant term H b as a function of the normalizing variables is a 
(formal) integral of the system, and hence calls for a reduc
tion of the Hamiltonian system from two to one degree of 
freedom. 

Whittaker7 in his theory of integration by series, and 
most textbooks following him, considers exclusively semi
simple Hamiltonians in equilibrium. It must be realized8 

though that a nondegenerate quadratic form in (u, v, U, V) is 
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reducible by a real symplectic linear transformation (u, v, u, 
VI-ix, y, X, Y) either to type (2) or to the type 

(5) 

In the second case, the Lie derivative 

L J =w(x~-y~) ax ay 

+ w[(Y - EWX) ~ - (X + EWY) ~] (6) 
ax ay 

will be decomposed into the sum 

L J = wLG + Ew2LD' 

where the differential operators 

a a a a 
LG = x ay - y ax + X ay - Y ax' 

a a 
LD=x-+y-

ax ay 

are the Lie derivatives corresponding to the Hamiltonian 
linear vector fields derived from the functions 

(7) 

(8) 

(9) 

G = x Y - yX and D = _ !(x2 + y2). (10) 

The sum (7) realizes a Jordan decomposition ofthe endomor
phism L J : P n -->OP n' that is, LG is semisimple, LD is nilpotent, 
and these operators commute since 

(11) 

For any n >0, the vector space P n turns out to be the direct 
sum 

P n = 1m LG ffi Ker L G , 

and, on account of the commutativity relation (11), the re
striction of LD to the kernel of LG is an endomorphism of 
Ker LG. Hence the normalization of a nonsemisimple sys
tem in equilibrium at the origin could proceed in two steps. 
First a Lie transformation <,6: (x, y, X, Y )-->o(x', y', X " Y') nor
malizes the system with respect to the semisimple compo
nent L G , thereby changing (1) into a power series (4) in the 
kernel of L G • In the new phase variables, the angular mo
mentum G' = x'Y' - y'X' is a (formal) integral; hence the 
term wG' may be omitted from the dominant part in the 
transformed Hamiltonian, and then reduced to l' = €W

2 D '. 
Rather than analyzing the partially normalized problem as a 
system reduced to one degree of freedom by means of the 
integral of angular momentum, van der Meer9 proposes that 
the normalization be continued with a Lie tranformation tP: 
(x',y', X', Y')---+(x",y", X ", Y") to convert (4) into a formal 
power series confined to a remarkable vector subspace of 
Ker LG. Indeed, relative to the Lie derivative 

a a 
LK=X-+Y-

ax ay 
(12) 

associated with the Hamiltonian vector field derived from 

K = !(X 2 + y2), (13) 

the kernel of LG may be decomposed into the direct sum 

Ker LG = (1m LDnKer LG) ffi (Ker LKnKer LG)' 

This makes it possible for the transformation tP to convert (4) 
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into a (formal) power series 

H"=H"(x",y",X", Y")= L~H~ 
n;;.on. 

that belongs to Ker LGnKer LK • As a combined effect of the 
transformations <,6 and tP, the kinetic energy H;; = EW2 D " 
and the angular momentum G " in the third set of variables 
come out formally as integrals. Because they admit two inde
pendent integrals in involution, nonsemisimple systems with 
two degrees of freedom in equilibrium at the origin are (for
mally) integrable. 

van der Meer did not concern himself with developing 
an algorithm for generating the second normalization. As 
for ourselves, while engaged in designing such a procedure, 
we noticed that our techniques apply to a class of systems 
wider than the nilpotent part of a nonsemisimple system in 
equilibrium at the origin. In fact exchanging the coordinates 
and the momenta transposes the Hamiltonian of the latter 
system into one whose dominant termH b isK ' instead of D '. 
Such Hamiltonians represent motions of a particle subject to 
weak perturbations in the neighborhood of the origin. In 
that general context, the main contribution of this article is 
summed up in the following: 

Theorem: Given a Hamiltonian system with two de
grees of freedom represented by the formal series 

H=H(x,y,X, Y) 

= !(X 2 + y2) + L~Hn(x,y,x, Y), 
n;;.ln! 

(14) 

where, for n> 1, the perturbation Hn is a homogeneous po
lynomial of degree n + 2, one may build formally a Lie 
transformation (x,y, X, Y)---+(x',y',X', Y')toconvertHintoa 
formal power series 

H' H'(x',y',X', Y') 

=!(X,2+ y'2) + LJ,H~(X"Y"X" Y'), 
n;;.ln. 

where, for each n> 1,H ~ is in the kernel ofLD • More precise
ly, 

H' = " h x,ay'PG 'Y. 
n ~ ~P~ 

a + P + 2y ~ n + 2 

The physical meaning of the normalization is exposed 
below in the corollary to the theorem. For the resulting po
tential 

V'=V'(x',y', G') = I~H~(x"Y" G') 
n;;.ln. 

ofthe forces acting on the particle in the neighborhood of the 
origin, let the differential be written as the I-form 

dV' = aIV'dx' + a2 V'dy' + a3 V'dG'. 

Also, let (C) be the original Cartesian frame of reference in 
the configuration plane (x, y) with i and j standing for the 
orthonormal unit vectors in the directions of the reference 
axes. Finally let (I) designate the moving frame obtained by 
rotating (C) about the origin at the adjusted angular velocity 
- a3 V', i' and j' denoting the orthonormal unit vectors in 

the directions of the coordinate axes. In these notations 
Corollary: The particle's position x, its velocity v, and 

its acceleration a relative to the frame (C) are such that 
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x = xi + yj = x'i' + y'j', 

v = Xi + Yj = X'i' = Y'j', 

a = - J 1 VT - J2V'j'. 

(ISa) 

(ISb) 

(ISc) 

Thanks to the normalization, the motion in the frame 
(C) is decomposed into a rotation about the normal to the 
plane at the variable rate - J 3 V '(x', y', G '), and a motion 
with respect to the moving frame (/). In the latter frame, 
whereas one would have expected Corio lis forces and centri
fugal repulsion to compensate for the slow rotation, one 
finds that the forces are reduced to the gradient of the force 
function U' = - V. Thus the moving frame (/) constitutes 
what Hansen calls an ideal frame, and the normalization 
may be regarded as a procedure to extract from Hamiltonian 
(14) the instantaneous rate at which, along each particular 
orbit, the frame (C) should be set in rotation so that it be
comes the ideal frame proper to that particular orbit. 

Symmetry Lie algebras provide a natural framework in 
which to consider the normalization of Hamiltonian sys
tems. A case in point is the class of semisimple systems in 
equilibrium which admit a 1: 1 resonance. Credit for having 
discovered there the relationship between symmetry Lie al
gebras and normalization goes to Kummer. 10 As matter of 
fact, an algorithm can be set up to produce immediately the 
reduced Hamiltonian as a function over the Lie algebra su(2) 
spanned by the symmetry generators. 11 In that light, norma
lization of semisimple systems in 1: 1 resonance is but an 
application of the reduction theorem. 12 A similar situation 
occurs for perturbed two-dimensional Keplerian problems 
where the Delaunay normalization 13 builds the reduced Ha
miltonian as a function over the Lie algebra so(3). The pres
ent article shows that, for systems of type (14), the connec
tion between symmetry Lie algebras and normalization is 
equally decisive, but of a different nature. For the symmetry 
Lie algebra is here solvable-and not semisimple. However, 
the Lie derivative LK may be embedded in a simple Lie alge
bra, namely sl(2, R), whose representation specifies the re
quirements imposed by the normalization. 

2. SYMPLECTIC SYMMETRIES 

The task of developing a normalization algorithm for 
nilpotent systems of type (14) when K is given by (13) begins 
with studying the linear infinitesimally symplectic symme
tries for the Hamiltonian K. The Lie algebra sp(4, R) of all 
infinitesimally symplectic linear maps (x,y,X, Y)-+(x' ,y' ,X', 
Y') is isomorphic to the Lie algebra of quadratic Hamilto
nians under the Poisson bracket 14: To the infinitesimally 
symplectic matrix win sp(4, R) corresponds the quadratic 
form 

W(x,y,X, Y) = - (Jwv, v), 

where 

J= ( 0 
-/ 

f\ and v = (x,y, X, Y), 
0) 

in which case W is said to generate the infinitesimally sym
plectic linear map w. The latter is called a (linear infinitesi
mally symplectic) symmetry of K if there is a scalar v such 
that [w, k] = vk if k is the infinitesimally symplectic linear 
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matrix generated by K, or equivalently 

(W;K) =vK. 

The definition adopted here for a symmetry is borrowed 
from Cart an IS; it allows for a reparametrization of the inte
gral curves of the vector field derived from K by the symme
tries generated from W. 

A quick evaluation shows that the infinitesimally linear 
symplectic symmetries form a five-dimensional solvable Lie 
algebra, a basis of which is generated by the sum 

W= E'IWI + E'2W2 + E'3W1 + E'4W4 + E'SW5' 

whose terms are WI = K, W3 = G, 

W2 =S=xX+yY, W4=!(X2_y2), Ws=XY. 

In G, one recognizes the generator of the rotations about the 
origin. From the infinitesimal symmetry s defined by the 
equations 

x' =X, y' =y, 

X' = - X, Y' = - Y, 

derived from S, the exponential mapping eES produces the 
symplectic symmetry 

x'=eEX, y'=eEY, X'=e-EX, Y'=e-EY 

in finite form. It corresponds to the similarity due to the 
homogeneity in dimensions: Multiplying the coordinates by 
a constant A. (= eEl and dividing the velocities by the same 
constant requires, for preserving the dimensional homo
geneity, that the time itself be multiplied by A. 2. This rule of 
similarity can also be verified by checking that the symplec
tic symmetry changes Cartan's form 

U) = X dx + Y dy - K dt 

into the I-form 

U) = X' dx' + Y' dy' - 0 2(X'2 + yo2) dt, 

thus suggesting that the time t be replaced by the indepen
dent variable t' = A. 2/ • 

The symmetry generators K, G, W4, and Ws are evi
dently integrals for the free particle. The function K and G 
are respectively the particle's energy and its angular momen
tum. The integrals W4 and Ws restate the principle of conser
vation of linear momentum since they combine to yield that 
X + Yand X - Y; hence the components X and Y of the 
velocity are integrals. The generator S itself is not an integral 
of the free particle. However, the symmetry condition (S; 
K) = 2K gives rise to the differential relation S = (S; 
K) = 2K, and thus to the integralS - 2Kt = C 1, from which, 
by yet another quadrature, is derived the so-called Jacobi 
integral 

D + SI - Kt 2 = Co. 

The infinitesimal symmetries Wi derived from the gen
erators W, (1 <;i < S) span a subalgebra in the linear Lie alge
bra sp(4, R) of 4 X 4 symplectic matrices. The family is com
pleted into a basis Wi (l<i<lO) ofsp(4, R). Table I lists the 
generator and the nonzero elements WiJ,k (in row j and col
umn k ) for each symplectic matrix Wi in the basis. 

For the basis of sp(4, R) established in Table I, one com
putes easily (at least on a home computer) the commutators 
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TABLE I. A basis in the algebra sp(4, RI. 

Type 
Generator Nonzero elements 

n = nilpotent 
s = semisimple 

w. !(X' + Y'I WI.I.' =wl.2.4 =1 n 

W2 xX+yY 

W J xY-yX 

W4 !(X2 _ y21 

W 2 ,1,1 = W 2,2,2 = - W 2,3,) = - W 2,4,4 = 1 
W 3.2 ,1 = W 3,4,J = - W 3,1.2 = - W 3,3.4 = 1 

w4 .• ,' = - W4,2,4 = 1 n 

n w, XY w".,. = W',2,3 = 1 
W. - !(x2 +YI W 6 ,3,1 = W 6,4,2 = 1 n 

W7 xX-yY 

W H xY+yX 

W9 -xy 

w7 .1.1 = - W 7,2,2 = - W 7,J,3 = W 7,4,4 = 1 

W',',2 = W.",. = - W'",4 = - W',4,' = 1 
w."" = w •.• ,. = 1 n 

WIO - !(x2 - YI w lO,), I = - WIQ,4,2 = 1 n 

[W" Wj ] = Wi Wj - Wj Wi (1 <i,j< 10), the results of which 
have been entered in the respective ith row andjth column of 
Table II, 

Basic to the normalization are the following facts which 
can be read immediately from Table II of the commutators. 

(a) Each element a of a Lie algebra A over a field F 
determines an endomorphism ad a: b_[a, b ]:A-A oftheF
vector space. The element a is said to be ad-nilpotent if 
(ad a)m = 0 for some integer m > O. A quick calculation us
ingTable II shows that (ad W I)3 = 0, orthatthesymmetry WI 

is ad-nilpotent in the linear algebra sp(4, R), 
(b) In a finite-dimensional semisimple Lie algebra A 

over the real or the complex field, every ad-nilpotent element 
may be embedded in a subalgebra B of A isomorphic to the 
special linear Lie algebra sl(2, R) of 2 X 2 matrices with zero 
trace. 16 More precisely, there exists a pair (b, e) of elements in 
A such that 

[a, b] = 2b, [a, c] = - 2e, [b, c] = a. 

In application of the embedding theorem to the ad-nilpotent 
matrix WI in sp(4, R), one reads from Table II that 

[W2' WI] = 2w I, [w2, w6] = - 2w6, 

[WI' w6] = W2' (16) 

(c) Each matrix Wi in Table I is, by construction, the 
Hamiltonian linear vector field derived from the corre
sponding generator Wi' But, given two vector fields a andp, 
the Lie derivative of their commutator [a, P] is usuallyl7 

TABLE II. Commutators of the basis matrices in sp(4, RI. 

W, W, W3 W. 

W, 0 -2w, 0 0 

W, 

0 
W, 2w, 0 0 2W4 2w, 
W3 0 0 0 2w, - 2W4 
W4 0 -2W4 -2w, 0 0 
W, 0 - 2w, 2W4 0 0 
w. - W2 2W6 0 -W7 -W8 
W7 2W4 0 - 2W8 2w, 0 
W8 2w, 0 2W7 0 2w, 
W9 -W8 2W9 2wIO W3 - W2 
WIO -W7 2wIO - 2W9 -w, -W3 
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defined as the differential operator 

L[aP J = [La' Lp] = LpLa - LaLp. 

Hence the embedding relations (16) transposed in terms of 
Lie derivatives yield 

Lemma 1: 
[Ls, LK ] = 2LK , [Ls, LD] = - 2LD, [LK' LD] = Ls· 

The lemma could have been obtained by evaluating 
long-hand the commutators of these Lie derivatives from 
their expressions as differential operators, or by evaluating 
the Poisson brackets (Wi; W;) since 

[L w" Lwj ] = L(w;; UJI = L[wp W;]' 

While an algebraist interprets the results in Lemma 1 as 
saying that LK and LD are eigenvectors of ad Ls with eigen
values respectively equal to 2 and - 2, a physicist reads 
them as meaning that Ls is a symmetry of the vector field 
derived from K that shortens the time along the integral 
curves of K while, as a symmetry of the vector field corre
sponding to D, it slows down the time along the integral 
curves. This interpretation brings forth a close analogy 
between the normalization proposed in this article for per
turbed free particles and the conventional averaging proce
dures applied to conditionally periodic systems: in both 
cases, the algorithm removes the short term effects caused by 
the perturbations. 

From Tables I and II, the reader may collect the follow
ing triples: 

W6 W7 W8 W9 WIO 

w, - 2W4 - 2w, W8 W7 
- 2W6 0 0 - 2W9 - 2wIO 

0 2W8 - 2W7 - 2wIO 2W9 
W7 -2w, 0 -W3 W, 
W8 0 -2w. W2 WJ 

0 2wIO 2W9 0 0 
- 2wIO 0 - 2W3 0 -2w. 
- 2W9 2W3 0 - 2W6 0 

0 0 2W6 0 0 
0 2W6 0 0 0 
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(xX; !X 2
) = X 2, (xX; - !X2) = X2, (!X 2

; - !X2
) = xX, 

(yy;!y2)= y2, (yy; _!y2)=y2, (!y2; -!l)=yy, 

(xX + yy; XY) = 2XY, (xX + yy; - xy) = 2xy, 

(XY; - xy) = xX + yY, (xX - yY; Xy) = 2Xy, 

(xX - yy; xY) = - 2xY, (Xy; xY) =xX - yy. 

As will be seen in the next sections, to each of them corre
sponds a representation of the simple algebra sl(2, R), in the 
general linear algebra gl(P n ) relative to the vector space P n , 

hence a normalization scheme for a certain class of Hamilto
nians. For example, the first triple concerns Hamiltonians of 
the type 

X 2 1 
H-H(x,y,X, Y)=-+ I-Hn(x,y,X, Y), 

2 n>ln! 

which may be normalized into Hamiltonians 

H'=H'(x',y', X', Y') = X
2
'2 + I ~H~(X"Y" Y') 

n>1 n. 

with the momentum x' eliminated from the perturbations. 

3. DECOMPOSITION OF THE PERTURBATIONS 

The objective of this section is to prove that any homo
geneous polynomial P may be written in a unique way as the 
sum p = P K + P D of two homogeneous polynomials of the 
same degree such that LDPD = 0 andpK = LKq for some 
homogeneous polynomial q. It is to be noted that, in this 
section, LK and LD stand respectively for the restrictions of 
LK and LD to the vector space P n • The decomposition leads 
to a procedure for constructing a Lie transformation which 
will strip any perturbation term Hn in (14) of its component 
in 1m L K • 

Actually the decomposition of P n as the direct sum of 
Ker LD and 1m LK is but a particular case of a more general 
result about the representations of the special linear Lie alge
bra sl(2, R). To get at the essence of the problem, we need, 
however, to fix notations and terminology, and to recall a 
few basics from representation theory. 

Let Vbe a real vector space of finite dimension; in the 
algebra of endomorphisms of V, [a, b] denotes the commuta
torab - ba. For readability, the image tP (x) ofa vector x in V 
by an endomorphism tP will be written simply as tPx. One says 
that V is an sl(2, R)-module or, equivalently that sl(2, R) is 
represented on V, if there exist three nonzero end om or
phisms x, y, h of V satisfying the relations 

[h, x] = 2x, [h,y] = - 2y, [x,y] = h. (17) 

By virtue ofWeyl's theorem, an sl(2, R)-module Vmay be 
decomposed into a direct sum of real vector subspaces 

( 18) 

whose summands are invariant and irreducible under the set 
of endomorphisms (x,y, h ). There may be more than one way 
of accomplishing the decomposition, but the number s of 
summands and the equivalence classes of the irreducible re
presentations are uniquely determined. 

Proposition 1: Relative to a real vector space V of finite 
dimension that is an sl(2, R)-module for the three endomor
phisms x, y, h satisfying the commutator relations (17): 
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(i) the endomorphisms x and yare nilpotent; 
(ii) the endomorphisms xy and yx are semisimple; 
(iii) Ker xy = Ker y and 1m xy = 1m x; likewise, 

Ker yx = Ker x and Imyx = Imy; 
(iv) V = Ker x Ell 1m y; likewise, V = Ker y Ell 1m x; 
(v) dim Ker x = dim Ker y = s, where s is the number 

of summands in any decomposition of Vinto a direct sum of 
irreducible vector subspaces. 

The proposition is proved in two stages. First is consid
ered the particular case when s = 1, that is, Vitself is irredu
cible; then the results are extended to the general case where 
s> 1. 

When it is irreducible, Vadmits, according to Hum
phreys, IX a basis (vo, VI' ... , vm ) such that, for O<;i<;m, 

hVi = (m - 2i)Vi' 

yVi = (i + l)vi + I, 

XVi = (m - i + 1 )Vi _ I' 

(19) 

(20) 

(21) 

with the convention that V _ I = Vm + I = O. As a conse
quence, xm - I Vi = ym - I Vi = 0, which proves that the en
domorphisms x and yare nilpotent. There follows also that 
(XY)Vi = (i + l)(m - i)vi ; hence the vectors (Vi )(O<;i<;m) area 
basis of eigenvectors for the endomorphism xy (and likewise 
for the endomorphism yx), which means that xy and yx are 
semisimple. For that reason, V = Ker xy Ell 1m xy, and also 
V = Ker yx Ell Imyx. More precisely, since, on the one hand, 
(XY)Vi = 0 if only i = m, and, on the other hand, Vi = (xy) 
[Ii + 1) - I(m - i)-IV;] for O<;i<;m - 1, it turns out that 
Ker xy is the one-dimensional vector subspace generated by 
Vm , while 1m xy is the m-dimensional vector subspace gener
ated by the vectors Vi (O<;i<;m - 1). In view of this decompo
sition of V, statements (iv) and (v) in the proposition are im
mediate corollaries of statement (iii). There remains thus to 
prove point (iii). To this end, observe that, on account of 
relation (21), Vi is in the image of x if and only ifO<;i < m, 
whilexvm = 0; therefore, being the vector subspace generat
ed by the vectors Vi (O<;i<;m - 1), 1m x is identical to 1m xy. 
Similarly, by virtue of (20), a linear combination aovo + lV I 
+ ... + am Vm is in the kernel of y if and only if G i = 0 for 

O<;i<;m - 1; hence, being the one-dimensional subspace 
generated by Vm Ker y is identical to Ker xy. 

The proof of Proposition 1 in the general case where Vis 
completely reducible, although not irreducible, rests on de
composition (18) of V into a direct sum of irreducible submo
dules. It has just been proved that the restrictions of x and y 
to each of the summands are nilpotent, and that the restric
tions of xy and yx are semisimple; hence the endomorphisms 
x andy themselves are nilpotent in V, whereas the endomor
phisms xy and yx are semisimple in V. Demonstration of 
assertions (iii)-(v) involves the following: 

Lemma 2: Let Vbe a vector space that is a direct sum of 
the subspaces (Vi) (1 <;i<;n). Then, for any vector subspace W 
of V, the following statements are equivalent: 

(i) W is the direct sum of the vector subspaces (Wn Vi) 
(1 <;i<;n); 

(ii) for any element W in W, the decomposition 
W = WI + W2 + ... + Wn such that Wi belongs to Vi for 
1 <;i<;n implies that each component Wi belongs to W. 
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Intuitively speaking, the lemma says that Wis the direct 
sum of its intersections with the Vi 's if and only if the compo
nents of any vector in Walong every "direction" Vi lie in W. 
Elementary as it may be, this lemma is not mentioned in the 
major textbooks in linear algebra; it is therefore in order to 
sketch its proof. Considering that V is the direct sum of the 
subspaces Vi' any element W in W may be decomposed into 
the sum W = WI + W 2 + ... + Wn with Wi in Vi for each i. 
But, assuming that (i) holds, the same element W may be 
decomposed into the sum W = U I + U2 + ... + Un with U i in 
Wn Vi for each i. The decomposition of W in Vbeing unique, 
there follows that Wi = Ui , and hence that Wi belongs to W 
for each i, which shows that (i) implies (ii). Conversely, if (ii) 
holds, then Wi belongs to Wn Vi for each i. Such a decomposi
tion being unique, there results that W is the direct sum of 
the subspaces WnVi , and hence that (ii) implies (i). 

Lemma 2 is used to prove that 

1m Z = (VlnIm z) (fl (V2nlm z) (fl ... (fl (Vsnlm z), (22) 

Ker Z = (VlnKer z) (fl ( V2nKer z) (fl ... (fl ( Vs nKer z) (23) 

when the endomorphism Z is either x, y, xy, or yx. Indeed, 
take W in 1m z; in view ofWeyl's theorem, it may be decom
posed into a sum W = WI + W2 + ... + w s ' where Wi belongs 
to Vi for 1 <.i<s. But W = zv for some v in Vwhich in turn 
may be decomposed into a sum v = VI + V2 + ... + Vs with Vi 

in Vi for 1 <i<s; therefore, zv = ZV I + ZV2 + ... + ZVs' Now, 
since Z leaves each vector subspace V invariant and since the 
decomposition ofw into its components in the Vi'S is unique, 
there follows that Wi = ZVi for 1 <i<s, or that each compo
nent lies in 1m z, hence formula (22) on account of Lemma 2. 
Similarly, for W in Ker z, there results that 0 = zw = zW I 

+ zW2 + ... + ZW" hence that ZWi = 0 for 1 <i<n, since 
o = 0 + ... + 0 is the unique way of decomposing the null 
vector in the direct sum (18). Because each component Wi 

belongs to Ker z, formula (23) results also from Lemma 2. 
Proposition 1 having been proved when Vis irreducible, 

there follows that 1m xYI Vi = 1m xl Vi and Ker xYI Vi 

= Ker yl Vi for 1 <i<s. Then, by reason of the relations (22)
(23), one concludes that 1m xy = 1m x and Ker xy = Ker y, 
which thus proves statement (iii) in Proposition 1. The next 
statement is then a consequence of the fact that the endomor
phism xy is semisimple. Finally, since Ker xl Vi and Ker
yl Vi are one-dimensional for 1 <i<s, one concludes from 
formula (23) that Ker x and Ker yare of dimension s. This 
completes the demonstration of Proposition 1. 

Corollary: The vector space Pn is the direct sum 
ImLK (flKerLD· 

If Vis an sl(2, R)-module, the real number A is called a 
weight of the representation when the vector subspace VA of 
elements x such that hx = AX is not the null space. In repre
sentation theory, it is proved that the number s of summands 
in the direct decomposition (18) is equal to dim Yo + dim VI' 
In the present case, the semisimple endomorphism involved 
in the representation of sl(2, R) is the differential operator 

a a a a 
Ls =x-+y--X-- Y-. 

ax ay ax ay 
From now on, in order to disencumber the notations, mono
mials like xuyPX YY'5 will be denoted era, /3, y, D). In those 
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terms, 

Lse(a, /3, y, D) = (a + /3 - y - D)e(a, /3, y, D); 

hence the monomials era, /3, y, 0) constitute a basis of the 
vector subspace Vk of P n if and only if 

a + /3 + y + 0 = n and a + /3 - Y - 15 = k. 

Therefore, when n = 2m, VI reduces to the null space where
as dim Vo = (m + 1)2; otherwise, when n = 2m + I, it is Vo 
that is reduced to the null space while 
dim VI = (m + l)(m + 2). Hence 

Proposition 2: The dimension of Ker LD in P n is equal 
to (m + If when n = 2m and to (m + l)(m + 2) when 
n=2m+1. 

By consulting Table III, the reader will gain a measure 
of appreciation for the extent to which the normalization 
simplifies the perturbed system (14). An arbitrary polyno
mial that is homogeneous ofdegreen in (x,y,X, Y) is the sum 
of (; + 3) monomials. Thus, from degree n to degree (n + 1), 
the perturbation term Hn grows in complexity by 
(n + 2)(n + 3)/2 terms; by contrast, Ker LD increases only 
by 1 + (n + 1)/2 terms. 

As the next section will indicate, there is, however, 
more to the normalization than a drastic reduction in alge
braic complexity. 

4. THE ANGULAR MOMENTUM INSIDE THE 
PERTURBATION 

The decomposition vouchsafed by the corollary to Pro
position lowes its physical interest to the algebraic nature of 
the kernel of LD as one can see from 

Proposition 3: With a + /3 + 2y = n, the polynomials 
g(a, {3, y) = XU yP (JY form a basis of Ker LD in P n' and the 
polynomials G (a,{3, y) = XU yf3 GY, a basis ofKer LK in P n' 

The proof of Proposition 3 rests on yet another decom
position of P n into a direct sum of vector subspaces, which 
will be detailed first. In what follows, most of the time, a 
monomial era, /3, y, D) will be identified with the quadruple 
(a,/3, y, D) of its exponents. Clearly, an arbitrary quadruple 
(a,{3, y, D) of integers represents a monomial ifand only if its 
elements are nonnegative, in which case the monomial be
longs to P n if and only if a + /3 + y + 15 = n; let En be the 
set of all quadruples satisfying these two conditions. The 
relation R defined by 

(a',{3', y', D')R(a,/3, y, D) 

if 3 an integer k 3 

(a',/3', y', 15') = (a,{3, y, D) + (- k, k, k, - k) 

is an equivalence among quadruples. For any quadruple (a, 
/3, y. 0), letE (a,/3, y,D) designate the intersection with En of 

TABLE III. Algebraic simplification accomplished by normalization. 

Degree 3 4 5 6 7 8 

dimPn 20 35 56 84 120 165 
dim KerLD 6 9 12 16 20 25 
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the class of quadruples equivalent to (a, (3, y, 0) modulo R; 
given the integer k, the quadruple (a - k, (3 + k, y + k, 
o - k) is an element of E (a, (3, y, 0 ) if and only if 

a - k>O, (3 + k>O, y + k>O, 0 - k>O, 

or, equivalently, if and only if 

- min(,8, y).;;;k.;;;min(a, 0 ); 

this shows in particular that the number of quadruples in the 
equivalence class E (a, (3, y, 0) is equal to I + min(a, 
o ) + min(,8, y). The natural ordering on the integers k pro
vides an ordering on E (a, (3, y, 0 ). In that order, the lowest 
element in E (a, (3, y, 0) is of the form (ao, (30' Yo, 00) with 
(3oyo = 0. Repeated addition of ( - 1, 1, 1, - 1) to the lowest 
element produces all the quadruples in the equivalence class 
E (ao, (30' Yo, 00) up to the highest element which is of the form 
(a I' (31' YI' od with alo l = 0. 

Now let P (a, (3, y,o ) denote the vector space generated 
by those monomials whose exponents belong to the class 
E (a, (3, y, 0). The monomials in En being a basis of P n' the 
preceding discussion establishes that P n is the direct sum of 
the vector subspaces P (a, (3, y, 0 ), and that dim P (a, (3, y, 
o ) = min(a, 0) + min(,8, y) + 1. However, the vector sub
spaces P (a, (3, y, 0 ) are not in general invariant under the 
operators LK and L D ; as a matter of fact, the way in which 
these operators act on P (a, (3, y, 0 ) is given in the next state
ment. 

Lemma 3: For any (a, (3, y, 0) in En and with the con
vention that P (a, (3, y, 0 ) designates the null vector space 
when E (a, (3, y, 0) is empty, 

(i) LK maps P(a, (3, y, 0) into P(a - 1, (3, y + 1,0), 
(ii) LD maps P (a, (3, y, 0) into P(a + 1, (3, y - 1,0), 
(iii) LD LK maps P (a, (3, y, 0 ) into itself. 
Indeed, for any monomial e(a, (3, y, 0 ), 

LKe(a, (3, y, 0) = ae(a - 1, (3, y + 1,0) 

+ (3e(a, (3 - 1, y,o + 1) (24) 

by virtue of definition (12). But (a - 1,(3, Y + 1,0) = (a, 
(3 - 1, y,o + 1) + ( - 1,1,1, - 1), hence both monomials in 
the right-hand member of(24) are equivalent modulo R, and 
(i) is thus proved. By an analogous argument, (ii) is a conse
quence of the identity 

LDe(a, (3, y, 0) = ye(a + 1, (3, y - 1,0) 

+ tJe(a, (3 + 1, y, 0 - 1), (25) 

resulting from definition (9). Then (iii) follows by composing 
(i) and (ii). 

Against this background information, Proposition 3 

TABLE IV. Classes of LK restricted to Pia, /3, y, 0). 

will now be proved, but for LK only, since the result for LD 
follows from swapping the coordinates (x, y) and the mo
menta (X, Y). Because LK is a derivation, the relations 
LKX = LK Y= LK(xY - yX) = ° imply that LKG(a, (3, 
y) = 0; hence there remains to show that the polynomials 
G (a, (3, y) are linearly independent and that they span 
Ker L K • On the one hand, the binomial expansion 

xayf3(xY - yX)Y 

= X ayf3 I (- l)k(Y)xY- kykXkyy- k 
O<k<y k 

= I (- W (~)e(y - k, k, a + k, (3 + y - k ) 
O<k<y 

shows that G (a,(3, y) belongs to the vector subspaceP (y, 0, a, 
(3 + y). The equivalence classesE (y, O,a,(3 + y)andE(y',O, 
a', (3' + y') being disjoint when (a, (3, y, 0) =/= (a', (3', y', 0 '), 
distinct polynomials G (a, (3, y) belong to distinct vector sub
spaces P (y, 0, a, (3 + y), which means that the polynomials 
G (a, (3, y) are linearly independent. 

On the other hand, take a polynomial P in P n , and let 
P = ~, p, be its decomposition relative to the subspaces P (a, 
(3, y,o ). Then LKP = ~, LKP,; since, according toLemma 3, 
for t =/=K, the images LKP, and LKPK belong to distinct sub
spaces P (a, (3, y, 0), the relation LKP = ° implies that LKP, 
= ° for each index t. There results by reason of Lemma 2 

that Ker LK is the direct sum of the vector subspaces 
Ker LK nP (a, (3, y, 0). As will be seen, all of these summands 
are identical to the null subspace save the intersections 
Ker L KnP(y, O, a,(3 + y)whichareofdimension 1 and are in 
fact generated by a polynomial G (a, (3, y) (see Lemma 4 be
low). This will prove that such special polynomials span the 
kernel ofLK , and therefore constitute a basis ofKer LK as is 
announced in Proposition 3. There remains thus to examine 
the trace of Ker LK on each vector subspace P (a, (3, y, 0), 
which will be done by studying in detail the action ofLK on 
each of them. Such an analysis will prove useful also in Sec. 
5, where the normalization algorithm will be developed; it 
will show in particular that the decomposition of a polyno
mial into its components in 1m LK and Ker LD reduces to 
inverting a few matrices of very low dimension. 

Depending on the type presented by the lowest element 
(ao, (30' Yo, 00) in P (a, (3, y, 0 ), the five cases mentioned in 
Table IV have to be considered. It is a question of setting 
proper bases for representing the linear map L K : P (a, (3, y, 
o)--+P (a - 1, (3, y + 1,0) as a matrix. To this end, in each 
case, the monomials ordered from lowest to highest are 

Class Pia, /3, y, 0) Matrix LK MatrixLD 

2108 

Lowest element 

I /30 = 0, a o = ° 
II /30 = 0, I <ao<oo 

I II /30 = 0, a o > 80 

IV /30=10, Yo = 0, ao<O" 
V /30=10, yo=O, ao>Oo 

J. Math. Phys., Vol. 24, No.8, August 1983 

Dimensions 

aoxlao + I) 
(00 + I)X(Oo + I) 
(ao + I)X(ao + I) 
(00 + 2)Xloo + I) 

Rank 

° a" 
80 + I 
a o+ I 
00 + I 

Nullity 

° ° ° 

Dimensions 

(ao + I)Xao 
(00 + I)X(o" + I) 
(ao + I)X(ao + I) 
(00 + I)X(oo + 2) 
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adopted as a basis, the coefficients of a polynomial are re- a o ° 0 0 ° garded as a column vector, and the operator LK is represent-

° a o - 1 2 
ed as a matrix acting by mUltiplication to the left. 

0 0 a o -2 
Class I can be disposed of at once. For it is clear that P (0, 

0 0 0 

0 0 0 

0, Yo, 80) is of dimension 1, being generated as it is by the 
monomial X Yo Y'~io, and that it is mapped by LK onto the null 0 0 0 a o -2 0 0 
space. 0 0 0 2 a o-l 0 

In class II, the monomials 0 0 0 0 1 a o 
e(ao, 0, Yo, 80)"'" e(O, a o, Yo + a o, 80 - a o) (26) (28) 
form a basis of P(ao, 0, Yo, 80)' and the monomials 

e(ao - 1,0, Yo + 1,80 ), ••• , e(O, a o - 1, Yo + a o, 

(27) 

a basis of P(ao - 1,0, Yo + 1,80 ), Restricted to P(ao' 0, Yo, 
80 ), LK is, by virtue of (24), represented by the rectangular 
band matrix 

The first a o columns of (28) constitute a square matrix whose 
determinant ( = a o!) is not zero. Hence (28) is of rank a o and 
of nullity 1, which means that Ker LKnP(ao' 0, Yo, 80) is 
generated by the special polynomial G (Yo, 80 - ao, ao)' 

In class III, the restriction of LK corresponds to the 
band matrix 

a o 0 0 0 0 

0 a o - 1 2 0 0 0 

0 0 a o -2 0 0 0 

(29) 

0 0 0 a o -80 + 2 80 -1 0 

0 0 0 0 a o - 80 + 1 80 
0 0 0 0 0 a o -80 

when the vectors 

e(ao, 0, Yo, 80)' ... , e(ao - 80, 80, Yo + 80, 0) (30) 

are choosen as a basis in P(ao, 0, Yo, 80 ) while the vectors 

e(ao - 1,0, Yo + 1,80), ... , e(ao - 80 - 1, 80' Yo + 80 + 1,0) (31) 

are taken for the basis of P(ao - 1,0, Yo + 1,80), Matrix (29) is square, and it is clearly nonsingular. Therefore, LK is an 
isomorphism of P (ao' 0, Yo, 801 onto P (ao - 1, 0, Yo + 1, 801. 

Now, in class IV, the bases in P (ao, /30' 0, 80) and P (ao, /30 - 1, 0, 80 + 1) are chosen to be respectively 

e(ao, /30' 0, 80)' ... , e(O, /30 + a o, a o, 80 - a o) 

and 

e(ao, /30 - 1,0,150 + 1), ... , e(O, /30 + a o - 1, a o, 80 - a o + 1), 

so that the square matrix representing the restriction of LK is 

/30 0 0 0 0 

a o /30 + 1 0 0 0 

0 a o - 1 /30 + 2 0 0 

0 0 0 /30 + a o - 2 0 

0 ° ° 2 /30 + a o - 1 

0 

0 

0 

° 0 
0 0 ° 0 1 /30 + a o 

which is obviously nonsingular. 
Finally, in class V, the monomials 

e(ao' /30' 0, 80 ), ••• , e(ao - 80' /30 + 80 , 150' 0) 

are chosen as the basis in P (ao, /30' 0, 80)' while the monomials 

e(ao, /30 - 1,0,80 + 1), ... , e(ao - 80 - 1, /30 + 80 , 80 + 1,0) 

form the basis in P (ao, /30 - 1, 0, 80 + 1). In this way, the operator LK is given by the band matrix 
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(34) 

(35) 

(36) 
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/30 0 0 0 0 

a o /30 + 1 0 0 0 

0 a o - 1 /30 + 2 0 0 

0 0 0 a o - Do + 2 /30 + Do - 1 
0 0 0 0 a o - Do + 1 
0 0 0 0 0 

The first (Do + 1) rows of(37) have the nonzero product 
/30(f30 + 1)···(f30 + Do) for determinant; therefore, matrix (37) 
has rank Do + 1 and nullity O. 

That portion of the results just obtained which is needed 
in the proof of Proposition 3 is summed up in the following 
alternative: 

Lemma 4: Let (ao, /30' Yo, Do) be the lowest quadruple in 
an equivalence class E (a, /3, y,o ). If /30 = 0 and ao<oo, then 
Ker LKnP(a,/3, y, 0) = Oisofdimension 1, and is generated 
by the special polynomial G (Yo, Do - a o, ao). Otherwise, 
Ker L KnP(a,/3, y, D) = O. 

Proposition 3 affords an easy way of decomposing P n 

into a direct sum of irreducible weight spaces: Each polyno
mial va = g(a, /3, y) generates a basis formed of the chain of 
polynomials Vk (k;>O) such that kVk = LKvk _ I for k;> I. 
Such polynomials span a weight space VA of weight A = a 
+ /3 - 2y. Yet attempts at using the complete reduction (18) 

to decompose any polynomial into its constituents in 1m LK 
and Ker LD have not resulted in clear and elegant software 
procedures. All the same, an algorithm based on the classes 
enumerated in Table V proved to be both expedient and easy 
to code. 

5. THE DECOMPOSITION ALGORITHM 

For most dynamical systems, normalization to degree 3 
is sufficient; fortunately, at that minimal degree, the decom
position is readily executed by hand. Once Table V has been 
established, it becomes clear that the polynomial 

p= I Ca.f3.1'.lixajiX1'yli 
(a. f3. 1'.1i1 

may be written as the sump = PD + LKq, where 

and 

q = jC2,0.1.0X3 + j(Cl.l,I.o + C 2.0,0.1 )x
2
y 

+ j(CO,2,I,O + Cl.l,O,1 )xy2 + !CO,2,O, ly3 

+ ~CI,0.2,OX2X + !CO.I,2,OXYX + !CO,I,I,ly
2
X 

+ !CI,0,1,IX2y + !CI,0,0,2XYY + !CO,I,0,2y2y 

+ CO,0,3,OXX 2 + CO,0,2,lyX 2 

+ CO,0,1,2Xy2 + CO,0,0,3y y2 

- !CO,I,2,OXG + !CI,0,0,2yG 

PD = C3,0,0.Ox3 + C2,1,0,OX2y + CI,2,0,oxy2 + CO,3,0,oy3 

(38) 

+ (jC2,0,O,1 - jCl,1,l,o)xG - (jCO,2,1,0 - JCI,I,O,1 lYG, 
which, by virtue of Proposition 3, is an element of Ker LD. 

However trivial the task appears to be at degree 3, Table 
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0 

0 

0 

(37) 

0 

/30 + Do 
a o - Do 

III leaves one to gather that the calculations become rapidly 
voluminous past degree 4, even for a computer program pre
pared to handle sparse matrices. The next proposition is the 
foundation of a decomposition algorithm complete to the 
point of having been coded eventually in APL 19 and run on a 
DEC-20 at the National Institutes of Health in Bethesda, 
Md, (N.B.: The program is available upon request from the 
third author.) 

Let Vbe a vector space; let also v and w be two endo
morphisms of V, and set u = vw. For any x in V, a vector yin 
V satisfies the relation v(x - wy) = 0 if and only if uy = VX. 
Thus it is true that, given any polynomial P in P n , a polyno
mial q in P n satisfies the relation LD (p - LKq) = 0 if and 
only ifit is a solutionforq of the equation Tq = LDP, where T 
is the operator L D L K . 

Given an endomorphism u of the vector space V, one 
can always find an endomorphism u- such that uu-u = u. 
We call u - a generalized inverse of u, but the reader should 
note that authors interested in classifying various species of 
generalized inverses associated with u would name u - a [ 1]
inverse20 of u or a g-inverse. 21 For any vector x in 1m u, 
uu - x = x. In particular, assume that u is the product 
u = vw of two endomorphisms and that 1m v = 1m u; then 
any vector y of the formy = (u-v)x is a solution of the equa
tion uy = vx. For there exists by hypothesis a vector z such 
that vx = uz; hence uy = (uu-u)z = uz = vx. Applied to the 
operator T = LD LK:P n ~P n' for which 1m LD = 1m T 
(Proposition I), the above considerations prove the follow
ing: 

Lemma 5: Let T - be a generalized inverse of T and P a 
polynomial in P n • Then the polynomial q = T - L DP is a so
lution of the equation Tq = LDP. 

On account of Lemma 5, after a generalized inverse T -
has been produced, the problem of decomposing a polyno
mial into the sum of its constituents in 1m LK and Ker LD 
will be solved by settingpK = LKq andpD = P - PK' 

Among the many varieties of generalized inverses asso
ciated with T, preference should be given here to those which 
preserve the basic symmetry consisting in exchanging the 
coordinate x and its conjugate momentum X, respectively, 
with the coordinate y and its conjugate momentum Y. There 
is indeed no reason why the normalization should favor one 
coordinate more than the other. The symmetry requirement 
is best expressed by introducing the operator 
Z:p~Zp = p(x,y, X, Y) - p(Y, x, Y, X):Pn~Pn' A polyno
mial P is symmetric in the pairs (x, X) and (y, Y) if and only if 
Zp = O. Furthermore, the differential operator 
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TABLE V. Image and coimage of LK in the space Py 

Ldx-'-x2X 

Ldx'y = xyX + jxG 

LK JXy' = y2X + iYG 

Ldx'y = x'y - ixG 

Ldxy' = xy Y - JyG 
LKJy'=y'Y 

T = LnLK =(x~+y~) 
ax ay 

( 
aZ aZ ) + xX--+yy--

axax ayay 

( 
aZ aZ ) 

+ xy ayax + yX axay 

LK!x'X=XX 2 

LK(!xyX - ~xG 1= yX' 

Ldx'Y=xXY 

Ldy'X=yXY 

LK(~XYY + JyGI =xy2 

L"Jy'Y=yY' 

being invariant for the symmetry, the operators T and Z 
commute over P n • Our purpose thus is to find a generalized 
inverse of T with corresponding symmetry properties. It 
should map symmetric polynomials onto symmetric polyno
mials, that is, ZT - P should be = ° whenever Zp = 0; also, 
by exchanging the pairs (x, X) and (y, Y) in the image q(x,y, X, 
Y) = T -p(x,y, X, Y), one should have that q(y, x, Y, X) 
= T - ply, x, Y, X), that is, ZT - = T - Z. It will be shown 

that a generalized inverse T # called the group inverse of T 
satisfies these symmetry requirements. 

For an endomorphism u of a vector space V, Erdelyi22 
calls the group inverse of u an endomorphism u# such that 

uu#u = u, u#uu# = u#, uu# = u#u. 

If it exists, the group inverse of u is unique. If u is an isomor
phism of Vonto itself, then u# = u- \ more generally, u 
admits a group inverse if and only if V may be decomposed23 

into the direct sum of Ker u and 1m u. This is the case when 
u is semisimple; then the restriction u # of u to 1m u is bijec
tive, and, in principle at least, the group inverse u# may be 
built as follows: 

# {o for p in Ker u, 
u p= I 

11# - P for p in 1m u. 

Lemma 6: Let Vbe a vector space, and u an endomor
phism of V. If u admits a group inverse u# , then, for any 
endomorphism vof V, the relation vu = uv implies the rela
tion vu# = u# v. In particular, for any vector x of V, the 
relation vx = ° implies the relation (vu# )x = 0. 

The lemma is proved when it is shown that (vu# )x 
= (v# u)x first for x in Ker u and then for x in 1m u. In each 

case, the demonstration rests on the fact that, because u and 
v commute, v(Ker u) is contained in Ker u and v(lm u) in 
Imu. 

If ux = 0, then, on the other hand, u# x = ° because 
u# admits Ker u as its null space,22 and hence (vu#)x = 0; 
on the other hand, u(vx) = (uv)x = 0, which implies that 
(u# v)x = u# (vx) = 0. Therefore, when restricted to Ker u, 

# d # 'd' 1 . vu an u v are I entIca, smce they are both equal to the 
null endomorphism. 

Now take x in 1m u. There is a unique elementy in 1m u 
such that uy = x and u# x = y. With x andy both in 1m u, 
the elements vx and vy are also both in 1m u. But u(vy) 
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L"xX'=X' 

L"yX' =X'Y 
LKxY' =XY' 

L"yy 2 
= y' 

= (uv)y = (vu)y = v(uy) = vx, and vy is therefore, the unique 
element ofIm u mapped by u onto vx. Hence vy = u# (vx), 
and the latter relation implies that (vu# )x = v(u# x) = vy 
= u# (vx) = (u# v)x. This completes the proof of Lemma 5. 

The operator T = LnLK is semisimple (Proposition 1); 
hence it admits a group inverse T# . By virtue of Lemma 6, 
the group inverse T# commutes with the symmetry opera
tor Z, and it maps symmetric polynomials onto symmetric 
polynomials. 

The construction proposed here for the group inverse 
T# of Tmakes use of the decomposition ofP n into a direct 
sum of vector subspaces P, = P (a,(3, y, D) specified in Sec. 4. 
Assume that, for each I, the restriction T of T to P admits a 
group inverse; then, for each polynomi;l p of P n decom
posed into the sump =~, p, of its components in the sum
mands P" define the image T#p =~, T;*p,. Manifestly 
T #· l' IS a mear map P n -.P n' and it satisfies the three condi-
tions TT# T = T, T# TT# = T# , TT# = T# T, which 
means that T# is the group inverse of T. The decomposition 
of a general polynomial p into its components in Ker Ln and 
1m LK is thereby reduced to the problem of building the 
group inverse for the restrictions of T on each of the vector 
subspaces in the classes enumerated in Table V. Statistics 
collected in Table VI for a homogeneous polynomial of de
gree 6 will convince the reader that, however tedious it may 
be, a careful discussion of each particular situation breaks up 
the general problem of producing the 84 X 84 matrix for the 
group inverse T# into the solution of 42 linear systems in at 
most 3 unknowns, 22 of them being utterly trivial. 

Class I is dealt with at once: T, being the null endomor
phism, its group inverse T;* is also the null endomorphism. 

In classes III-V, the factor LK is injective; since Ker T, 
is equal to the kernel of LK restricted to P, (Proposition 1), 
there follows that T, is an isomorphism of P, onto itself and 
hence that T ,- I is the group inverse of T,. Now a closer 
examination of classes III and IV will bring forth a straight
forward procedure for inverting T, . 

As was shown in Sec. 4 for class III, the map LK is an 
isomorphism of P (ao, 0, Yo, Do) onto P (ao - 1, 0, Yo + 1, 80 ) 

TABLE VI. Count of matrix inversions sufficient to calculate the group 
Inverse at degree 6. 

Classes 

II or V 
III or IV 

Dimensions 

IXI 

5 
6 

2X2 

3 
4 

3X3 

I 
2 
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represented by matrix (29) for the bases (30) in P (ao, 0, Yo, Do) and (31) in P (ao - 1, 0, Yo + 1, Do). But, for the same bases, 
LD :P(ao - 1,0, Yo + 1, Do)-P(ao, 0, Yo, Do) is represented by the (Do + I)X(Do + 1) matrix: 

Yo + 1 0 0 0 0 0 

Do Yo+ 2 0 0 0 0 

0 80 - 1 Yo + 3 0 0 0 

(39) 
0 0 0 Yo + 80 - 1 0 0 

0 0 0 2 Yo+8o 0 

0 0 0 0 1 Yo + 80 + 1 

which is evidently nonsingular; hence LD is an isomorphism of P (ao - 1, 0, Yo + 1, Do) onto P (ao, 0, Yo, 80), Because matrix (29) 
is upper triangular, and matrix (39) lower triangular, the equation T,q = p, is solved readily first by forward substitution to 
obtain a polynomial r such that LD r = p" and then by backward substitution to find the polynomial q such that LK q = r. 

One meets a similar situation in class IV. The factor LK is an isomorphism ofP(ao,/3o' 0, Do) ontoP(ao,/3o - 1,0,80 + 1) 
represented by the matrix (34) when bases (32) and (33) are selected in the subspacesP (ao,/3o, 0,80 ) andP(ao,/3o - 1,0,80 + 1), 
respectively. Further, for the same bases, LD :P(ao,/3o - 1,0, Do + I)-P(ao,/3o, 0, 80) is represented by the (ao + 1) X (ao + 1) 
matrix 

80 + 1 0 0 0 

0 80 2 0 0 

0 0 80 - 1 0 0 

0 0 0 80 - a o + 3 a o - 1 

0 0 0 0 80 - a o + 2 

0 0 0 0 0 

which is nonsingular; thus LD is an isomorphism of P (ao, 

/30 - 1,0, Do + 1) onto P (ao, /30,0, Do). Matrix (34) being low
er triangular and matrix (40) upper triangular, the equation 
T, q = p, is solved first by backward substitution to obtain a 
solution of the equation LDr = p, and then by forward sub
stitution to solve the equation LKq = r. 

The solution is not that simple in class V. On the one 
hand, LK is injective but not surjective. On the other hand, 
thelinearmapLD:P(ao,/3o - 1,0,80 + I)-P(ao,/3o, 0,80) is 
surjective but not injective. Indeed, with (35) and (36) chosen 
as the bases in P (ao, /30' 0, 80) and P (ao, /30 - 1, 0, 80 + 1), 
respectively, LD is represented by the band matrix 

80 + 1 0 0 0 0 

0 80 2 0 0 0 

0 0 80 - 1 0 0 0 

0 0 0 ,80 - 1 0 0 

0 0 0 2 80 0 

0 0 0 0 1 80 + 1 
(41) 

with (80 + 1) rows and (80 + 2) columns, and it is easily seen 
that matrix (41) is of maximum rank 80 + 1 and of nullity 1. 
For the restrictions of T, in class V, there seems to be no 
quicker way of inverting T, than by actually multiplying 
matrices (41) and (37) row by column, thereafter calculating 
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I 

o 
o 
o 

o 
(40) 

explicitly the inverse of their product. 
In both classes I and II, the operator T, is not invertible. 

While, in class I, the group inverse of T, is the null endomor
phism, in class II is encountered the case where a way of 
computing the group inverse T;t must be prescribed. But the 
conditions defining the group inverse characterize u, in the 
terminology of Drazin,24 as a pseudo-invertible element in 
the associative algebra End V of the endomorphisms of V. 
Thus the group inverse u# is a Drazin pseudo-inverse of u 
relative to which the index of u is equal to 1. In that context, 
recall the following statement, which is in fact a particular 
case of a general theorem proved by Cline. 25 Let U and V be 
finite-dimensional vector spaces; let also v be an injective 
linear map U_V, and w a surjective linear map V----+U; if the 
product u = vw: V ----+ V is pseudo-invertible in the sense of 
Drazin and if its index is equal to 1, then wv:U----+Uis bijec
tive, and 

u# = V(WV)-2 W . (42) 

The conditions under which Cline's formula (42) may 
be applied are satisfied by any endomorphism T, in class II. 
Indeed, from Sec. 4, it is already known that LKP(aO, 0, Yo' 
80 )----+P(ao - 1,0, Yo + 1,80 ) is a surjective linear map; it re
mains to show that LD :P(ao - 1,0, Yo + 1, 8o)-P(ao, 0, Yo, 
80) is injective. For the bases (27) and (26) in P (ao - 1,0, 
Yo + 1,80 ) andP(ao' 0, Yo, 80 ), respectively, LD is represented 
by the band matrix 
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Yo + 1 0 0 0 0 0 

80 Yo+ 2 0 0 0 0 

0 80 - 1 Yo + 3 0 0 0 

(43) 

0 0 0 80 - a o + 3 Yo + a o - 1 0 

0 0 0 0 80 - a o + 2 Yo -an 

0 0 0 0 

with a o + 1 rows and a o columns. Clearly, the determinant 
made of the first ao rows of (43) is not zero; hence LD restrict
ed to P (ao - 1,0, Yo + 1,80 ) is injective. In application of 
formula (42), the computer program computes the group in
verse 

T; = (LDLK)# = LD(LKLD)-2LK 

by multiplying matrix (28) by matrix (43), squaring the pro
duct, taking its inverse, and mUltiplying the result to the left 
by matrix (43) and to the right by matrix (28). Considering 
that the matrices involved have dimensions of the order of 
half the degree n, one will admit that the manipulations have 
been brought down to an elementary level. Furthermore, by 
taking advantage of the in variance with respect to the sym
metry Z, the task of constructing the group inverse has been 
cut by almost a half. Alternatively, the invariance may be 
exploited to check the results coming out of the program. 

The fundamental results obtained in the course of dis
cussing the restriction classes mentioned in Table IV are 
gathered in the following: 

Proposition 4: Given a polynomial pin P n , there exists a 
unique polynomial q in 1m LD such thatp - LKq belongs to 
Ker L D • Also Zq belongs to 1m LD, and it is the unique 
polynomial r in 1m LD such that Zp - LKr belongs to 
Ker LD. Whenever Zp = 0, then Zq = O. 

Indeed p may be decomposed in a unique way as the 
sump = PK + PD withPk in 1m LK andpD in Ker LD. 
Hence there exists a polynomial q such that LDP = LD LKq. 
Taking q = T# LDP guarantees that q belongs to 1m T 
which, by virtue of Proposition 1, is identical to 1m LD. If 
there is another polynomial q' with the same property, then, 
on the one hand, q - q' belongs to 1m LD, while, on the 
other hand, q - q' belongs to Ker T = Ker LK; but P n is the 
direct sum of Ker LK and 1m L D , and hence q - q' = O. In 
view of the fact that the expressions (9) and (12) for LK and 
LD are symmetric in the pairs (x,X) and (y, Y), LDZ = ZLD 
and LKZ = ZLK; therefore, Zq belongs to 1m LD and 
LD(Zp - LKZq) = LD(Z(P - LKq)) = Z(LD(P - LKq)) 
= O. From what has been proved already, it results that Zq 

is the unique element in 1m LD to have that property. Final
ly, the last part of Proposition 4 is an immediate consequence 
of Lemma 6. 

Incidentally the computer program which implements 
the algorithm produced at degree 3 a polynomial 
q = T# LDP, which differs from the solution in (38) by the 
quantity 

jG(CO•O,2,I X - CO,0,1.2 Y). 
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0 80 - a o + 1 

The discrepancy is admissible since, in agreement with Pro
position 1, it is an element of Ker LK. 

6. ELIMINATION OF THE SHORT-TERM EFFECTS 

A dynamical system described by an Hamiltonian of 
type (14) is said to be in normalform if, for each n > 2, the 
term H n belongs to Ker L D, that is, Un is a homogeneous 
polynomial in the coordinates (x, y) and the angular momen
tum G (Proposition 3). For instance, a Hamiltonian whose 
potential energy depends only on the coordinates is in nor
mal form; so there is nothing the present normalization can 
contribute to further its solution. Such is the case for the 
monkey saddle. 26 But, if a Hamiltonian of type (14) is not in 
normal form, then one can construct a canonical transfor
mati on (x,y,X, Y)-(x',y',X', Y')which will convert (14)into 
a series in normal form. It is proposed to construct the nor
malization as a Lie transformation, that is, as the flow of an 
Hamiltonian vector field 

dx aw dy aw dX -=-, -==-, 
dE ax dE ay dE 

derived from a series 

1 
W=W(x,y,X, Y)= I- Wn+I' 

n>on! 

aw 
ay 

It will be shown that each term Wn in the generator may be 
obtained as a homogeneous polynomial of degree n + 2 in 
the phase variables (x,y, X, Y), so that the normalization may 
be pursued in a recursive fashion from one degree to the next. 

Starting with the infinitesimal contact transformation 
that is the infinitesimal symplectic transformation tangent 
to the Lie mapping, the first-order terms H; and WI in the 
new Hamiltonian and in the generator respectively are 
linked by the identity 

(K;WI)+HI=H;, 

equivalent, as a matter of fact, to the algebraic relation 

LKW1 +H; =HI. (44) 

With the requirement that LDH; = 0, the problem of solv
ing (44) amounts to decomposing the homogeneous polyno
mial HI into its constituents in the direct sum p) = Ker LD 
EIllmLK • 

A change in notation is helpful in following the recur
sion rules for constructing the normalization past the infini
tesimal contact transformation: Hn,o will stand for Hn in 
(14), and H O,n for H~. Now assume that all terms Wi 
(1 <i<n - 1) and HiJ (O<i,j<n - 1, i + j<n - 1) have been 
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obtained, Then one is in a position to calculate first 

and thereafter, by decreasing values of i, the terms 

- - (i) H jJ = H j + IJ - I + I. k (H j - kJ - I ; Wk + I) 
O"k" 

for i + j = n, O<JJ<n, the last term in the recursive chain 
being H O,n ' By prescription of a perturbation algorithm in
volving a Lie transformation, the terms Wn in the generator 
and H O,n in the transformed Hamiltonian must satisfy the 
partial differential identity 

(45) 

But, if P and q are homogeneous polynomials of degree I and 
m, respectively, then their Poisson bracket 

(p; q) = ap !!L _ ap !!L + ap !!L _ ap !!L 
ax ax ax ax ay ay ay ay 

is a homogeneous polynomial of degree I + m - 2, Hence all 
terms HjJ , for i + j = n, are homogeneous polynomials of 
degree n + 2, and the partial differential equation (45) is 
equivalent to the algebraic equation 

Ho,n = LK Wn + Ho,n' 

With the normalization requirement that LDH O,n = 0, the 
latter is solved by decomposing H O,n into its constituents in 
the direct sum P n + 2 = 1m LK Ell Ker LD , 

For readers interested either in calculating by hand 
some of the coefficients in the normalized Hamiltonian, or in 
checking their automated normalization procedures, listed 
below are the terms in H O,n (3<n<6) emanating from the 
right-hand members 

H- - '" C 'a '{3X,yy,t!, O,n - ~ a,{3,y,8 X y , 
la, {3, y,8) 

Degree 4: 

H O,4 = C4,o,0,OX'4 + !(3C3,o,o,1 - C2,1.1.0)x,2G' 

+ C3,1.0,OX'3y ' + !(C2 ,1,0,1 - C I,2,1,0)x'y'G' 
C X'2 ,2 _ 1(3C _ C lY'2G' + 2,2,0,0 Y 4 0,3,1,0 1,2,0,1 

+ CI,3,O,OX'y'3 + i(2C2,o,O,2 - CI,I,I,I + 2CO,2,2,O)G ,2 

+ CO,4,O,Oy'4; 

Degree 5: 

HO,5 = C5,o,O,OX'5 + ~(4C4,0,0,1 - C3,1,I,O)x'3G' 

2114 

+ C4,I,O,oX'4y ' + ~(3C3,I,O,1 - 2C2,2,1,0)x'2y G' 

+ C3,2,0,OX'3y ,2 - ~(3CI,3,I,O - 2C2,2,O,1 )X'y'2G' 

+ C2,3,O,OX'2y '3 - ~(4CO,4,I,O - C1,3,O,1 lY'3G' 

+ C I ,4,O,ox'y'4 + !(3C3,o,O,2 

- C2,1.I,1 + CI,2,2,0)x'G ,2 

+ CO,5,O,Oy'S + !(3CO,3,2,0 

- C1.2,1,1 + C2,1.0,2 lY'G '2; 

J. Math. Phys" Vol. 24, No.8, August 1983 

Degree 6: 

HO,6 = C6 ,0,0,OX,6 + !(5C5,o,0,1 - C4,I,I,O )x'4G' 

+ C5,I,o,oX'Sy' + j(2C4,I,O,1 - 2C3,2,I,O)x'3y 'G' 

+ C4,2,0,OX,4y ,2 + !(C3,2,O,1 - C2,3,I,O )x'2y'2G' 

+ C3,3,0,OX,3y 13 - j(2CI,4,I,O - 2C2,3,O,1 )X'y'3G' 

+ C2,4,0,oX,2y ,4 - i(5Co,5,I,O - CI,4,0,1 lY'4G' 

+ CI.5,O,ox'y'5 + fa( 12C4,o,o,2 

- 3C3,1,I,1 + 2C2,2,2,O )x'2G ,2 

+ CO,6,O,oy'b + fo(3C3,I,O,2 

- 2C2,2,1,I + 3CI,3,2,O )x'y'G ,2 

+ fa(12Co,4,2,0 - 3CI,3,1,I + 2C2,2,O,2 lY'2G ,2 

+ iz(3C3,o,O,3 - C2,1,1,2 + CI,2,2,1 - 3CO,3,3,0)G'3, 

Let the relativistic corrections for a free particle illus
trate the normalization, The kinetic energy 

E = m oe
2(1 - v2/e2)-1/2 

expanded in powers of v2
, after division by the mass at rest 

mo and omission of the constant energy at rest me2
, gives rise 

to the Hamiltonian 

H = !v2 - ~V4/c2 + fr,V6/C4 - ••• 

with v2 = X 2 + y2. Since 

LK(xX + yY)V2 = v4
, 

there will be no term of degree 4 in the normalized Hamil
tonian, and the generator of the infinitesimal contact trans
formation will be 

WI = - ~(V2/C2)(XX + yY), 

Hence, by definition of an infinitesimal contact transforma
tion 

x = x' + (x'; WI)' X = X' + (X'; Wtl, 

y = y' + (y'; Wtl, y = Y' + (Y'; Wtl, 

the relativistic corrections to the first order in v2 
/ c2 are 

Llx' = - ~(V'2/C2)x' + i(G'/c2)y', LlX' = ~(V'2/C2)X', 

Lly' = - ~(V'2/C2)y' - i(G '/c2)X', Ll Y' = ~(V'2/C2)y'. 

A more substantial application of the present scheme 
for normalization has been made to the restricted problem of 
three bodies at the equilateral point L4 for Routh's critical 
mass ratio; but this topic requires too much background in
formation in celestial mechanics to be related here. 

Unexpected as it comes after a long excursion in repre
sentation theory of Lie algebras, the physical meaning of the 
normalization achieved in the present section is in fact very 
simple. To elucidate this point, the notations will be revised. 
First the normalized Hamiltonian will be decomposed in the 
usual way as the sum 

H' = !(X'2 + y'2) _ U(x',y', G') 

of a kinetic energy and of a force function U, with 
G' = x' Y' - y'X' designating the angular momentum. Next, 
in order to eliminate ambiguities concerning the partial de
rivatives, the differential of U will be written as the I-form 

dU = al Udx' + J2Udy' + a3UdG '. 

In these notations, the equations of normalized motions be-
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come 

. / - aH / _ X / + / a u x - - Y 3 , 
ax/ 

.,_aH' _Y' 'au y ---- -x 3 , 
aY' 

X'= 

:in = 

aH' , 
---=a\u+ Y a3 u, ax/ 

aH' , 
---=a2u-x a 3 u. 

ay' 
Consider now a Cartesian frame of reference consisting of an 
orthonormal basis (i/, f, k) rotating at the angular velocity 
w = a3 Uk about the normal to the plane of motion; assume 
also that (x', y') represent the Cartesian coordinates of the 
particle in the plane (i', f), or that x = xT + y'j'. Under 
these conditions, the particle's velocity in a frame (C) fixed in 
the plane is the vector 

x = iT + y'j' + wXx, 

equal, by virtue of the normalized equations of motion, to the 
sum 

x = XT + Y'j'. 

Thus the conjugate momenta X' and Y' are the components 
in the moving frame of the particle's velocity with respect to 
the fixed frame. For the same reason, 

x =XT + Y'j' + wXx = a\ui' + a2 uj', 

which exhibits a\ U and a2 U as the projections of the force on 
the axes of the rotating frame. The normalization appears 
now as a procedure to extract the rate at which the frame of 
reference should be rotated in order to confer the equations 
of motion the simple form 

x=a\ Ui'+a2 uf. 

From that standpoint, the normalization is closely analo
gous to a method devised by Hansen27 for handling per
turbed Keplerian systems in three dimensions. A slow rate of 
rotation is imparted to the frame of reference; its axis and its 
rate are adjusted at each instant so that the rotating frame 
constitutes what Hansen calls an ideal (i.e., conceptual or 
virtual) reference system. In the ideal frame, the particle's 
motion appears to be planar; the forces acting on the mass 
point are expressed as a two-dimensional gradient, the cou
pling between the planar motion and the rotation of the ideal 
frame being accounted for by making the force function de
pendent explicitly on the angular momentum. 

The kinematical interpretation given here to the norma
lization is further clarified by looking at the equations of 
motion in the polar variables defined by the canonical exten
sion 

x/ = r' cos (J', X' = R / cos (J' - (8 'Ir') sin (J /, 

i = r' sin (J', Y/ = R ' sin (J' + (8 'Ir') cos (J /. 

I t results at once from the Cartesian equations of motion that 

!!....r'=R', 
dt 

!!.... R ' = 8
2 

+ a\ U cos (J' + a 2 u sin (J', 
dt r'3 
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!!....(J/=~-a u 
dt r'2 3' 

!!.... 8/ = r'(a2 U cos (J' - a\Usin (J/). 
dt 

The angle a- of slow rotation being determined by the I-form 
da- = a3 Udt and the radial and transversal components of 
the force being 

P = a\ucos (J' + a2 Usin (J /, 

Q = a 2 U cos (J / - a I U sin (J /, 

the equations in polar coordinates are given the standard 
form 

d 2 8'2 
-r'=--+P 
d 2 ,:1 ' 

!!.... ((J / + a-) = 8:, !!.... 8 / = Q. 
dt r'- dt t r-

Thanks to the normalization, the particle appears to move 
under the exclusive action of the gradient of U with respect 
to the normalizing coordinates. 

APPENDIX: CONSTRUCTION OF A GROUP-INVERSE 

It has been shown in Sec. 5 that the decomposition of a 
polynomial p of P n into its components in Ker LD and 
1m LK reduces to the construction of the group inverse T# 
of the semisimple operator LDLK • The algorithm given in 
Sec. 5 for constructing T# depends on special properties 
enjoyed by the action of Ton P n : P n can be written as the 
direct sum of the spaces P (a, /3, y, 8 ), each of which is left 
invariant by T, and on each subspace P (a, /3, y, 8) either Tis 
invertible or the group inverse of the restriction of T can be 
computed via an explicit factorization of its matrix. The de
composition scheme adopted in Sec. 5 owes its effectiveness 
to the fact that the subspaces P (a, /3, y,8 ) are much smaller 
than P n : The dimension of P n is G + 3), hence of order n3

, 

while the dimension of P (a, /3, y, 8) is at most nl2 + 1 (by the 
discussion preceding Lemma 3). The purpose of this Appen
dix is to sketch an alternate algorithm for constructing the 
group inverse of T. This algorithm hinges on the fact, to be 
proved next, that Tis a diagonalizable operator whose eigen
values are simple to find; it does not make use of any other 
properties of T or of P n • 

Lemma: Tis a diagonalizable operator whose eigenval
ues consist of the products (n - 2y - i)(i + 1), with 0< y 
< [nI2] and O<i<n - 2y. The number of distinct eigenvalues 
is at most 1 + [In + 1)12][(n + 3)12]/2 < 1 + (n + 2)218. 

Proof P n may be written, as in (18), as the direct sum of 
certain subspaces Vk (1 <k<s), each of which is invariant and 
irreducible under the set of operators I L D , L K , Ls j. Fur
thermore, in each Vk , there is a basis Va = vLk 

I, ... , Vrn = v~ I 
k 

satisfying relations (19)-(21) (withx,y, h replaced by L D , L K , 

Ls , respectively). It follows from (20) and (21) that the Vi'S 

(O<i<md are a basis of eigenvectors for T= LDLK , with 
Tv; = (mk - i)(i + 1) Vi' Thus the eigenvalues of Ton Vk 

consist precisely of the products (mk - i)(i + 1) (for 
O<i<mk ). To see which mk 's arise, one may observe, on the 
one hand, that in each Vk the maximal weight vector vg- I is 
an eigenvector of Ls of eigenvalue mk' Furthermore, since 
thes linearly independent vectors vg- I (1 <k<s) form a basis of 
Ker LD [by relation (21) and Proposition 1], the set I m k : 
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TABLE VII. Bounds of eigenvalues. 

Number of 1 + [(N + 1)/2]. 1 + [(N + 2)2/8] 
N eigenvalues [(N + 3)/2]/2 

3 4 4 4 
4 4 4 5 
5 7 7 7 
6 6 7 9 
7 11 11 11 
8 10 11 13 
9 14 16 16 

10 13 16 19 
99 830 1276 1276 

100 714 1276 1301 
999 66908 125251 125251 

1000 55918 125251 125501 

1 <h;;;s l consists of the eigenvalues which Ls takes on 
Ker L D • On the other hand, the nonomials g(a, p, 
y) = x a yf3 GY with a + P + 2y = n are, by Proposition 3, 
also a basis of Ker L D , and are eigenvectors of Ls as the 
following formula shows: 

Lsg(a, p, y) = (a + p )g(a, p, y) = (n - 2y)g(a, p, y). 

Thus the numbers mk (l<k<s) are exactly the numbers 
n - 2y (0<y<[nI2]). Finally, for a fixed y, there are at most 
[(n - 2y + 1 )/2] = [In + 1 )/2] - y distinct nonzero pro
ducts among the numbers (n - 2y -I)(i + 1) (for 
O<i<n - 2y), so, in all, T has at most 1 + l:O<r«n12) 
[(n + 1)12] - Y = 1 + [(n + 1)/2][(n + 3)/2]2 distinct ei
genvalues. It is easy to check that this number is always at 
most 1 + (n + 2f/8. 

A glance at Table VII indicates that the bound given in 
the lemma is far too generous. 

It is perhaps worthwhile to note that a slight extension 
of the argument just presented yields a description of the 
decomposition of P n into its irreducible components: For 
each y satisfying 0<y<[nI2], the irreducible sl(2, R)-module 
of highest weight n - 2y occurs with the multiplicity 
n - 2y + 1, and no other occur. This can be derived without 
difficulty from the fact that the polynomials g(a, p, y) gener
ate irreducible subspaces of highest weight n - 2y. 

In order to state the main result of the appendix, it will 
be convenient to have some more notation. If A is a scalar, let 
A # denotes A -I if A =1= 0, and 0 otherwise. If ..1.0, ... , At is a 
sequence of distinct scalars, then there is a unique polyno
mialf(x) of degree <t satisfyingf(Ak) = A ff for O<k<t. If 
f[Ao, ... , Ak ] denotes the k th divided difference (constructed, 
for example, from the prescriptionf[Ao] = f(Ao) and 

f[A" ... ,Ak ] - f[Ao, ... , Ak_ , ] 
f [..1.0' ... , Ad = ----=.-----='-----=-----"

Ak -..1.0 

for k> 1), then, as is well known,f(x) can be written as 

f(x)=f[Ao] + If[Ao, ... ,Ak)(x-Ak_d",(x-Ao)' 
I<k<t 

A number of authors28 have observed that the group inverse 
T# can be obtained as a polynomial in T. In the proof of the 
next proposition, it will be seen that, for the case considered 
here, 
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T# =f(T) =f[AolI 

+ I f[Ao, ... ,Ak ](T-Ak_,,J)···(T-AoI)· 
I<k<t 

Proposition: Let Tbe a diagonalizable operator on a fin
ite-dimensional vector space, and suppose the distinct eigen
values of TareAo, ... ,At . Foranyvectorvin V, W = T# vcan 
be computed by the following algorithm: 

Set Vo = v, Wo = f[Ao] Vo; 

For k = 1 to t, 
set Vk = (T - Ak _ 1 )Vk _ I' 
Wk = Wk - 1 + f[Ao,···,Ak ]Vk; 

Thenw=wt • 

[N.B.: The cycle in k may be stopped as soon as it encounters 
a k for which Vk = 0.] 

Proof It is clear that Wk isjust the k th partial sum of the 
sum 

f(T)v = f[Aolv 

+ If [Ao,···,Ak ] (T - Ak _ 1 I )· .. (T - Ao)v, 
l<k<t 

so Wt =f(T)v. It only remains to see thatf(T) v = T# v 
for all v in V. Since Tis diagonalizable, V may be written as 
the direct sum Vo + ... + Vt of the eigenspaces of T, where 
Vk = [VE V: Tv = Ak V l for O<k<t. But the endomorphism 
of Vwhich sends u = Uo + ... + Ut (Uk E Vk for each k) tOA f 
Uo + ... + A 'f/'u t satisfies the relations for the group inverse 
of T, since Tu = Aouo + ... + At Ut . Thus by uniqueness of 
the group inverse, T# U = A fuo + ... + A 'f/'u t • On the other 
hand, f(T)u = l:f(T)u" and the relation TUk = Ak Uk im
plies easily thatf(T)uk = A ffUk for each k. Hence 
f(T)u = l:A ffu k = T#u for all u in V, and the proof is com
plete. 

It is worthwhile to place this algorithm in a somewhat 
wider context. For, clearly, the method just outlined may be 
used to compute any polynomial in T, not just the specific 
polynomial which yields the group inverse. The range of ap
plicability of this algorithm is thus determined exactly by the 
following theorem in linear algebra29

: 

Theorem: Let Sand Tbe linear operators in a finite
dimensional vector space V. Then S may be written as a 
polynomial in T if and only if S commutes with every linear 
operator which commutes with T, that is, if and only if for 
every linear operator L in V, the relation LT = TL implies 
LS=SL. 

If Sand Tare diagonalizable, the theorem is quite easy 
to prove directly. The special case when Tis diagonalizable 
and S = T# has been confirmed in the proposition of the 
Appendix and in Lemma 6. 
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We give an elementary proof of a particular case of C. Siegel's center theorem, based on a method 
of M. Herman. Even if the proof has less generality than the standard one, it is simpler and 
provides sharper bounds. 

PACS numbers: 03.20. + i, 02.30. + g 

I. INTRODUCTION 

Recently, Herman 1 has introduced a method to treat 
several "small denonimator" problems. 

This type of difficulty appears very frequently in pertur
bation expansions and the standard technique to overcome it 
systematically has become known-rather loosely-as 
K.A.M. theory. 

One of the outstanding problems for these phenomena2 

is to obtain good estimates of the strength of the perturba
tions that make the results of the theory no longer hold. (Of 
course, the mechanisms of proof break down earlier than the 
conclusions. ) 

In that respect, we believe Herman's method is highly 
relevant. The proofs are much simpler and it is, therefore, 
easier to discuss optimality. Even without any attempt to 
optimization, the proofs yield much better constants that the 
ones obtained by applying straightforwardly the standard 
argument. (However, by slightly nonstandard ways of doing 
the estimates, Chierchia has obtained good constants in a 
particular example. 3

) The main shortcoming of the method 
of proof is that it seems to go through only under (much) 
stronger assumptions than the usual one. However, the way 
physicists have been looking at the problem is the analysis of 
particular examples. It turns out that the method applies to 
the ones that physicists have been considering as most rel
evant for the breakdown problem. 

We observed that the same methods apply also to Sie
gel's center theorem and that, in that case, it was possible to 
make further modifications of the argument so that the proof 
became quite explicit and only used elementary techniques. 

Even if this results in a certain loss of mathematical 
elegance, we have strived for elementarity and explicitness. 
This is consistent with the philosophy that there is a lot to 
learn from the analysis of concrete cases; we introduced a 
little bit of redundancy so that given a particular example, it 
should be possible to discuss the modifications that yield the 
best constants and compute them. The more mathematically 
inclined reader, interested only in qualitative theorems, 
without explicitly computing the constants, may advanta
geously substitute a good part of the computations in the 
first part by an invocation to Sobolev inequalities. 

", Supported in part by NSF PHY 8117463. 
"'In absentia from Department of Mathematics. Princeton University. 

Princeton. New Jersey 08544. 

II. SIEGEL'S CENTER THEOREM 

Suppose we were given a functionfC--+C leaving the 
origin fixed and analytic in a neighborhood of it. 

J(z) = az + 2/kZk. 
k;,2 

Ifwe think ofJas defining a dynamical evolution, it is 
natural to try to analyze the stability of the origin. It turns 
out4 that the origin is stable (both backwards and forward in 
time) if and only if la I = 1 and moreover, there is an analytic 
function conjugatingJ to its linear part and leaving the origin 
fixed. 

Ja¢' (z) = ¢' (az), 

¢(O)=O, 

¢' '(0) = 1. (1 ) 

The existence of such conjugating ¢' is interesting in 
itself and we just remark that it is very easy to show it exists if 
lal 1= 1. (So that in that case, dynamics is determined by the 
linear approximation.) 

The following theorem is much more delicate. 
Theorem 1 (Siegel): If a satisfies la k 

- 11- 1 ,;;;yk" , 
y,v> 0, then Eq. (1) has a unique analytic solution. 

The standard proof of this theorem can be found in 
(Ref. 4), where you can also find the reference to the original 
paper by Siegel (which was based on a different idea) and 
other applications. There are also generalizations to several 
complex variables5

•
6 that, however, we will not discuss, since 

the methods we are going to use do not seem to carryover to 
several variables. 

What we are going to prove in this paper is a weaker 

version of this theorem. 
Theorem 1': If a satisfies lak 

- 11- I,;;; yk, then Eq. (1) 
has a unique analytic solution. 

We point out that uniqueness follows from identifica
tion of coefficients, so that the only nontrivial part to prove is 
convergence of the series thus obtained. 

We also want to point out that there is no a, with modu
lus 1, which satisfies the inequality in Theorem 1 if v < 1. (We 
state the theorem that way to emphasize that the proof 
would, obviously, go through.) When v> 1, the numbers sa
tisfying an inequality of this form have full measure on the 
unit circle. For the critical case v = 1, even ifit is a set of zero 
Lebesgue measure, it is nonempty and, indeed, contains very 
interesting numbers; it consists precisely of the rotations 
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with winding number having a bounded continued fraction 
expansion. See Refs. 7 and 8 and references therein for a 
more detailed discussion of these numbers and their abun
dance. 

Pro%/Theorem 1': We first remark that, once we as
sume the boundary conditions, the conjugacy equation is 
equivalent to the one we obtain taking derivatives, namely 

f'0</J (z)</J '(z) = a</J '(az). 

Since logf' is an analytic function in a neighborhood of the 
origin, we may require as well 

logf'°</J (z) - log a = log </J '(az) - log </J '(z). 

Calling logf'(z) - log a, h (z) we are led to the study of 

h0</J (z) = log </J '(az) - log </J '(z). 

The second remark is that we can modify our problem 
so that we only have to consider h 's defined on arbitrarily big 
neighborhoods and being there arbitrarily small with all 
their derivatives. 

In effect, if we can solve our problem for i{ (z) 
= (1/ A If(llz) (A any number) in place off, we have also solved 

the original problem (in another neighborhood). 
Taking III I small enough, we may assume logf',"(z) 

- log a is analytic in any ball we please, and it satisfies there 
any smallness conditions we want. We will state the ones 
needed in the place of the proof where they are used. 

The strategy of the proof is, as in Herman's method, to 
study the operator 7h that sends the function ¢ into the func
tion </J satisfying 

ho¢ = log </J '(az) - log </J '(z), 

</J (0) = 0, (2) 

</J '(0) = 1, 

and to show that, under suitable smallness assumptions on h, 
it maps a compact convex set into itself and is continuous on 
it so that, by the Schauder-Tychonov theorem, it has a fixed 
point that solves our problem. 

A convenient choice for the set on which to study 7h is 

A = {¢I¢(Z) = I ¢k Zk, ¢o = 0, ¢I = 1, 
k;.O 

"6. 1¢k 1
2k 2(k - 1)2<1}. 

Of course, there is nothing special about~; we picked it not to 
clutter the proof with choices. 

We first prove several properties of functions in A, and 
afterwards, will construct 7h step by step, keeping good 
track of the estimates. 

Lemma 1: All ¢inA have radius of convergence bigger 
or equal to 1 and satisfy 

1 ( 1 )112 sup 1¢(z)I<- I 2 2 + 1 C I, 
Izl,,1 2 k,,2 k (k - 1) 

1 ( 1 )112 sup I¢'(z)/<- I 2 + l-C2> 
'*' 2 k;.2 (k-I) 

The proof is an obvious application of Cauchy
Schwartz inequality. 
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From this, we can deduce the helpful representation 

I I¢k IZk 2(k - W = sup _1_ ( 1¢II(zW dz, 
k,,2 r< I 211 )Izi ~ r 

which is proved by expanding the integrand in powers and 
taking into account the orthogonality relations between 
them. 

By a very slight, using Hz theory, abuse of notation, I 
will denote the rhs simply by S Izl = , . 

We endow A with the usual topology of sets of analytic 
functions. In this topology A is a compact set, since by 
Lemma 1 it is contained in a compact (uniformly bounded 
set) and is closed. (The two first conditions are obviously 
closed and the third one is also closed from the integral re
presentation for it.) A is also convex. 

In the light of Lemma 1, ho¢ will always be defined 
provided h is defined in Ilzl <C I J. That is the first smallness 
condition in h to be imposed. 

The integral representation renders elementary the 
proof of (uniform for ¢EA ) estimates for hO¢. 

(h o¢)" = h "O¢(¢'f + h 'o¢¢", 

I I(ho¢)k IZk 2(k - I)Z = _1_ ( I (ho¢)'T ds 
k;.2 211 )Iz[ ~ I 

l(ho¢)11 = Ihll<E'z, 

(ho¢)o = 0. 

<[C~ sup Ih "(z)1 

1 ]2 + - sup Ih '(z) I <~, 
2 IzI<1 

(3) 

The second smallness conditions to be imposed in hare 
those stated above. E'J> E'z are small numbers which depend 
only on a; the explicit form of the dependence will be given 
later. 

Lemma 2: Ifgis analytic in the ball of radius 1,g(0) = 0, 
there is one and only one 1] analytic in the ball of radius 1 (we 
will write 1] = rg) satisfying 

g(z) = 1](az) -1](z) 'Vizi < 1, 

1](0) = 0. 

Moreover, if~lgk IZkZ(k - 1f<E"7, Igll<E'z, then 

I l1]k IZ(k - 1)2<r~, 
k,,2 

l1]d<yE'z' 
Proof Identifying coefficients we have 

1]k =gk/(ak-I). 

Use the assumption on a to estimate absolute values .• 
Therefore, in the same way as before, we obtain 

( 
1 )1/2 

~~R 11](z)I<YE'1 ~ (k-lf +YE'z' 

_1_( !1]'(zWds= II1]k/2k2<r~ +4r~. 
211)IZ[ ~, k;.1 

It is clear that 

7h ¢(z) = S~exp(r(ho¢))(W)dW. 
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So that we have automatically 

(7h ¢)o = 0, 

h¢)1 = 1. 

The only thing we still have to check to prove 7 h (A ) CA 
is 

_1_r 1(7h ¢)"(zWds<! ';f¢EA. 
21T )Izl = 1 

But, for such ¢, 

1(7h ¢)"(z)1 = 1(7ho¢)/(z)llexp(7ho¢Hz)l, 

< I (7ho¢)'(z) I exp r(E I 1TIJ6 + E2)' 

SO that our goal is achieved whenever 

!>(r2E~ + 4y2E"i)exp 2r[E2 + (1TIJ6)E 1 ], 

which can obviously be satisfies for certain E'S bigger than 0, 
therefore, when h satisfies Eq. (3) with these E'S in the rhs, 7h 

maps A into A. 
As we remarked in the beginning, these smallness con

ditions for h can always be adjusted by scaling our original 
function! 

Once we have that 7h maps a compact set into itself, it is 
easy to show it is continuous. When this is satisfied, contin
uity is the same as closedness of the graph, but the points in 
the graph are those pairs (¢,rfJ ) satisfying Eq. (2), which is 
obviously a closed condition. 

Remark 1: There are other choices of sets A which are 
also acceptable for the proof. The one that was used was 
selected because it resembles the Sobolev spaces used in oth
er theorems, but has the integral representation which 
makes elementary and explicit some of the steps. There are, 
however, other possibilities, e.g., 

A = {¢(Z)I¢o=O, ¢I = 1, II¢klk<~}. 
k>2 2 

Let us sketch briefly how you can adapt the steps of the 
proof. 

The only uniform estimate we are going to use is 

sup 1¢(z)I<~ ';f¢EA. 
Izl<1 

A clearly is convex and compact with the usual topol
ogy of analytic functions of the unit disc. By the previous 
estimate it is equibounded and, therefore, contained in a 
compact set. It is also closed since 

A = n~J¢(Z)I¢o=O, ¢I = In~>21¢klk<1}' 
which are closed conditions. 

If h is an analytic function in a ball of radius bigger than 
~, then h is analytic in a ball of radius 1. Identifying coeffi
cients and using the triangle inequality in all the sums, we 
obtain 

n I(h¢)n I 

<nlhll¢n 1+ Ih21 I I¢m, II¢m, I(m l + m2 ) 
m 1 + m? = n 

+"'+Ihnl I l¢m,I···I¢mJ(ml+···+mn)· 
ml+,··+mn=n 
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Since 

I I I¢m, 1"'I¢m,l(m l + ... + m j ) 

n>lm 1 +···+m,=n 

we clearly have 

Inl(hO¢)n 1< Inlhn I(~)n. 
n/l n/l 

From that, we easily obtain 

I Irtn I <r Inlhn IHr· 
n,.d n;d 

By the same method, we obtain also 

I I(exp rt)n I<exp rInlhn I(~r, 
n..;;.O n;.1 

sInce 

I I(exp rt)n 1= InlrfJn I· 
n>O n>l 

It suffices to impose the following smallness condition to h: 

exp rInlhn I(~t<~· 
n>1 

The argument for continuity is, obviously, the same. 
Let me discuss briefly how to treat a simple case, name-

ly, 

f(z) = az +Z2 

with a = exp 21Tq(.jS - 1). 
The reason why we picked such an a is because, in some 

well-defined sense, it is "the most irrational number" and it 
is very convenient for small denominator problems. Besides, 
it has many remarkable properties, one being that we can 
compute the best acceptable value of r. 

In effect, the convergents of the continued fraction ex
pansion are the quotient of two consecutive Fibonacci 
numbers. Moreover, they converge exponentially fast. The 
first means that in order to compute the best constant, we 
only have to worry about the Fibonacci numbers. The sec
ond means that it suffices to check a finite number of them. 

Doing the argument in detail, it turns out that the worst 
resonance is the first so that 

r=sup(l!k)lak-ll~1 = la-11~1:::::0.54. 
k 

In this case, everything can be computed. 

f~(z) = a + 2Az, 

h(z)= Il=Jln+I(~)nzn. 
n~l n a 

The condition given at the end becomes 

exp(3,,1. 1(1 - 3,,1. ))<~. 

It suffices to take 

logi 
,,1.< :::::0.143. 

2Xi(r + log~) 

Of course, we could have chosen other numbers instead 
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of ~ in the definition of A. Call them eU 
• Then, the condition 

becomes 

A = ue - U /2(r + u). 

It is not very difficult to find the optimal choice of u. It 
also gives that 

A = 0.143 

suffices. 
Of course, this can be improved even further by a more 

sophisticated tailoring of the proof like using the estimates 
(more refined than the one used here) in Ref. 8. 

The reason why it is interesting to choose A as big as 
possible is because it gives us information about the size of 
the domain of stability. This domain (Siegel domain) for/A is 
the range of tP. But since tP is injective (this is true, in general, 
from results in Ref. 4, but for our case it suffices to remark 
that it is a perturbation of the identity with Lipschitz con
sta:nt less than 1), the area of the domain can be computed as 
follows: 

meas(Range tP» ( ItP '1 2 dx dy = 1TLk ItPk 12> 1, 
J1Z 1 <! k 

so that the area of the Siegel domain for/is bigger or equal 
than 1TA 2. 

We can also obtain other pieces of information about 
the Siegel domain. For example, if the set A is chosen as in 
the proof given in Remark 1, 

A = {tP(Z) I tPo = 0, tP! = 1, L ItPk Ik <eu 
- I}. 

k;,2 

It can be readily proved that all the functions in this set 
are such that their range contains a ball around the origin of 
radius r = 1 - ~(eU - 1) = ~ - eU /2. Therefore, the Siegel 
domain for/should contain a ball around the origin ofradius 

Ar = (3 - eU)ue - u/4(r + u). 

Taking u = 0.33, we obtain, for the particular case we 
are discussing, that the Siegel domain contains a ball ofradi
us 

Ar= 0.110. 

On the other hand, since the Siegel domain cannot con
tain in its interior any point in the orbit of the critical point, 
we can see that the Siegel domain does not contain any ball 
centered in the origin and with radius bigger than i. (The 
image of the critical point is - a2/4.) Actually, taking a few 
iterations with the help of a pocket calculator (nine suffice), 
this upper bound can be improved to 0.22. 
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Notice the fact that the Siegel domain cannot contain a 
ball of radius! about 0 remains valid for all the functions of 
the form/(z) = az + Z2, where a is any number of modulus 1. 
If we put that together with the lower estimate of the radius 
given r, we obtain that all possible r have to satisfy 

r>u(3e - u - 2). 

For u = 0.2, the rhs becomes 0.0912. This is a rather 
surprising way of establishing a number theoretic results. In 
Ref. 9, p. 164, a related number is computed. Their results 
are enough to establish 

r>$/21TZO.355. 

In any case, we know that = 0.54 was possible for the 
number we considered before, and this is also a rather satis
factory confirmation that the bounds we obtained are fairly 
good. 

Remark 2: After the preceding proof was completed, I 
received a letter from M. Herman pointing out that he was 
aware of the existence of such simple proofs and had even 
written notes for a seminar. He also mentioned that he and 
R. Douady observed that it is not necessary to use the 
Schauder-Tychonov theorem; using stronger smallness con
ditions in h, it suffices to use the contraction mapping princi
ple. This observation also applies to other proofs. 
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We define phase space path integrals for systems moving on a Riemannian manifold and subject 
to a generalized potential by a skeletonization procedure which is manifestly covariant under 
point transformations. We achieve this goal by introducing a natural analogS (x" ,t " lx' ,p' ,t ') of the 
Hamilton principal function with phase space initial data. One class of such functions is based on 
the parallel transport of momentum, a second class is obtained by a modification of the first class, 
and a third class is based on the geodesic deviation transport of momentum. The third class of 
principal functions is geometrically privileged. We skeletonize the canonical action integral by 
replacing it by a manifestly covariant chain of phase space principal functions. Different functions 
lead to the same functional as we infinitely refine the skeletonization along a smooth path. Our 
phase space path integral is always taken with the natural Liouville measure, but the integration 
over momentum variables brings down a nontrivial measure to the remaining configuration space 
path integral. Because nondifferentiable rather than smooth paths dominate the path integral, 
different phase space principal functions generate different configuration space path measures. 
Such measures lead to quantum propagators which satisfy Schrodinger's equations with all 
possible scalar curvature terms ~fz2R. The geometrically privileged phase space principal 
function (based on the geodesic deviation transport) leads to the Schrodinger equation without 
any curvature term. 

PACS numbers: 03.65.Ca, 02.40.Ky 

1. INTRODUCTION 

Path integrals as introduced by Feynman 1 were origin
ally able to handle only systems moving in flat space. It last
ed almost a decade before DeWitt took the decisive step and 
generalized the method to Newtonian systems moving on a 
curved manifold.2 In a clear and elegant manner, DeWitt 
showed how to skeletonize the configuration space path inte
grals by a prescription which is manifestly covariant under 
transformation of coordinates. There are two ingredients 
which enter into DeWitt's prescription: One must decide on 
the skeletonization of the action integral, and one must 
choose a measure in the space of skeletonized paths. The first 
decision is easy, because it follows naturally from the Hamil
ton-Jacobi theory: The vertebral points of the skeletonized 
path are connected by segments which are actual classical 
paths of the system, and the action integral is thereby ap
proximated by a chain of Hamilton's principal functions 
between the vertebral points. Each of these functions is a 
biscalar in its arguments. This enables one to keep track of 
the covariance throughout the procedure. 

The second decision is more difficult. It involves the 
measure which must be assigned to each segment of the skel
etonized path. DeWitt followed Pauli's reformulation3 of 
Feynman's method and chose the square root of the Van 
Vleck-Morette determinant4 as his measure. With this mea
sure he derived the Schrodinger equation for the quantum 
propagator and discovered a surprising fact that the Hamil
ton operator in this equation contains an extra term -hfz2R 
proportional to the scalar curvature. DeWitt also general
ized Feynman's measure to curved Riemannian manifolds 
and found that under this measure the path integral yields a 

different term, t,fz2R, in the Hamilton operator. He observed 
that, to obtain the standard Hamilton operator without any 
curvature term, one should modify the Lagrangian by a po
tential which amounts to - -hfIZ R for the Pauli measure and 
- t,fz2R for the Feynman measure. Unfortunately, such a 

compensation potential brings the Planck constant into clas
sical Lagrangian and takes thus much away from the intu
itive appeal of Feynman's theory. An alternative attitude is 
to accept extra terms in the Hamilton operator as standard 
ambiguities depending on the factor ordering and live happi
ly with them ever after. 

In the past few years, another way was found out of this 
blind alley. In 1979, Parker5 investigated path integrals with 
measure proportional to an arbitrary power of the Van 
Vleck-Morette determinant and discovered that he can gen
erate in this wayan arbitrary term ~fIZR in the Hamilton 
operator. In particular, he discovered that for the first power 
of the determinant the curvature term drops out from the 
Hamilton operator. At the same time, DeWitt-Morette, et 
al.6 introduced this kind of measure by a reasoning based on 
stochastic differential equations, prodistributions, and the 
development mapping and argued that it follows naturally 
from this framework. 

In recent times, phase space path integrals became in
creasingly popular due to the influence of Fadeev's investi
gations. 7 Because there is an unquestionably privileged mea
sure on the phase space, namely, the Liouville measure 
d" xd" p, one can ask whether this resolves in a natural way 
the ambiguity discovered by DeWitt. Unfortunately, while 
the notation falsely suggests that phase space path integrals 
are covariant under canonical transformations, this is mere
ly an illusion. 8 Skeletonization spoils covariance, or at least 
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its manifest exhibition. It is even difficult to maintain mani
fest covariance of phase space path integrals under point 
transformations.9 Of course, one can always start from the 
evolution operator whose Hamilton operator is covariantly 
ordered and, by inserting the decomposition of unity in the 
momentum eigenstates, cast the quantum propagator into 
the form of a phase space path integral. \0 However, the clas
sical Hamiltonian which appears in the canonical action 
functional of this path integral does not look covariant at all; 
it contains terms with the Planck constant which are not 
scalars under point transformations. II 

One would like to generalize DeWitt's skeletonization 
to phase space path integrals, but it is not obvious how to do 
it. The Hamilton principal function S (x" ,t" Ix',t ') is defined 
as the action integral evaluated along the actual path 
between x', [ , and x" ,t " . In phase space, there is in general no 
actual path connecting x' ,p' ,t' with x" ,p" ,t " and we cannot 
define S (x" ,p" ,t "Ix',p',t ') as the canonical action integral 
evaluated along nonexistent actual path. There are, of 
course, principal functions S (x" ,t "Ip' ,t ') and S (P" ,t "Ix',t ') 
with mixed boundaries, but they do not have simple proper
ties under point transformations. For example, the 
S (x" ,t" Ip',t ') function differs from the biscalar function 
S (x" ,t "Ix' ,t ') by a boundary term xa'Pa" which is obviously 
not a scalar. Intuitively, it is difficult to apply the point trans
formation to the momentum boundary because we do not 
know the position at which the momentum is sitting. For 
such reasons, it is hard to make an often used alternating 
x - p skeletonization manifestly covariant. 

Our main goal is to define phase space path integrals for 
systems moving on a Riemannian manifold by a skeletoniza
tion procedure which is manifestly covariant under point 
transformations. We achieve this goal by finding a natural 
analog S (x" ,t "Ix',p',t) of the Hamilton principal function 
with phase space initial data. In fact, there are several classes 
of such functions: one class based on the parallel transport of 
momentum, the second class obtained from the first one by 
certain modifications, and still another class based on the 
geodesic deviation transport of momentum. Any such phase 
space principal function allows a manifestly covariant skele
tonization of the canonical action functional. As we refine 
the skeletonization along a smooth phase space path, we re
cover the canonical action functional. In this respect, all 
principal functions are equal. However, when it comes to the 
method of their construction, the principal function based 
on the true geodesic deviation transport of momentum is, 
like an Orwellian pig, more equal than the others. We ex
plain why is the geodesic deviation transport privileged in 
Sec. 6. 

Our phase space path integral is always taken with the 
natural measure II(K I [d "X(K I d "P(K I /(21ril)"] , but the inte
gration over momentum variables brings down a nontrivial 
measure to the remaining configuration space path integral. 
Because the paths which contribute most to the path integral 
are nondifferentiable paths rather than smooth paths, differ
ent phase space principal functions bring down different 
configuration space path measures. By taking different prin
cipal functions, we generate quantum propagators which sa
tisfy Schrodinger's equations with all possible curvature 
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terms ~ 112 R. The geometrically privileged phase space prin
cipal function (based on the geodesic deviation transport), 
however, leads naturally to the Hamilton operator without 
any curvature term. Within the phase space path skeletoni
zation approach, it is the counterpart of the measure intro
duced by DeWitt-Morette, et al. 6 

Two other points which we want to mention in this 
introduction belong to the realm of esthetics rather than to 
the realm of facts. First, DeWitt's procedure is manifestly 
covariant, except in one minor detail: The expansions ofbi
scalars like the Hamilton principal function or the Van 
Vleck-Morette determinant are carried in differences of co
ordinates rather than in powers of a covariant object. We 
want to maintain the covariance throughout our argument, 
and we thus use covariant expansions in powers of the first 
derivatives of Synge's "world function." This enables us also 
to use the Riemann normal coordinates without actually us
ing the Riemann normal coordinates, i.e., without working 
in a special coordinate system. The final results are always 
reached by taking coincidence limits. 

Second, Feynman's original proof that the propagator 
represented by a path integral satisfies the Schrodinger equa
tion relies heavily on the specific properties of the classical 
Lagrangian. On the other hand, Pauli's presentation of 
Feynman's method derives the same result entirely from the 
Hamilton-Jacobi equation for the Hamilton principal func
tion. In the spirit of Pauli, all our results are derived from the 
Hamilton-Jacobi equation for the principal function ex
panded in powers of the time interval. 

Ultimately, we want to find a heuristically acceptable 
definition of phase integrals in canonical geometrodyna
mics. Canonical geometrodynamics is an infinitely dimen
sional system with an inherent Riemannian structure. How
ever, unlike a Newtonian system treated in this paper, the 
canonical data are restricted by constraints associated with 
gauge and by other constraints associated with presence of 
an intrinsic time. As the first step in this direction, we shall 
treat in forthcoming papers 12 simple model systems with 
constraints associated either with gauge or with time para
metrization. 

2. HAMILTON'S PRINCIPAL FUNCTION. 
INTERPOLATION, SKELETONIZATION 

The actual path of a dynamical system extremizes the 
action 

S[x(t)] = j'''dtl(X,X) (2.1) 

in comparison with all neighboring kinematically possible 
paths which pass through the same initial position x' at the 
same initial time t' and through the same final position x" at 
the same final time t " , 

XU(t")=xa", xa(t')=xa
', a=l, ... ,n. (2.2) 

We use primes to distinguish points and to indicate points to 
which various tensor or bitensor indices are referring. As a 
rule, we are often suppressing indices, especially in argu
ments offunctions. As we vary the path, the action changes 
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by 

Here, Pa (x,i) is the momentum 

Pa = l,,,(x,i) (2.4) 

and oS /oxa (t) is the variational derivative of the action inte
gral (2.1), 

oS 
-- = I - d I (2 5) oxa(t) ,a , ,a' . 

From the variational formula (2.3) we learn that the 
actual path between the fixed boundary points (2.2) satisfies 
the Euler-Lagrange equations 

oS 
--=1 -d I =0. (2.6) oxa(t) .a , .a 

The actual path passing through sufficiently close boundary 
points is uniquely determined by the system (2.6) of second
order differential equations with boundary conditions (2.2). 
The action integral evaluated along the actual path and con
sidered as a function of the boundary data is the Hamilton 
principal function S (x" ,t "Ix' ,t '). As we vary the boundary 
points x' and x" at fixed times t ' and t ", but always connect 
them by the actual path (2.6), we conclude from Eq. (2.3) that 

S.a" oxa" + S.a' oxa' =oS (x" ,f " lx' ,t ') 

= Po" oxa" - Pa' oxa'. (2.7) 

This enables us to obtain the momenta at the boundary 
points of the actual path from the Hamilton principal func
tion, 

Pa" =S.a"(x",t"lx',t'), Pa' = -S.a,(x",t"lx',t').(2.8) 

Let us move now the boundary points x',x" along an 
actual path x(t ) while evaluating the Hamilton principal 
function, 

S(x"(t "),t" Ix'(t '),t ') = J:" dtl (x(t ),x(t I)· (2.9) 

By differentiating Eq. (2.9), we see that 

d,"S (x"(t "),t ~'Ix',t ') = I (x" ,x") 

and (2.10) 

d"S (x" ,t "Ix'(t '),t ') = - I (x' ,i'). 

On the other hand, 

d,"S(x"(t "l,t" Ix',t ') = S,a"xa" + a,"s 

and (2.11) 

d"S(x",t" Ix'(t '),t ') = S.a,xa' + a"s. 

From Eqs. (2.8)-(2.11) we conclude that the Hamilton prin
cipal function satisfies the Hamilton-Jacobi equation 

a,s + H(xa",S.a") = 0 (2.12) 

in the final arguments and a similar equation 

-a"s=H(xO',-S.a,l=O (2.13) 

in the initial arguments. In both of these equations, H is the 
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Hamiltonian 

H (x,p)==: [Paxa - I (x,i)]x = x(x,p) ' 

Po = l,,,(x,x(x,p)) 

of the system. 

/2.14) 

Let now the final position x" approach the initial posi
tion x' along an arbitrary smooth path x(t), x(t ') = x', not 
necessarily the actual path. As the actual path between x' ,t ' 
and x(t ), t is shrinking to a point, the final velocity va (t ) on 
this path is approaching xa'. Consequently, 

lim S (x(t ),t lx' ,t ') = 0 (2.15) 
t_t' 

and 

lim d,S (x(t ),t lx' ,t ') = I (x(t '),i(t ')). (2.16) 
t_t' 

From here, 

S (x(t ),t lx' ,t ') = I (x(t '),x(t '))'7 + o(r), (2.17) 

where 

7=t-t'. 

Extremization of the action functional (2.1) yields the 
actual path x(t ) between the boundary points x' and x". It 
may happen, however, that we are not interested in the 
whole path, but only in the actual position x which the sys
temassumesata timetE[t ',t "] on its motion from x' tox" (the 
interpolation problem). To answer this question, we do not 
need to extremize a functional of the path x a (t), but only a 
function of the point x a 

, namely, 

S (x" ,t " Ix,t lx' ,t ')=S (x" ,t " Ix,t ) + S (x,t lx' ,t '). (2.18) 

Indeed, S (x" ,t" Ix,t Ix',t ') is the action functional evaluated 
along a broken path consisting from the actual path from 
x',t 'tox,t followed by the actual path fromx,t tox",t". This 
possible path becomes the actual path when the interpolated 
point XO extremizes the action, i.e., when 

S,a(x" ,t" Ix,t Ix',t ')==S,a(x" ,t" Ix,t) + S.a(x,t Ix',t ') = O. 

(2.19) 

This condition has a simple meaning: The momenta (2.8) 
must match at the interpolated point, 

Pa(x" ,t" Ix,t) = Pa(x,t Ix',t '). (2.20) 

Continuing the interpolation process, we can ask what 
are the actual positionsx(l)1 X(2)1 ... , X(N _ 1)1 which the system 
assumes at times t(l)1 t(2)' ... , tiN _ I) on its motion from x(O) 
==x' att(O)=t 'tOX(N)==x" att(N)=t". The answer is a simple 
extension of Eq. (2.15): The actual positions extremize the 
function 

N-I 

S (X(A )1t(A ))= L S (X(K + l)1t(K + 1)lx(K)1t(K)) (2.21) 
K=O 

with respectto the interpolated positionx(l).I = 1, ... , N - 1 
while the boundary positions x(O) and X(N) are kept fixed. 

The action functional (2.1) along a smooth path x(t ) can 
be recovered as a continuous limit of the function (2.21). 
Take a division t(A) of the interval [t ',t "J and skeletonize the 
path x(t ), connecting each point X(t(K)) with the successive 
point X(t(K + I)) by the actual path. To the skeletonized path 
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there belongs the skeletonized action 

S (X(tIA) ),tIA I) 
N-I 

= I S(X(tIK + 1)),tIK + Illx(tIKI),tIKd· 
K=O 

(2.22) 

Any link S (x(tIK + I))' tlK + Illx(tIKI ), tiKI) of this action can be 
expanded in the time interval 7"IK I = tlK + I) - t lK ) by Eq. 
(2. 17). We refine the skeletonization of the path x( t ) so that 
7" max = maxK ~ O •... ,N _ I 7"IK 1-0· In this limit, 

lim S(X(tIA I ),tIA I) 
T ma:o;-+O 

= r,~~~ C~~(I(X(tIK))'X(tIKI))7"IKI + O(rIK1 ))} 

r"dtl(X(t),X(t))=S[X(t)]. (2.23) 

The action functional is thereby defined through the Hamil
ton principal function. 

The configuration space formalism is manifestly covar
iant under transformation of coordinates, 

Xil _Xil = Xil(X b ). (2.24) 

Under such transformations, the Lagrangian I (x,x) is a sca
lar, the action functional is an invariant, the momentum (2.4) 
and the variational derivative (2.5) are covectors, the Hamil
ton principal function S (x" ,t " Ix',t ') is a biscalar, the func
tions (2.18) and (2.21) are multiscalars, and all our equations 
are tensor equations holding in an arbitrary system of co
ordinates. 

Let us pass now from the configuration space to the 
phase space of the system by adjoining the momentapa to 
the configuration variables x a . First, we replace the action 
(2. I) by a new action 

S [x(t ),p(t ),v(t)]= r"dt (/(x,v) + PaW - va)), (2.25) 

in which the configuration variables x a are varied under 
fixed boundary conditions (2.2), while the Lagrange multi
pliersPa and va have their boundaries free. By varyingpa' we 
learn that va = xa. When we substitute this constraint into 
the new action (2.25), we reduce it back to the Lagrangian 
action (2.1). On the other hand, when we vary va, we get the 
connectionpa = I.a(x,v) between the velocity va and the mo
mentumpa' Using this connection, we can eliminate va from 
the action (2.25) and arrive thus at the canonical action func
tional 

S[x(I),p(t)] = r"dtL(X,X,P), (2,26) 

L (x,x,p) Paxa - H (x,p). (2.27) 

The canonical Lagrangian L (x,x,p) is related to the ordinary 
Lagrangian I (x,x) by the Legendre dual transformation 

L(X, ~; ,p)=/(x, ~;). 
(2.28) 

L (x,x, :~ ) = I (x,x). 

The actual motion of the system in phase space extremizes 

2125 J. Math. Phys., Vol. 24, No.8, August 1983 

the canonical action in comparison with neighboring mo
tions passing through the same initial and final configura
tion (2.2). The variations of x and p lead to the Hamilton 
equations of motion 

'a aH x =-, 
apa 

(2.29) 

(2.30) 

The elimination of pa reduces the Hamilton equations back 
to the Lagrange equations (2.5) and (2.6). 

The actual path in the phase space is determined by the 
initial and final configurations x' and x". When these config
urations are given, the initial and final momenta p' and p" 
cannot be freely specified, but are determined from Eqs. 
(2.8). The actual momentumpa (t) along the actual pathxa (t) 
is fixed by Eq. (2.29). In general, there is no actual path x(t ), 
pit ) in the phase space which would connect the overdeter
mined initial data x' ,p' ,I' with the overdetermined final data 
x" ,p" ,t " or even with the final data x" ,t ". Here is another 
description why an attempt to find such a path fails: Evalu
ate the canonical action integral (2.26) along the actual path 
x(t) betweenx',t' and x", t " for a test distributionp(t) ofmo
mentum which matches the given values p' and p" at the 
ends. We know that the action (2.26) is extremized by the 
momentum distribution (2.29) which, at the ends, has differ
ent values of p, given by Eq. (2.8). To extremize the action, 
the test distribution pit ) should slip as fast as it can from the 
specified values p', p" to the actual values (2.29) and run 
through them for the rest of the configuration path x(t ). 
However, there is no fastest slip in the space of continuous 
functions pit ), and thus the attempt fails. 

Because there is no actual path in the phase space con
necting overdetermined boundary data, there is no obvious 
analog S(x",p",t" Ix',p',t 'I, or'M'en S(x",t" Ix',p',t 'I, of the 
Hamilton principal function. Still, we need such a function 
to solve the interpolation and skeletonization problem in the 
phase space. Indeed, our goal is to construct an algorithm 
with the following properties: 

I. Interpolation: The actual position x a and momentum 
Pa which the system assumes at a time tE[t ',t "] on its motion 
through the phase space from the initial configuration x a' at 
t ' to the final configuration xa" at t " is obtained by extremiz
ing a function 

S (x" ,t "Ix,p,t Ix',1 '). (2.31) 

This function is a triscalar in the arguments x a
" ; x a ,Pa; x a

' 

under point transformations 

(2.32) 

induced by the coordinate transformations (2.24). 
II. Skeletonizalion: The actual positions x(I) and mo

mentaPIIJ' I = 1,2, ... , N - I which the system assumes at 
times til) on its motion through the phase space from the 
initial configuration x(OI ==x' at t(OI =t ' to the final configura
tion X IN ) ==x" at tlNI =t " is obtained by extremizing a func-
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tion 

(2.33) 

in the canonical variables XII I' PII I' This function is a multi
scalar in the arguments x lOI ; XII) ,PIli; X INI under point trans
formations (2.32). 

III. Continuous limit: The canonical action functional 
(2.26)-(2.27) evaluated along a smooth path x(t), p(t) in the 
phase space leading from the configuration x' at t ' to the 
configuration x" at t II is obtained as a limit 

S[x(t),p(t)] = lim S(xl,t"lx(tII)),P(tIII),t(Illx',t') (2.34) 
Tmax----+O 

of the skeletonized action (2.33) when N-oo while 
r max = maxK ~ O, ... ,N _ I r(K 1_0. 

We find such an algorithm for a dynamical system de
scribed by a quadratic Lagrangian 

1= !!gab (XWXb + Aa(x)xa - V(x) (2.35) 

or a corresponding Hamiltonian 

(2.36) 

For simplicity, we assume that the nondegenerate metric 
gab (X), the vector potential Aa (x), and the scalar potential 
V(x) do not depend on time. It is, however, straightforward 
to generalize the formalism to time-dependent metrics and 
potentials. 

A prototype of our dynamical system is a system of 
nonrelativistic particles subject to holonomic scleronomic 
constraints and moving under the influence of forces pos
sessing a generalized potential V - Aaxa. The potentials Aa 
and V may include a contribution from "ficticious" forces 
due to a noninertial character of the reference frame. The 
masses of the particles are absorbed into the metric gab and 
the charge parameters are absorbed into the potentials Aa 
and V. 

To build the algorithm, we find first a phase space prin
cipal function S (x" ,t II Ix' ,P' ,t ') with overdetermined initial 
data. The functions (2.31) and (2.33) are then constructed 
from this principal function. The phase space principal func
tion is not unique. There are many such functions, each of 
them leading to an algorithm with the desired properties 1-
III. Classically, it does not matter which one we are using to 
skeletonize the canonical action integral, because the differ
ences among them disappear in the continuous limit. How
ever, these differences become important in quantum me
chanics, because the paths which contribute most to a path 
integral are not differentiable. When we use the skeletonized 
action (2.33) with the natural phase space measure 
JI(K I (d nX(K I d np(K /(21ri'i)") for the definition of the phase 
space path integral, different choices of the principal func
tion lead to different quantum propagators (x" ,t II Ix' ,t'). 
Each of these propagators satisifies a Schrodinger equation, 
but the Hamilton operator may contain a potential term 
~"fR proportional to the scalar curvature. However, there 
is a geometrically natural phase space principal function for 
which the scalar curvature term drops out from the Hamil
ton operator. 

The construction of various phase space principal func
tions is most transparent for a free system (Aa = 0 = V). 
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Such a system follows a geodesic in a curved space gab (X). We 
shall discuss a free system first in the following four sections. 

3. GEODESIC MOTION: COVARIANT EXPANSIONS 

For a free system, 

I (x,x) = !!gab(XWXb. (3.1) 

The actual motion of the system, by the Euler-Lagrange 
equations (2.6), is a geodesic 

~= V,x a =0. (3.2) 
DXa(t) 

The system moves along the geodesic (3.2) with a constant 
velocity 

(3.3) 

This allows us to express the Hamilton principal function in 
terms of the geodesic separation a(X" ,x') between the points 
x' and x" and the time intervalr = t II - t': 

S (x" ,t II Ix' ,t ') = !v2r = !trr- 1. (3.4) 

We introduce the biscalar 

.I (x" Ix')-!tr(x"lx') (3.5) 

called the world function I3 and write the Hamilton principal 
function as the ratio 

S (x" ,t "Ix',t') =.I (x"lx')IT. (3.6) 

Time and position variables separate in the expression 
(3.6). The Hamilton-Jacobi equations (2.12)-(2.13) 

a I "b" ,,,S + ~ S,a"S,b" = 0, 
(3.7) 

a 'b' 
- "S + ~ S,a,S,b' = 0 

then imply the equations 

!n<'''b''.I ".I b" =.I=!ua'b'.I ,.I
b

, 26 ,0. 2CJ ,a, (3.8) 

for the world function. By differentiation 

.I,a'b".I,b" =.I,a" .I,a"b,.I,b' =.I,a" (3.9) 

and also 
b' b" 

.Ila'b'.I' =.I,a" .Ila"b".I' =.I,a'" (3.10) 

As the initial position x' approaches the final position 
x", x'-x", any bitensor Wa, .. b " ... at x' and x" passes into a 
corresponding tensor at x", 

[Wa'b".] = lim Wa'b" (x" Ix'), 
x'-x" 

(3.11) 

called the coincidence limit of Wa' .. b" (x" Ix'). In this nota
tion, any index of a bitensor enclosed in the [ ] bracket be
comes a tensor index at x" . 

From its definition (3.5) in terms of the geodesic separa
tion, it is obvious that 

[.I] = o. (3.12) 

Further, from Eqs. (2.4), (2.8), and (3.6) we can express the 
velocity 

xa' =Pa' = -S,a' = -r-1.I,a' = -v·u-1.I,a' (3.13) 
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in terms of its mgnitude v and the unit vector 

ua' = - [dsxals=s = a-II ,a', ga'b' ua'ub , = 1 (3.14) 

tangent to the geodesic and pointing from x" to x', Similar 
equations hold at the final boundary, 

xa' = -vUa" ua' = - [dsxa]s=s' = -a-II,a', 
(3.15) 

From Eqs. (3.14) and (3.15) we conclude that the coincidence 
limits 

(3.16) 

stay finite; Ua' in Eq. (3.16) can be interpreted as the unit 
vector tangent to the curve along which x' approaches x". 
The derivatives I,a' and I,a' are thus of the same order as a 
and 

(3.17) 

When we divide Eq. (3.9) by a and take the coincidence 
limit, we learn that 

(3.18) 

On the assumption 13 that the coincidence limit [I,a'b' ] does 
not depend on the direction in which x' approaches x", we 
infer from Eq. (3.18) that 

[ I,a'b' ] = - ga"b" . (3,19) 

Similarly, 

[Ila'b'] =ga'b' = [Ila'b']' (3.20) 

We can take covariant derivatives ofEqs. (3.9) and 
(3.10) to any order and pass then to the coincidence limits. 13 

By this recursive procedure we conclude that all coincidence 
limits in which I gets differentiated three times vanish, 

[Ila'b'c'] = [Ila'b'c'] = [Ila'b'c'] = [Ila'b'c'] =0, 

(3.21) 

while those in which it is differentiated four times can be 
expressed through the Jacobi curvature tensor J abcd : 

[Ila'b'c'd'] = [Ila'b'c'd' ] = [Ila'b'c'd'] =Ja'b'c'd" 

(3.22) 

[Ila'b'c'd'] = -Ja'd'b'c" [Ila'b'c'd'] =Ja'b'c'd" 

Our conventions are 

R abcd= - rabc,d + robd,c - ribLraid + ribdroiC 
(3.23) 

and 

Jabcd = - !(Racdb + Radbc)' (3.24) 

When we have a biscalar F (x" Ix') and know the coinci
dence limits of its covariant derivatives F la, , Fla'b' , Fla'b 'c" "', 
we can write a covariant expansion of F(x" Ix') in powers of 
the geodesic separation a(x" Ix'), i.e., we can express F (x" Ix') 
in the form 

F(x" Ix') = F(x") + Fa'(x")I,a' (x"lx') 

+ FO'b'(X")I,o' (x" Ix')I.b· (x" Ix') + .... (3.25) 

To do that, we replace the coordinates xo' by the new coordi
nates 

Yb' = - I,b' (x" Ix'). (3.26) 

2127 J. Math, Phys., Vol. 24, No.8, August 1983 

By Eq. (3.15)'Yb' are nothing else but the Riemann normal 
coordinates of the point x' based on the originx". The Jacobi 
matrix of the transformation (3.26) is 

JYb' -= -I a,., . (3.27) 
Jxa' , v 

In a finite neighborhood of x", I,a'b' is a regular matrix, and 
we can thus introduce its inverse, 

Ia'c'I,b'c' = 8~'" Ic'a'I,c'b' = 8r,. (3.28) 

Of course, 

_ Ia'b'. (3.29) 

We can now calculate the partial derivatives of the 
function F (x" Ix' (x" ,y")) with respect to y". First of all, 

b' 

aF =F,b" ax = -Flb,Ib'a' 
aYa' aYa' 

Further, 

J2F 
----= 
aYb' aYa' aYb' 

, 'd'b' c'a' ~d'b' = (Flc' I co ).d,I = (Flc,I )Id''' 
c'o' d'b' c'a' ~d'b' 

= FIC'd,I I + Flc,I Id'" . 

By differentiating Eq. (3.25), we obtain 
~c'a' _ ~c'i' ~ ~fa' 
.. Id' - -.. "Wfd'" . 

From here, 

(3.30) 

(3.31) 

(3.32) 

J
2
F -F, ~c'a'~d'b' _ 'C' ~c'i'~ ~fa'~k'b' 

- Ic'd'"'' ric'" "Wfk'" .. . 
aYb' aYa' 

(3.33) 

In this manner, we can calculate the y" derivatives to an 
arbitrary order. 

From Eq. (3.26) we see that puttingy" = 0 is equivalent 
to taking the coincidence limit x' ~x". Equations (3.30) and 
(3.33) thus give 

[ 
aF] = [Fla'] (3.34) 

aYa' Y' =0 

and 

[ 
a

2
F] = [Fla'b']. 

aYb,aYa' Y' =0 
(3.35) 

Therefore, 

where, returning to the original variables, we can write 
- I.a, (x" Ix') in place of Ya' : 

F(x" Ix') = [F] - [Fla']I,a' +HFla'b']I.a,I,b' +o(ffl). 

(3.37) 

The procedure remains unchanged when F is a tensor 
at x", F mj .... m7(x" Ix'). When F carries any indices at x', one 

must first convert them into indices at x" by the parallel 
propagator ~', and only then expand the homogenized ten
sor in the powers of a. We shall not need to consider such a 
case in this paper. 
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Apply now the expansion formula (3.37) to the tensor 

.2'lc"d" (x" Ix'): 

.2'lc"d" = [.2'Ic"d" ] - [.2' la'c"d" ].2'.a" 

+ H.2' la'b'c"d" ].2',a".2'.b" + o(~). (3.38) 

Using the coincidence limits (3.19)-(3.22), we get 

.2'lc"d" = gc"d" - ~RC/d" b".2'.a".2'.b" + o(~). (3.39) 

By contracting this equation, we learn that 

.J ".2'-n= _~Ra"b".2'.a".2',b" +o(~). (3.40) 

In fiat space,.2' = ~Oab(Xa" - xa')(xb" - x b') and 
.J ".2' - n = O. Equation (3.40) shows that the deviation of 
.J ".2' from its fiat space value n depends in the second order 
of u on the Ricci tensor R a" b ' • 

Later on, we shall also need the expanded form of the 
determinants 

.2'" ,,_det .2'la"b'" .2'" =odet .2'la'b" 

.2',,, det( - .2'.a'b" ). 

(3.41) 

(3.42) 

In particular, the last determinant is the Jacobian ofthe 
transformation (3.26) to the Riemann normal coordinates. 
The determinants (3.41)-(3.42) are biscalar densities with the 
weights (2" ,0'), (0" ,2') and (1" ,1 '). Sometimes, it is more con
venient to replace them by the corresponding biscalars 

D"" g'-I.2'"", D" _g,-I.2'", 

D,,, g,-IIZg"-I/Z.2',,,. (3.43) 

By taking the determinant of Eq. (3.39) and using the 
trace rule, 

.2'"" =g"(l - ~R a"b".2'.a".2'.b" ) + o(~). (3.44) 

Mutatis mutandis, 

.2'" = g'(l - ~R a'b'.2',a,.2',b') + o(~). (3.45) 

The factor R a'b'.2',a,.2',b' is a biscalar; as such, it can be ex
panded in powers of .2',a' according to Eq. (3.37). Quite pre
dictably, 

a'b'~ a'b" -.3 R -",a,.2',b' = R .2'.a,.2',b" + o(u ). (3.46) 

We can thus also write 

.2'" = g'( 1 - R a' b ".2',a" .2',b" ) + o(~). (3.47) 

To expand the last determinant~,,,, we expand first the 
bitensor 

F ( "I ')-~ m'n'~ c'd' X X =-" m'c"g -" n'd"' , . 
From the coincidence limits (3.19)-(3.22), 

[Fc"d'] =gc"d" , [Fc"d"la'] =0, 

[Fc'd"la'b' ] = - Ja"b"c"d" , 

and hence 

(3.48) 

(3.49) 

Fc"d" =gc"d" + jR a"c" b"d,.2',a".2'.b' + o(~). (3.50) 

By taking the determinant of Eqs. (3.48) and (3.50), we learn 
that 

.2'" =g,-IIZg"\/2(1 + iR a'b".2'.a,.2'.b") + o(~). (3.51) 

We can summarize these results by listing the biscalars 

2128 J. Math, Phys .• Vol. 24. No, 8. August 1983 

(3.43): 

D = 1 + 0R a"b".2',a".2'.b" + o(~), 
(3.52) 

4. GEODESIC MOTION: PHASE SPACE PRINCIPAL 
FUNCTION FROM PARALLEL TRANSPORT OF 
MOMENTUM 

We return now to the phase space interpolation prob
lem for a free system. From the Hamiltonian 

H = ~b(x)PaPb (4.1) 

we obtain the Hamilton equations 

(4.2) 

and 

. _ l,..bc ( )p Pa - - 10 ,a X bPc' (4.3) 

The first equation is covariant under point transformations 
(2.26), while the second equation is not, unless taken in con
junction with the first one. Together, the Hamilton equa
tions (4.2)-(4.3) imply the geodesic equation 

(4.4) 

for the actual path in configuration space. The second Ham
ilton equation can be then replaced by a covariant equation 
obtained by covariantly differentiating the first Hamilton 
equation, 

(4.5) 

The actual momentum (4.2) is certainly propagated along 
the actual path (4.4) by the parallel transport (4.5). However, 
Eq. (4.5) enables us to propagate any momentum P a , not only 
the actual one, from its initial value Pa' at x',t' along the 
actual path (4.4) to x" ,f ". This is possible because the new 
system of equations, (4.4)-(4.5), is not strictly equivalent to 
the old system of equations, (4.2)-(4.3): Hamilton's equa
tions (4.2)-(4.3) imply Eqs. (4.4)-(4.5), but Eqs. (4.4)-(4.5) im
ply the Hamilton equations only under the inti tal condition 

(4.6) 

Trivial as this change may be, the new system of equa
tions (4.4)-(4.5) enables us to define a phase space principal 
functionS (x" ,t "Ix',p',t '). We take the actual path in the con
figuration space-the geodesic (4.4)-connecting the config
urationx' att' with the configuration x" att". We then paral
lel propagate an arbitrarily assigned initial momentum P' 
along this geodesic by Eq. (4.5). We define the phase space 
principal function S (x," ,f " lx' ,p' ,t ') as the canonical action 
functional (2.26)-(2.27) evaluated for thex(t ),p(t ) path which 
we have just described. 

Equations (4.4) and (4.5) imply that the canonical La
grangian (2.26) is conserved along our path x(t), p(t): 

d,L (x,x,p) = V,L (x,x,p) = O. (4.7) 

Therefore, 

S (x" ,t " lx' ,p' ,f ') = L (x' ,x' ,p')'T 

(4.8) 
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Here, the initial velocity xa
' must be expressed as a function 

of the boundary configurations [Eq. (3.14)], 

(4.9) 

This operation yields the final form of the phase space princi
pal function, 

S (x" ,t" Ix',p',t ') 

= ( - Pa'.I ,a'(x" Ix')r- I - !g"'b'(x')Pa'Pb' )r. (4.10) 

From thedefinitionofS (x" ,t" Ix',p',t '), it is obvious that 
the expression (4.10) must be extremized by the actual initial 
momentum 

Pa' = -Sa' = -.I,a,r- I. (4.11) 

It is sufficient to realize that (1) the canonical action integral 
is extremized by the actual distribution (4.2) of momentum 
and (2) this actual distribution is inevitably developed from 
the initial value (4.11) by the parallel transport (4.5). The 
same fact can also be verified by direct calculation; indeed, 

as 'I' 0=-=( _.I,a r - _pa)r 
apa' 

(4.12) 

amounts to Eq. (4.11). 
It is also obvious that the phase space principal function 

(4.10) must reduce for the actual value (4.11) of momentum 
to the Hamilton principal function, 

S(xa',t"lxa',Pa' = -S,a' = -.I,a,r-I,t') 

= S(x" ,t" Ix',t ') =.I (x" Ix')r-I. (4.13) 

Intuitively, when the actual distribution of momentum (4.2) 
ensured by the initial value (4.11) and the transport equation 
(4.5) is substituted into the canonical Lagrangian (2.27), this 
Lagrangian reduces by the Legendre transformation (2.28) 
to the ordinary Lagrangian I (x,x) evaluated along the actual 
configuration path. The canonical action integral (2.26) thus 
reduces to the action integral (2.1) along the actual path, i.e., 
to the Hamilton principal function. Formally, Eq. (4.13) is a 
consequence of the Hamilton-Jacobi equation (3.8) for the 
world function. 

From here it is easy to infer that we obtain the actual 
initial momentum P' together with the actual position x and 
the actual momentump at a time tE[t ',t "] on the phase space 
path from x' ,t ' to x" ,t " by extremizing the function 

S (x" ,t" Ix,p,t Ix',p',t ') = S (x" ,t" Ix,p,t) + S (x,t Ix',p',t ') 

(4.14) 

in the variables x, p, and p'. Indeed, 

as ( " " I I" ') 0 as ( "t" I t I ' 't ') - x ,t x,p,t x ,p,t = = -- x, X,P, x ,P , 
JPa JPa' 

(4.15) 

yields, as in Eq. (4.12), the actual momenta Pa' and Pa' In
stead of extremizing the function (4.14) directly in x, we use 
the well-known trick and substitute into it first the actual 
momentapa' andpa as functions of the remaining variables. 
Under this operation, the function (4.14) reduces, by Eq. 
(4.13), to our old configuration space function (2.18). Here 
we already know that by extremizing the expresion (2.18) in 
the position variable x a we obtain the actual position x a at t. 
The function (4.14) thus correctly solves the interpolation 
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problem. If we are not interested in the actual initial value p a' 

of momentum, but only in the interpolated value, we can 
simply substitute the actual initial value (4.11) into the func
tion (4.14), reducing it thereby to the function 

S (x",t "Ix,p,t IX',t') = S (x" ,t "Ix,p,t) + S (x,t Ix',t '). 
(4.16) 

The phase space principal function (4.10) is manifestly a 
biscalar under the point transformations (3.25). So are the 
functions (4.14) and (4.15) constructed from two such func
tions. We can thus conclude that the function (4.16) satisfies 
requirement I we have imposed on the function (2.31). 

It is easy to generalize the procedure to a finite chain of 
interpolated positions and momenta and find the function 
(2,33) which satisfies requirement II. We simply take 

S(X(N),t(N) IX(K),P(K),t(K)) 
N-I 

= I S(X(K+ l),t(K+ I) IX(KI'P(Kl't(K))' 
K~D 

K = 0, 1, .", N - 1, (4.17) 

and extremize it in the variables X(II'P(I)' 1= 1, .", N - 1 
and in P(D) . When we are not interested in the initial momen
tum Pro) , we get rid of it by substituting its actual value into 
the function (4,16), i.e., we replace the first function, K = 0, 
in the sum by the Hamilton principal function S (X(I) ,t(1) IX(D) , 
tID))' This gives us the function (2.33) which solves the chain 
interpolation problem. 

In the last step, we investigate the continuous limit of 
the function (4.16). Note first how to expand (4.8) in the pow
ers of r on any path x(t ) from t ' to t ", In fact, the only term 
which needs expansion is the initial velocity (4.9), and we 
have already mentioned several times that in the limit t " _t ' 
this velocity goes over into the velocity xa (t ') on the path 
along which x" approaches x', With this change in the mean
ing of the symbol xa' , we can write 

S(x"(t "),t" Ix',p',t ') = (Pa,xa' - !g"'bpa'Pb,)r + orr). 
(4.18) 

We now take any smooth path x(t ),p(t) in the phase space 
connecting x' ,t 'withx" ,t " , skeletonize it, and write down the 
skeletonized action (4.17): 

S(x(t(Nd,t(N) IX(t(K) ),P(t(K) ),t(K)) 
N-I 

= I S(X(t(K+ 1)),tIK + I) IX(t(K)),P(t(K)),t(K))' (4.19) 
K~D 

We expand each link in the chain (4.19) as in Eq. (4.18) and 
refine the skeletonization so that 
r max = maxK = D • .... N _ I T(K) - O. In this way we conclude 
that the canonical action integral (2.26)-(2.27), (4.1) is a con
tinuous limit of the skeletonized action, 

N-I 

= lim I {Pa(t(K)W(t(Kd 
Tmax-......o K=O 

- !g"b(X(t(K))Pa (t(K) )Pb(t(K) )}T(K) 

== r'dt (Paxa - !g"b(X)PaPb)_S [x(t ),p(t )]. (4.20) 
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In the limit T max~' of course, it does not matter if we use 
the skeletonized action (4.19) or the action in which the first 
link S (x(t(1d,t(1) Ix(t(o) ),p(tIO) ),t(O)) was replaced by 
S (x(tll) ),tll ) Ix(tlo) ),tIO))' We have thus satisfied the last re
quirement III), Eq. (2.27), and completed our program. 

When we use the skeletonization (4.17), (4.10) in the 
phase space path integral and perform the momentum inte
grations, we recover the original Feynman prescription. In 
curved space, this leads to an extrea potential term ili2 R in 
the Hamilton operator. We shall now study alternative 
phase space principal functions which lead to different scalar 
curvature terms in the Hamilton operator. 

5. GEODESIC MOTION: ALTERNATIVE PHASE SPACE 
PRINCIPAL FUNCTIONS 

The principal function (4.8) can be completed into a 
square, 

S(x",t " Ix',p',t ') = - Jgt"b'Pa,Pb,T + ~a'b,xa'xb'T,(5.1) 
with 

(5.2) 

Of course, xa' is still given by Eq. (4.9). From Eqs. (3.6) and 
(3.8) we then discover that 

S(x",t" Ix',p',t ') = - Jgt"b'Pa,Pb,T + S(x" ,t" Ix',t 'I, 
(5.3) 

The last form ofthe principal function brings into clear focus 
our fundamental observations: (1) The extremization with 
respect to Pa' leads to the equation 

pa' =0, (5.4) 

which, by Eqs. (5.2) and (4.9), yields the actual momentum, 
and (2) when Eq. (5.4) is substituted back into the principal 
function (5.3), we recover the Hamilton principal function. 

At this point, it becomes obvious how to modify the 
principal function (5.3) while preserving the essential fea-

'b' tures I-III of our algorithm: We simply replace g" by an 
arbitrary regular bitensor Ga'b'(x" Ix') with correct coinci
dence limit 

(5.5) 

There is no lack of suitable candidates. First of all, we 
can multiply g"'b' by an arbitrary power ofthe determinantal 
factor (3.43): 

Ga'b'(X" Ix') = D - vln(x" IX')g"'b'(X'). (5.6) 

For future convenience, we chose the exponent - v/n as a 
ratio of an arbitrary real number vEl - 00,00) with the num
ber of degrees offreedom n ofthe system. The factors (3.43) 
are all positive in a finite neighborhood of x', and the expan
sion formula (3.52) ensures the proper continuous limit. 

Another candidate for G a'b' is a chain constructed from 
M bitensors ~.a'b' or from M inverse bitensors ~ a'b', 

... a'c'... £a' 
~ ~Ib'c' = Ub" (5.7) 

Such a chain takes the form 

Ga'b' =~ la'k'~ Ik[k .... ~ Ik M_\, 1Mb'=(~ la'b'jM (5.8) 
'2 M 
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or 

Ga'b' =~a·k.~k;k .... ~kM 'k' 1Mb'=(~a·b')M. (5.9) 
12M 

Of course, the indices in ~Ia'b' and ~a'b' are raised and 
lowered by the metric tensor at x'. Equation (3.20) ensures 
the correct coincidence limit 15.5). 

Still another candidate for G a'b' is a chain constructed 
from an even number 2M ofbitensors ~.a'b" or an even num
ber of inverse bitensors ~ a'b": 

or 
k" k' J..' 

~ 2M-' .g 2M" 

k2M 

(5.11) 
Again, the primed and double primed indices are raised and 
lowered by appropriate metric tensors at x' or X". This time, 
Eq. (3.19) ensures the correct coincidence limit (5.5). 

The principal function (5.3) was originally written in the 
form (4.10). The modified principal functions (5.8)-(5.11) can 
be cast into a very similar form, 

S (x" ,t "Ix',p',t ') = ( - Pa'~ ,a'(x" IX')T- I 

IGa'b'( "I 'Jp ) -2 X X a'Pb' T, (5.12) 

by a repeated use ofEqs. (3.9)-(3.10). The relationship 
between the modified function (5.6) and the original function 
(4.10), which we for a while call S II' is exhibited in the for
mula 

S(x" ,t" Ix',p',t ') = S" (x" ,t" jx',p',t ')D - vln(x" Ix') 

+ S(x",t "Ix',t ')[ 1 - D - vln(x"jx')]. 
(5.13) 

The simplest chain (5.9), namely, 

Ga'b' = ~a'k"gk"l"~b'l" =(~a'b"f (5.14) 

is particularly interesting because, in the phase space path 
integral formalism, it leads to the Hamilton operator with
out curvature term. We can describe the construction of the 
principal function (5.12), (5.14) in the following manner: We 
take the initial momentum Pa' at x a

' and transport it instan
taneously to the point x a

' by the prescription 

... b' ( "1 ') Pa" =Pb'~ a" X X . (5.15) 

We then start parallel propagating P a" back to xa' along the 
geodesic, evaluating thereby the canonical action integral 
(2.26)-(2.27), (4.1). This integral yields the modified function 
(5.12), (5.14). 

Though permissible by our general criteria, the modi
fied principal functions we have just studied do not have the 
clear geometric appeal of the original function (4.1O). There 
exists, however, a phase space principal function obtained by 
a geometric construction as natural as the parallel transport, 
which leads in the end to the Hamilton operator without 
curvature term. We shall now turn to its discussion. 
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6. GEODESIC MOTION: PHASE SPACE PRINCIPAL 
FUNCTION FROM THE GEODESIC DEVIATION 
TRANSPORT OF MOMENTUM 

Equation (4.5) is not the only covariant differential 
equation satisfied by the actual momentum (4.2): 

(6.1) 

is another such equation. However, unlike the parallel trans
port equation (4.5), Eq. (6.1) is of the second order. There
fore, if we want to propagate the momentum vector pa by 
this equation along the geodesic (4.4) from x',I' to x" ,I", we 
need to know not only the initial value pa' of the momentum, 
but also the initial value [V ,pa] ,~ " of its first derivative. 
We thus adjoin to Eq. (6.1) our old equation (4.5) as the initial 
condition: 

(6.2) 

Taken together, Eqs. (6.1 )-(6.2) define pa at any point of the 
fiducial geodesic once Pa' is given. Moreover, they are linear 
and homogeneous in the momentum, which implies that pa 
must be a linear homogeneous function of the initial momen
tum, 

a Gab'( I 'Jp p = X X b" (6.3) 

For A = 1, Eq. (6.1) has a simple geometric meaning: It 
is the equation of geodesic deviation for the vector pa(l) 
transported along the fiducial geodesic. We can describe the 
geometric content of Eqs. (6.1), (6.2), A = 1, in the following 
terms: 

Take a geodesic hypersurface perpendicular to the fidu
cial geodesic at x'. Parallel-transport the velocity vector i'a' 
along the spike geodesics which generate the surface to near
by points on the surface. At all times, keep emitting free 
systems with these velocities, generating thus a geodesic flow 
in a thin tube about the fiducial geodesic. The velocity field 
within the tube has some distribution va(x) which, because 
the metric does not depend on time, does not depend on time 
either. Take then the base and the tip of the momentum 
vector pa', attach them to the systems which are just passing 
by at a time 1 " and let the systems carry the vector as they 
move. Formally, let pa be Lie propagated by the flow va(x): 

£vpa pa.bvb - pbva.b = V,pa - pbvalb = 0. (6.4) 

Because the field va starts parallel to i'a' in the vicinity of xa', 
Va'lb' = 0. The momentumpa then satisfies the initial condi
tion (6.2). As the transport continues, it is well known that 
the Lie transport (6.4) along any geodesic flow leads to the 
equation of geodesic deviation. 

It is worthwhile to note that it is the contravariant rath
er than the covariant form of the momentum which is Lie
transported. The covariant momentumpa = gabpb in gen
eral, and the actual covariant momentumpa in particular, is 
nol Lie-transported along the described flow, because 

£vPa = £vgab -pb + gab £vpb = £v~b-pb (6.5) 

does not in general vanish, unless the field va happens to be a 
Killing vector field. 

Instead of talking in the dynamical language, we could 
have carried the whole construction in terms of the arc 
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length s along the geodesics, by propagating the unit vector 
dsxa'. In Eqs. (6.1) and (6.2) it does not matter whether we use 
an affine parameter t or another affine parameter s = vI, 
v = con st. For a system moving under the influence offorces 
the distinction becomes nontrivial. 

For A = 0, Eqs. (6.1) and (6.2) are equivalent to Eq. (4.5) 
of the parallel transport. Which transport, the parallel trans
port (4.5) or the geodesic deviation transport (6.1 )-(6.2), with 
A = I, is more natural from the standpoint of Hamiltonian 
mechanics? In the parallel transport, the tip of the transport
ed vector pa does not in general span a geodesic, i.e., an actual 
configuration path of the particle; in the geodesic deviation 
transport it does. For this reason, we feel that preference 
should be given to the geodesic deviation transport. 

The distinction between the two transports is geometri
cally significant. The congruence oflines obtained by paral
lel transporting the tips of different vectors pa' does not have 
any rotation, shear, or expansion. The cross section of a nar
row tube formed by such lines stays the same. Under the 
geodesic deviation transport (6.1)-(6.2), the geodesics start 
originally parallel, but they soon begin deviating from each 
other under the influence of curvature. Physically, when we 
replace the geodesic deviation transport by parallel trans
port, we must use force on neighboring systems to enforce 
the rigidity of the flow. 

In the geodesic flow, the disordering of the originally 
parallel geodesics, due to the second order nature of Eq. 
(6.1), becomes apparent only in the second order terms in (T 

(or 7) along the fiducial geodesic. In the phase space principal 
function which we are going to construct, such terms drop 
out in the continuous limit of the skeletonized action, and we 
obtain the old canonical action integral (2.26)-(2.27), (4.1). 
However, they do not entirely drop out from the phase space 
path integral, giving rise to a nontrivial measure in the con
figuration space path integral. This nontrivial measure leads 
to the Hamilton operator without curvature term. 

Contrast this situation with that obtained under paral
lel transport. Parallel transport forcibly corrects for any dis
order created in the flow by curvature. By maintaining order 
and rigidity by force, it produces the phase space principal 
function which, in the configuration space path integral, 
gives rise to a tame and seemingly trivial measure. This mea
sure, however, ultimately leads to a curvature term in the 
Hamilton operator. Imposing rigid rules on the classical 
flow curves the backbone of the Hamilton operator. The 
moral: Resisting curvature by force does not payoff in the 
last judgement. 

Anticipating this outcome, we have mainly in mind Eq. 
(6.1) with . .1. = I even when carrying out our calculations for 
an arbitrary A. In this spirit, we shalliosely talk about Eq. 
(6.1) with an arbitrary A as the equation of geodesic devi
ation. 

Proceed now with the construction of the appropriate 
phase space principal function. We connect the points x' ,t ' 
and x" ,I" by the actual configuration path x(t) of the system 
(the geodesic) and propagate the initial momentum pa' along 
this geodesic by the equation of geodesic deviation (6.1) with 
the initial condition (6.2). We define the principal function 
S (x" ,t " Ix',p' ,I ') as the canonical action integral (2.26)-(2.27), 
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(4.1) evaluated along the phase spacepathx(t ),p(t) which we 
have just described. 

We split the canonical action integral into two pieces 
along the lines of the canonical Lagrangian (2.27). We inves
tigate first the piece obtained from the Cartan formpaxa. 
From Eqs. (4.4) and (6.1), 

(6.6) 

at all times. Further, from Eqs. (4.4) and (6.2), 

[d,(Paxa)],~" = [V,(Paxa)]r=" = [V,Pa]'~t'Xa' =0 
(6.7) 

at least at the initial moment t '. Therefore, 

Paxa' = Pa,xa' = - Pa'~ .a'(x" IX')7- 1 

and the first piece of the canonical action integral is 
," J. dt Pa xa = - Pa'~ ,a'(x" Ix'). 

The second piece of the canonical action integral 

SH= r" dt !,g"b(x)PaPh 

(6.8) 

(6.9) 

(6.10) 

cannot be written in such an explicit from, but we can infer a 
number of its properties. 

When we reparametrize the path x(t ) by the arc length s, 
we see that S H (x" ,t " lx' ,p' ,t ') is proportional to 7 = t " - t ': 

SH = ~7G(x"lx',p'), 

where 

G (x" Ix',p') = O'-1f" ds g"bpaPb 

does not contain any reference to time. 

(6.11) 

(6.12) 

From Eq. (6.3) we learn that G (x" lx' ,p') is a quadratic 
form inp': 

G(x"lx',p') = Ga'b'(x"lx')Pa'Ph', (6.13) 

with 

Ga'b'(X" Ix') = O'-1is'dS lfdGc a'G/'. 
s' 

(6.14) 

We replace the quadratic form (6.13) by the bilinear 
form 

(6.15) 

in which bothPa = Ga bpb , andpa = Ga b'Pb' are propagated 
by the geodesic deviation equation (6.1)-(6.2) in the s para
metrization. Choose now a special vector propagated in this 
way:pa = dsxa. The integral in (6.15) can be calculated in the 
same manner as the integral (6.9), and we thus get 

(6.16) 

Because Pa' is arbitrary, 

Ga'b'~,b' =~,a'. (6.17) 

The tensor-scalar G a'b'(x" Ix') acts thus on ~,b' in the same 
way as the metric tensor g"'b'. From Eq. (3.6) is also follows 
that 

~Ga'b'~,a,~,b' =~, (6.18) 
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We summarize our results by saying that the phase 
space principal function is a quadratic function of the initial 
momentum, 

S(x" ,t" Ix',p',t ') = - Pa'~ ,a' - ~Ga'b'(x" Ix')Pa'Pb' '7, 
(6.19) 

in which the coefficient Ga'b' has the property (6.17). From 
these facts alone it is easy to show that the funciton (6.19) can 
be used for interpolation in the same manner as our old func
tion (4.10). The extremization of the principal function (6.19) 
is p' gives the equation 

as (x" ,t " lx' ,p' ,t ') = - ~ ,a' - G a'b Pb"7 = 0, (6.20) 
apa' 

which, by the property (6.17), has the correct solution (4.11) 
for the actual momentum, Further, when we substitute this 
solution back into Eq, (6.19), the principal function reduces 
to the Hamilton principal function (3.3) by virtue ofEqs. 
(3.6) and (6.18), Again, these results could have been per
ceived immediately, without any calculation, from the con
structive definition of our new principal function. 

To prove that the continuous limit of the skeletonized 
action (4.19) based on the new principal function (6.19) again 
leads to the canonical action integral, we need to expand the 
coefficient Ga'b'(x" Ix') in powers of the geodesic separation 
u(x" Ix'). When the Hamiltonian H (s) = !,g"b(x(s))Pa (S)Pb (s) 
entering into the integral (6.12) is expanded in powers of 
(s -s'), 

H(s) = H(s') + [dsH(s)]s'(s - s') 

+ H d;H(s)L'(s - S')2 + oils - S')3), (6.21) 

we can write 

G(x"lx',p') = 2H(s') + [dsH(s)]s,O' 

+ j[ d;H(s)]s'~ + o(~). (6.22) 

By differentiatingH (s) along the phase space path (4.2), (6.1), 

dsH= VsH=paVsPa' 

d;H = V;H = VspaVsPa + paV;Pa 

= VspaVsPa - J..Rabcdpaubpcud, 

and using Eqs. (6.2), (3.12), we obtain the coefficients 

[dsH (s) ]s' = 0, 

(6.23) 

[d;H(s)L' = _J..Ra'c'b'd'~,c,~,d,O'-2Pa"Pb'· (6.24) 

As a result, 

and 

G (x" Ix',p') = (g"'b' - JAR a'c'b'd'~,c'~,d' )Pa'Ph' + o(~) 
(6.25) 

(6.26) 

The coefficient G a'b' differs from the metric g"'b' only in 
terms which are of the second and higher order in 0'; this 
ensures the correct continuous limit of the skeletonized ac
tion. The exact form of the second order term in Eq, (6.26) 
plays a vital role in phase space path integration. It is entirely 
responsible for the appearance of a nontrivial measure in the 
configuration space path integral. 
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To summarize, the principal function obtained from the 
geodesic deviation transport has the form (6.19) in which the 
bitensor G a'b' has the expansion (6.26). Due to Eqs. (6.17) 
and (6.18), we can again complete it into a square and write it 
thus in the form 

S(x",t" Ix',p',t') = - !Ga'b'Pa,Pb,T + S(x",t" Ix',t '), 
(6.27) 

with 

(6.28) 

7. SYSTEM WITH POTENTIALS: PHASE SPACE 
PRINCIPAL FUNCTION FROM PARALLEL TRANSPORT 
WITH A FORCE TERM 

Having learned the rules of the game on geodesic mo
tion, we tum to a system moving under the influence of a 
generalized potential V - Aaxa. From the Lagrangian (2.35) 
we get the covariant acceleration 

(7.1) 

The system is driven away from a geodesic by the force 

(7.2) 

which has the "electric" component - v'a and the "mag
netic" component 

Dba =Aa,b -Ab,a' (7.3) 

Note that the metric tensor is not needed to obtain the force, 
but it enters into the covariant derivative Vtxa. 

The first Hamilton equation 

xa = pa _ A a=rf' (7.4) 

is covariant under point transformations. The second Ham
ilton equation is not, and we better replace it by a covariant 
equation 

(7.5) 

We have introduced the abbreviation rf' for the mechanical 
momentum of the system. This momentum is driven away 
from the parallel transport by the force (7.2). 

Equations (7.1 )-(7.3) define the actual configuration 
path of the system from x',t' tox" ,t". Equation (7.5) propa
gates any initial momentumpa' along this path. We define 
the phase space principal function as the canonical action 
integral (2.26)-(2.27), (2.36) evaluated along this pathx(t ),p(t ) 
in the phase space. 

Find what happens to the canonical Lagrangian (2.27), 
(2.36) under the transport (7.1 )-(7.3), (7.5). Because 

Vt (!g"b1Ta 1Tb) = 1Ta Vtrf' = rf'Vtxa 

= Vt(1TaXa) - xaVt1Ta 
= V (17' xa) - xav X = V (17' x a _ l.,abXOXb) 
tat a t a 26 ' 

(7.6) 

we see that the rate of change of the canonical Lagrangian L 
is the same as the rate of change of the configuration space 
Lagrangian I: 

dtL = VtL = Vt((1Ta +Aa)Xa - ~b1Ta1Tb - V) 
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From here, 

L (t) = L (t') + I (t) -I (t '). 

Integrating, 

S(x",t "Ix',p',t') = (Pa,xa' - H')T -I'T + it"dt l(t). 
t' 

However, the last integral is nothing else but the Hamilton 
principal function S (x" ,t " lx' ,t '). We write the final result in 
the form 

S (x" ,t" Ix',p',t') = (Pa,xa' - H ')T 

+ S (x" ,t" Ix',t') - I'T. (7.8) 

Here, H' is the initial Hamiltonian (2.36), and I' is the initial 
Lagrangian(2.35). The initial velocity xa' is to be expressed in 
terms of the configuration boundary data as 

xa' = _ (S ,a'(x" ,t "Ix',t') + A a'(x')). (7.9) 

We see that only the first term in the phase space principal 
function (7.8) depends on the initial momentumpa'; the re
maining two terms depend solely on the configuration varia
blesxa

' andxa". The principal function (7.8) is thus a quadrat
ic function of the initial momentum p a' , like the Hamiltonian 
of the system. When we extremize it in the momentum p a' , 

O - as _ as _ . a' _ -,,' ---- -x '/I, 

apo' a1Ta, 

(7.10) 

we obtain the actual momentum (7.4). When we substitute 
this momentum back into Eq. (7.8), L '-+1' and the phase 
space principal function reduces to the Hamilton principal 
function: 

S(x" ,t" Ix',p'(x",t" Ix',t '),t') = S(x",t" Ix',t '). (7.11) 

From our previous experience, we immediately conclude 
that the function (7.8) inevitably leads to the correct algo
rithm for interpolation, skeletonization and taking the con
tinuous limit. 

For a free system,S(x",t "Ix',t') = !'Tand only the first 
term is left in the expression (7.8). We thus recover our old 
result (4.10). 

The most remarkable feature of the principal function 
(7.8) is that it works not only for the special system (2.35), 
(2.36), but for an arbitrary dynamical system. Let H (x, p) be 
the Hamiltonian of this system, I (x,x) its Lagrangian, and 
define the phase space principal function by the prescription 
(7.8), in which x' is interpreted as the function 

xa' = aH (x' ,p') I 
apa' Pa'= -Sa,(x",t"lx',t') 

(7.12) 

of the configuration boundary datax',t' andx" ,t ". Byextre
mizing the expression (7.8) inPa" 

as = [xa, _ aH (x' ,p') ]'T = 0, 
apa' aPa' 

(7.13) 

we get an equation which is obviously solved by the actual 
momentump a' = - S,a' (x" ,t " Ix' ,t '). As we substitute the ac
tual initial momentum (7.13) into the expression (7.8), the 
first and the last terms cancel by virtue of the Legendre 
transformation (2.28), and we are left with the Hamilton 
principal functionS (x" ,t " Ix' ,t '). We have then only to follow 
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the familiar steps of our old algorithm dealing with interpo
lation, skeletonization, and continuous limit. 

For special systems (2.35)-(2.36), the principal function 
(7.8) can again be completed into a square (5.3) with 

P . +S ( " "I' ') a' = 1Ta' - Xa' = Pa' ,a' X ,t X ,t . (7.14) 

We can modify the principal function (7.14) in the same way 
we have modified the principal function (5.3), without dis
turbing the properties I-III of our algorithm. This device 
enables us to introduce an arbitrary measure into the config
uration space path integral. In particular, we can choose the 
modified function such that the curvature term drops out 
from the Hamilton operator. However, the geodesic devi
ation transport with forces which we shall discuss in the next 
section achieves the same aim in a geometrically natural 
way. 

S. SYSTEM WITH POTENTIALS: PHASE SPACE 
PRINCIPAL FUNCTION FROM GEODESIC DEVIATION 
TRANSPORT WITH A FORCE TERM 

We replace now the propagation equation (7.5) of mo
mentum by the second-order equation 

(8.1) 

and adjoin Eq. (7.5) to it as an initial condition, 

(8.2) 

The momentum is still propagated along the actual configu
ration path (7.1)-(7.3) of the system. The actual momentum 
(7.4) satisfies the transport equations (8.1), (8.2). For Ii = 1, 
Eq. (8.1) tells us that the mechanical momentum ~ is divert
ed from the geodesic deviation transport by the differentiat
ed force. 

We define the phase space principal function as the ca
nonical action integral evaluated along the phase space path 
determined by conditions (7.10), (7.3), and (8.1)-(8.2), which 
matches the boundary data x',p',t' and x" ,t ". Because the 
actual momentum 

(8.3) 

satisfies, on one hand, the transport equations (7.1)-(7.3) and 
(8.1 )-(8.2) and, on the other hand, extremizes the canonical 
action functional (2.26)-(2.27), (2.36), we can conclude that 
the initial momentum 

. A S ( " "I' ') Pa' = xa' + a' = - ,a' x,t X ,t (8.4) 

extremizes the principal function S (x",t "Ix',p',t 'I. Further, 
when we substitute the actual momentum (8.3) back into the 
canonical action integral, the canonical Lagrangian L (xa

, xa, 
Pa = xa + Aa) goes by the Legendre dual transformation 
(2.28) into the ordinary Lagrangian I (xa, xa) evaluated along 
the actual configuration path, and the phase space principal 
function goes over into the Hamilton principal function 
S (x",t" Ix',t 'I. Without any calculation, wecanconcludethat 
the interpolation and chain interpolation algorithm is cor
rectly posed. 

The new phase space principal function is again a qua
dratic function of the initial momenta. To see that, we rear-
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range the canonical Lagrangian 

L = (1Ta +AaW - !~1Ta - V 

= _!(~-Xa)(1Ta -xa)+!iQXa +AaxQ- V 

= -1(~ - xa)(1Ta - Xa) + I (x,x) (8.5) 

and introduce the abbreviation 

Pa-1TQ-xa=Pa-Aa-xa' (8.6) 

The quantities P a satisfy the transport equation 

'V~Pa + J.RabcdXbPCxd = 0 (8.7) 

with the initial condition 

['VtPa]t~t' =0. (8.8) 

Because these equations are linear in Pa , 

Pa(t) = Gab'(x,flx',t')Pb" (8.9) 

The phase space principal function is obtained by integrating 
(8.5) along the path (7.1), (8.7)-(8.9): 

S(x",t" Ix',p',t ') = - + j'''dt g"bPaPb + S(x",t "Ix',t '). 

(8.10) 

The first integral is a quadratic form of Po" namely, 

~ It "dt g"bPaPb 
2 t' 

= ~ It "dt gcd (x(t ))Gc a'(x(t ),t IX',t ') 
2 t' 

.Gdb'(X(t ),t Ix',t ')'Pa'Pb' 

-!7- IG a'b'(x",t "Ix',t ')PaPb" (8.11) 

and thus a quadratic function of the initial momentum Pa" 
We can thus write 

S (x" ,t" Ix',p',t ') 

= S (x" ,t "Ix',t ') - ~7G a'b '(x",t "Ix',f ')Pa' Ph , . (8.12) 

By extremizing (8.12) inPa' , we get the equation 

0= as = Ga'b'Pb,. (8.13) 
apa' 

Around x' ,t " G a' b' is nondegenerate and thus P b' = O. Due 
to the meaning of Pa , Eq. (8.6), this yields the correct actual 
value (8.4) of the initial momentumpb" When we substitute 
Pb' = 0 back into Eq. (8.10), we see that S (x",t "Ix' ,p',t ') re
duces back to the Hamilton principal function. This gives a 
formal check of our intuitive result. 

To express the coefficient G a'b '(x",t "Ix' ,t ') as a power 
seriesin7 = t" - t 'andO' = O'(x" Ix'), we expand !E5bpaPb in 
powers of t - t' and integrate. As in Eq. (6.26), we get 

In a moment, we shall show formally that the quantity 
7Xa(X",t" IX',t ') is of the order 1 in the variables 7 and 0'. In
specting the propagation equations (7.1 )-(7.3) and (8.6)-( 8. 8), 
it is not difficult to conclude that all further terms in the 
expression (8.14) must be at least of the order 3. 

As t " --..t ' andx" approaches x' along a smooth pathx( t ), 
xa(x",t " lx' ,t ') approaches the velocity xa' (t ') on this path. 
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Neglecting the higher order terms in 1', we write 

S(x"(t "),t" Ix',t ',p') 

= [[(x(t "),x(t")) - !g"'b'Pa,Pb, J1' + orr) 
'a' 'b' V') (-2) = (Pa'X -!g" 1Ta' 1Tb , - l' + 0 T ' (8.15) 

This is sufficient for the skeletonized action to yield the ca
nonical action integral in the continuous limit. Again, the 
detailed form of the expression (8.14) is needed to derive the 
configuration space measure in the path integral formula
tion. 

We shall now study the short time form of the Hamilton 
principal function. For a free system, Eq. (3.6), time and 
position clearly separate in the Hamilton principal function. 
This is no longer true when potentials are present. Even in 
the simplest problems, the Hamilton principal function is a 
fairly complicated function of time. Two examples may help 
to illustrate this point. For a linear harmonic oscillator 

H=~2+02, gil = 1, Aa =0, V=~2 (8.16) 

we have 

S (x" ,t "Ix' ,f') = 1(X,2 + X,,2) cot l' - x'x" sin l' (8.17) 

and for a charged paticle (e = 1) moving in a homogeneous 
magnetic field B a = (0,0,1), the uniform motion in the x 3 

direction suppressed, 

H = H(pl + 1x2f + (p2 _1XI)2}, 

gab = Dab' Aa = ~( - X2,XI), 

we have 

V= 0, a = 1,2, 

S (x",!" Ix',!') = ~Dab(Xa" - xa')(xb" - x b') cot ~1' 

(8.18) 

(8.19) 

For 1'---+0, the Hamilton principal function diverges, as 
we already see from the expression (3.6) for a free system. We 
must start our expansion with a term of order 1'-1: 

S (x" ,t" Ix',t') =.2' (x" Ix')1'- 1 + T(x" Ix') 

+ $ (x" Ix')T + orr). (8.20) 

To satisfy the Hamilton-Jacobi equation (2.12), (2.36) in the 
three lowest powers of 1', namely, 1'-2, 1'-1, and~, we must 
put 

"b' !g" .2',a".2',b' -.2' = 0, (8.21) 

.2' ,a"(1'.a- - Aa.) = 0, (8.22) 

!g"-h -(1'.a- - A a" H1'.b' - Ah" ) + 4> +.2' ,a" $,a' + V' = O. 
(8.23) 

Similar equations follow from the second Hamilton-Jacobi 
equation (2.13) 

'h' !g" .2',0' .2',b' -.2' = 0, 

.2' ,a'(1'.a' + Aa,) = 0, 

(8,24) 

(8.25) 

!g"'b'(1'.a' +Aa, )(1'.b' +A b ,) + $ + .2',a'$,a' + V' = O. 
(8.26) 

Equations (8.21) an (8.22) guarantee that.2' (x" Ix') is the 
world function. The expansion (8.20) of the Hamilton princi
pal function thus always starts with the Hamilton principal 
function of a free system. 
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We know what we need about the coincidence limits of 
.2' and its derivatives. To learn something about the coinci
dence limits of T and $, we differentiate Eq. (8.22) twice, 

.2'la-b"(1'.a" -Aa-)+.2'·a-(Tla-h- -Aa-lh")=O. (8.27) 

.2'la-h-e·(Tla _ -Aa-)+.2'la-(h-(Tla-e-1 -Aa-Ie-I ) 

+.2'la"(T1a-b-e" -Aa"lb"e") =0, 

and take the coincidence limits. We gee4 

[1'.0- - Aa" J = 0, 

[Tla"b- - ~(a-lb"l] = 0. 

Similar equations follow from Eq. (8.25): 

[1'.a' + Aa, ] = 0, 

[ T1a'b' + ~(a'ib 'I] = 0. 

Equations (8.30) and (8.32) imply that 

(8.28) 

(8.29) 

(8.30) 

(8.31) 

(8.32) 

[.<1 "T] = A a- Ia-, [.<1 'T] = - A a'la" (8.33) 

From the coincidence limit ofEq. (8.23) or (8.26) it follows 
that 

[$]=-V". (8.34) 

When we take the coincidence limit ofEq. (8.20) and follow 
it by the time limit 1'---+0, we get 

lim S(x",t"lx',t') = [T]. 
t'_t" 

From Eq. (2.15) we conclude that 

[T] = O. 

(8.35) 

(8.36) 

This is all we shall need to know about coincidence limits of 
the biscalars T and $. 

One can illustrate the derived relations on the two sim
ple examples (8.16) and (8.18). For the linear harmonic oscil
lator, 

.2'=~(X"_X')2, T=O, 4>= _~(X'2+X"2+X'X"). 
(8.37) 

For a charged particle moving in a homogeneous magnetic 
field, 

.2' = ~ab(Xa- - xa')(xb' - xb'), T= !(XI'X2" _ X2'X I"), 

$ = - -bl'. (8.38) 

One can easily verify that these expression satisfy Eqs. 
(8.21)-(8.26) and have the coincidence limits (8.29H8.36). 

From Eq. (8.4) we see that 

1'xa, = - .2'.a' - (1'.a' + Aa, )1' - ¢l.a' r + .... (8.39) 

From the coincidence limits (8.31 )-(8.32) we see that the sec
ond term, 1'.a· + Aa" is at least of the second order in u . 
Therefore, neglecting terms of order 2 or higher in l' and u, 
we can write 

1'xa'::::: -.2' .a' . (8.40) 

This proves our assertion that 1'xa' is of the order 1 and ena
bles us also to replace the coefficient (8.14) by the coefficient 
(6.26) of a free particle. We have thereby all our tools ready 
for the passage to path integrals. 
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9. QUANTUM PROPAGATOR. PHASE SPACE AND 
CONFIGURATION SPACE PATH INTEGRALS 

In quantum mechanics, positions x a and momenta P a 

are turned into operators XU and Pa satisfying the commuta
tion relations 

[xa,xb] =0, [Pa'Pb] =0, [Xa,Pb] =ilifj~. (9.1) 

We take our state functions I/J(x,t) to be scalars normalized 
over position variables by the prescription 

(tf;Itf;) = J d"x gl!2(X)tf;*(x,t )tf;(x,t). (9.2) 

We represent xa and Pa by the operators 

xa = xa" Pa = - ifzg-I!4 aagl !4 (9.3) 

acting on the state functions tf;(x,t). The operators (3.3) sa
tisfy the commutation relations (9.1) and are Hermitian un
der the inner product (9.2). 

The classical Hamiltonian (2.36) must be represented by 
a covariant operator, which is again Hermitian under the 
inner product. This requires an appropriate ordering of the 
noncommuting operators xa and Pa' The standard choice 

H = -W- I!4(x)[Pa -Aa(x)]gl/2~b(x) 

X [Pb -Ab(X)]g-1!4(x) + V(X) 

= - -lIZZ.1 + i/i(A a aa +!A ala) + V +!A aAa (9.4) 

leads to the covariant Laplacian .1 ~bV a Vb and to the co-
variant symmetric ordering of the classical linear term 
-AapQ· 

The choice (9.4) is, unfortunately, not the only one 
which is covariant and Hermitian. In particular, one can add 
to the operator (9.4) an arbitrary multiple ofthe scalar curva
ture R, 

(9.5) 

which effects neither covariance not hermiticity of the Ham
ilton operator. The transition to quantum theory is thereby 
ambiguous. We shall see that different skeletonizations of 
the canonical action lead to Hamilton operators (9.5) with 
different values of AE( - 00,00). 

Leaving undecided which Hamiltonian, (9.4) or (9.5), 
we are using, we subject the state function to the Schr6dinger 
equation 

if/attf; = Htf;. (9.6) 

The general solution ofEq. (9.6) is provided by the 
quantum propagator (x" ,t " lx' ,t '), This propagator evolves 
the state function ¢(x' ,t ') at t ' into the state function tf;(x" ,t ") 
at t ", 

¢(x",t") = jdnx, (x",t"lx',t')tf;(x',t'). (9.7) 

For scalar state functions, the propagator must be a scalar in 
x" and a scalar density in x'. Because the Schr6dinger equa
tion (9.6) is linear, the propagator satisfies the composition 
law 

(x",t "Ix',t') = j (x",t "Ix,t) dnx (x,t Ix',t '). (9.8) 

The measure d"x in Eq. (9.8) is consistent with our assign-
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ment of weights. The composition law (9.8) can be general
ized to an arbitrary number of steps, 

(x" ,t" Ix',t ') = J)JI1d nxlI ) )]~ (X(K -t IPtlK + I) IxIK),t(K)' 

x'=x(O)' t'=tIO)' x" =X1N )' t" =tIN ). (9.9) 

In this form, it serves as a point of departure for introducing 
configuration space path integrals. 

In addition to the composition law, the propagator 
must satisfy the Schr6dinger equation 

if/at" (x",t" Ix',t ') = H" (x",t" Ix',t ') 

with the boundary condition 

(x" ,t 'Ix',t ') = 8(x" Ix'). 

(9.10) 

(9.11 ) 

In fact, the propagator is uniquely determined by the condi
tions (9.10)-(9.11). Note that our {j functions are scalars in 
the first argument and scalar densities in the second argu
ment. 

At this stage, we have finally approached the main task 
of this paper. We want to represent the quantum propagator 
by an integral over all phase space paths x(t ),p(t ) which start 
in the configuration x' at t ' and end in the configuration x" at 
t ", 

(x",t"lx',t')dnx'= jDxDPe ili 'Slx1t).Pit)]. (9.12) 

Here, S [x(t ),p(t)] is the canonical action integral and Dx Dp 
is a measure in the space of phase space paths. 

The phase space principal functions which we have in
troduced enable us to interpret the formal expression (9.7) in 
a manifestly covariant way. We skeletonize the canonical 
action by the chain (4.17) of phase space principal functions 
S(X(K + I)' tlK + 1)lxIKPP(K)' tIK )) and take the measureDx Dp 
to be the product 

N-I 
Dx Dp = IT (2'1rij) - n d nX(K) d np(K) (9.13) 

K~O 

of the invariant Liouville measures d nx d np on phase space, 
each measure divided by the quantum cell (2'1rij)" of the phase 
space. There is one such measure at each time tlK) K = 0, 1, 
oo., N - 1, with the exception of the final time tiN)' The inte
gration is performed over all of the momenta PIK) , K = 0, 1, 
oo., N - 1, but only over the interpolated coordinates x(I)' 

1= 1, oo., N - 1. The differential d nx ' thus remains unused 
in the integral (9.12), and it appears on both sides of the 
equation. An asymmetric way in which the x integrations 
and P integrations are performed reflects the fact that the 
paths have fixed boundary configurations, but free boundary 
momenta. Of course, the integration over the initial position 
x' is performed when the quantum propagator is used to 
evolve the state function by Eq. (9.7). 

The phase space principal function can be any of the 
functions which we have discussed in previous sections. 
Note that the Planck constant occurs only at two places: It 
divides each principal function to turn it into a dimension
less phase, and it divides each Liouville measure d nx d np to 
turn it into a dimensionless measure (2'1rij) - n d nx d np. 
There is no f/ in the canonical action integral itself, such as 
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that which occurs in "compensating quantum potential" 
terms -fi1R introduced by DeWitt? 

We define the path integral (9.12) as a limit of the de
scribed Nn.(N - 1 )n-fold integral (x' integration omitted) as 
N~ 00 while the skeletonization is infinitely refined: 

f Dx Dp eHi-'S (x(t),P(t IJ 

- lim fN If (21rli) - " d "X(K I d "PiK) 
T mu---D K = 0 

X exp{ili-IS (XIK + II'!(K + I) IX'K' ,P(KI'!(K))}. (9.14) 

During the integrations (9.14), X(K + II' P(K + II' !IK + II may 
differ from X(K I' P(K) at a neighboring !IK I by an arbitrary 
amount. This reflects an intuitive notion that "paths" which 
we use in the path integral (9.14) do not need to be smooth. In 
fact, it is well known that such "nondifferentiable paths" 
dominate the path integral. It is exactly this circumstance 
which brings into prominence the second-order terms in the 
coefficient Ga'b', which could have been neglected in the 
continuous limit when passing to the canonical action inte
gral along a smooth path. 

The prescription (9.14) for the propagator is manifestly 
covariant under point transformations (2.32). This is ob
vious, because the integrand of the skeletonized expression 
(9.14) is a multiscalar under point transformations and the 
Liouville measure d "X d "p is an invariant measure under all 
canonical transformations. Of course, only "half the mea
sure" is used at the initial P' integration at !(Ol = ! '. Conse
quently, at x', the in~egral (9.14) transforms so that it gets 
multiplied by detlaxb';axa

' I under the point transformation 
(2.32); i.e., it behaves as a scalar density at x'. This is consis
tent, because the propagator which we are calculating is also 
a scalar density atx'. Of course, with the coordinate cell d "x' 
included on both sides of Eq. (9.12), each side again trans
forms as a scalar at x'. 

For special systems (2.36), the momentum integrals can 
be explicitly evaluated. The phase space path integral (9.14) 
reduces thereby to a configuration space path integral 

(x" ,!" lx',!') d "x' 

in which 

C (x" ,I" lx',! ')= f d "p' (21rli) - "eill-'S(x",t "Ix·,p',t'). (9.16) 

Equation (9.15) looks like the limit of the multiple composi
tion law (9.9), in which C(x" ,!" lX',!') replaced the quantum 
propagator. We shall call C (x" ,! " Ix',1 ') "the classical propa
gator." To show that the expression (9.15) is indeed the 
quantum propagator, we need only to prove that each classi
cal propagator in the chain (9.15) approximates the corre
sponding quantum propagator in the chain (9.9) so fast that 
the discrepancy between the two chains disappears in the 
limit r max -0. This happens when 

lim r-I(x",t "IX',!') - C(x",1 "lx',I')) = O. 
T-->O 

(9.17) 
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Because the quantum propagator is uniquely determined by 
the differential equation (9.10) with the boundary condition 
(9.11), Eq. (9.17) is established once we prove that 

lim C (x" ,!" lx',!') = D(X" Ix') (9.1S) 
t"---+t' 

and that C (x" ,I" lx' ,I') satisfies the Schrodinger equation in 
the limit! "~t'. 

lim (ih at" - H")C (x" ,!" lx',!') = O. (9.19) 
("-I' 

This we shall do in the last section. 

10. MEASURE FOR MEASURE 

All phase space principal functions which we have con
sidered are ultimately reducible to the same basic form 
(S.12), with Pa given by Eq. (S.6). They differ only by the 
coefficients Ga'b'. For those principal functions which were 
generated by parallel transport of momentum, Ga'b' is sim
ply the metric tensor g"'b' [cf. Eq. (5.3)]. We modified such 
functions by two methods: By multiplicative factors (5.6), 
(3.43), or by replacing g"'b' by the chains (5.8)-(5,11), (5.14), 
For those principal functions which were generated by the 
geodesic deviation transport of momentum [Eqs. (6.19) and 
(6.26) for the geodesic motion, Eq. (S.12) for motion under 
forces], Ga'b' differs from g"'b' in the second order by a Rie
mann tensor term, Eq. (6.26). We enter the coefficients Ga'b' 
into the first column of the Table I. The second column re
fers back to the place where the coefficient Ga'b' was first 
introduced. The meaning of the following columns will un
ravel as we proceed. 

The form (8.12) of the phase space principal function 
implies that the classical propagator (9.16) is a product of a 
Gaussian integral in the momenta with a phase factor given 
by the Hamilton principal function, 

C(x",! "IX',!') 

= (21rli)-nf dnp' exp( - !ili-IrGa'bpa,Pb') 

Xexp{ili-IS(x",t "lx',I')}. (10.1) 

The Gaussian integral with any positive definite matrix H ab 
can be evaluated, yielding 

f d np exp( - HabpaPb ) = JT"/2(det Hab)1/2, (10.2) 

where Hab is the inverse matrix to H abo Modulo the standard 
difficulty associated with the presence of i in the Gaussian 
integral of Eq. (10.1), we get 

C (x" ,I" lx' ,I') = (21Tilir) - "/2(det Ga'b' )1/2 

X exp{ili-IS (x" ,!" lx',! ')}. (10.3) 

The quantum propagator (9.15) thus takes the form 

(x" ,I" lx',!') d "x' 

= T~~~-.ofJtdnx(K' (21TimIKI ) - "/2 

X (det GaIKlbIK,(X(K+ IllxIKI))1/2 

X exp{ili-IS(X(K + II'/(K + I) IX'K' ,tIK) )}, (10.4) 
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TABLE I. 

Phase space Measure 
principal discussed 
function GQblx"lx') Eq. Alx"lx') by A til -A) 

Parallel Feynman 0 

transport 

D - Y/"(x" Ix') g"h(X'), with (5.6) D',with 

D = D",,;::: I - ~R a"b"I.a"I. b" D!" ;:::1-ivRu"h"I.a"I.h" -v ill + vj 

Factor- (3.41) 
modified D= D,,;:::I -IRu"b"I.u"I .•. (3.43) D .Y.;::: I -lvR u"·"I.u .. I. h" -v W +vj 

13.52) 

P 
v a ~v tll- v) 

D = D ... ;::: I+!R a"·"I.u"I. b" D.·· .. ;::: i + tvR ""h"I, a"I. h" V = 2 C. DeWitt r 0 

v = 1 Pauli- k 
B. DeWitt e I 

" 
(I'a'b')M 15.8) D-M;:::i + jMRa"b"I.a"I. b" M !II-M) 

IIu'b')M 15.9) D~;:::i -iMRu"b"I.a"I.h" -M !(1 + M) 

Chain-
modified II·a'b")2M (5.10) D,-;2M;:::I-iMRu"b"I,u .. I ,h" -M til +M) 

(Iab")2M 15.11) D ~~;::: I + jMR a"b" I, a"I, b" M ill-M) 
Parker 

(Iab")' (5.14) D,,,;::: 1 + jR u"h"I,u"I, h" 0 

True Parker 
Geodesic ..1.=1 ;:::g"'b _ jR u'h'I. a,I. b' ;::: 1 + jR a"b"I. a"I, b' C. DeWitt 0 

deviation 16.25) 
transport Modified 

A ;:::g"'b' -jARU'b'I.a,I. b, 

which we can interpret as the skeletonized configuration 
space path integral 

(x",t "Ix',t') dnx' = J Dx eili-'S(X(t)), (10.5) 

whose phase is given by the Lagrangian action functional 
(2.1) and whose measure in the space of configuration paths 
connecting the fixed boundaries x' at t ' with x" at t " has the 
skeletonized form 

N-I 

Dx = IT d nX(K I (21Tili'T(K I) - n!2 
K=O 

X(detGa b (X(K+lllx(K IW12
. (10.6) 

(K) (K) 

The measure (10.6) is determined entirely by the phase 
space principal function, which we used to skeletonize the 
canonical action integral. For the principal functions gener
ated by parallel transport, 

N-I 

Dx = IT d nX(K) gI/Z(X(KI H21Tili'T(K)) - n/Z. (10.7) 
K=O 

In other words, the measure 

D(KIX = d nX(KI gI/Z(X(KI H21Tili'T(KI) - n!2 (10.8) 

associated with a short stretch of the beam of configuration 
space paths starting at the gate d nX(K) and propagating for a 
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;:::1 +jA.Ru"b"I,a"I,b" A til-A) 

short time 'T(K I = t(K + II - t(K I to the next gate at X(K + II is 
proportional to the proper area d nX(K I gl IZ(X(K I) of the initial 
gate, the factor of proportionality (21Tili'T(K + II) - n/2 being 
the same whatever place X(K + II is the next gate located. In 
flat space treated in Cartesian coordinates, gl I 2 = 1 and the 
measure (10.6) is the original Feynman measure" The expres
sion (10.6) coincides with DeWitt's generalization of the 
Feynman measure to curved spaces.z 

The Feynman measure is trivial, because it does not 
depend on the position X(K + II of the next gate to which the 
beam of paths is propagating. This is no longer true if we base 
the phase space path integral on one of the modified phase 
space principal functions. Each element (10.7) of the Feyn
man measure gets multiplied by a factor A 112 (X(K + II IX(K I) 

coming from the determinant in Eq. (10.5): 

D- d n 1/2( ) (2"~ ) - n/2 A I12( I) (Klx = X(KI g x(KI' 1TITl'T(KI • X(K+ II X(KI . 

(10,,9) 

We list such factors in the third column of Table I. In the 
fourth column, the people who discussed various configura
tion space path measures are mentioned by name. If the fac
tor is known only in the expanded form, we enter::::; into the 
third column. In fact, the approximate form of all factors is 
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always the same, namely 

A (x"lx');::: I + JAR a"b"~.a"~.b'" (10.10) 

We thus enter into the fifth column simply the values of the 
parameter A. For the chain modified measures, this param
eter is a whole number. 

Let us finally discuss the measure which follows from 
the geodesic deviation transport. From Eq. (6.25), 

1 c' d' 
Ga'b' ;:::ga'b' + JAR a' b' ,I,c,,I.d" 

and by the trace rule, 

det Ga'b' ;:::g'(1 + JAR a'b',I.a'~.b') 

;:::g'(1 + JAR a"b",I,a",I.b")· 

This leads exactly to the factor (10.10). 

(10.11) 

(10.12) 

The conclusion at which we have just arrived in worth 
emphasizing over and over again. We started from phase 
integrals with the natural Liouville measure, but with skele
tonizations of the canonical action integral ruled by different 
phase space principal functions. Each choice of the phase 
space principal function induces a different measure in the 
space of configuration paths. The configuration path mea
sure obtained from the rigid parallel propagation of momen
tum is trivial, but other measures are not. In particular, the 
measure imposed by the geodesic deviation transport whose 
sovreignity comes directly from geometry, the ultimate 
source of authority for a relativist, is nontrivial. The Liou
ville measure is unique and unambiguous, but the configura
tion space path measure is at the mercy of the phase space 
principal function. The law is unambiguous, but the result of 
a trial depends on the judge. We must know the character of 
the phase space principal function to forsee what configura
tion space path measure will result from the phase space path 
measure. 

Having made our point sufficiently memorable, we re
turn back to more mundane affairs. For all choices of the 
phase space principal function, the classical propagator has 
the form 

C (x" ,t "Ix',t') = A 1/2(X" Ix')-(21Ti-ll1') - 0/2g1/2(X') 
Xeifr 'S(x".t"lx'.t'l, (10.13) 

where A differs from the expression (10.10) at most by terms 
which are of the order 3 and higher in the variables l' and (T. 

The Hamilton principal function itself can be expanded in 
powers of 1', Eq. (8.20), and the classical propagator (10.13) 
rearranged into 

C (x" ,t "Ix',t') = A l/2eifr- '(T+ <P7ID
7
(x" Ix'), 

where 

15
7 
(x" Ix')=(21Ti-ll1') - 0/2g l/2(x')eiI (X"lx'l/fr7 

(10.14) 

(10.15) 

is a family of scalar-scalar density functions labeled by the 
continuous parameter 1'. We can interpret D

7
(x" Ix') as the 

classical propagator obtained under parallel transport of 
momentum along the geodesic motion. 

To complete our argument that the phase space path 
integral (9.14) correctly represents the quantum propagator 
(9.12), we must show that the classical propagator (10. 14) has 
the properties (9.18), (9.19). The first step in this direction is 
the proof that, in the limit 1'-+0, the one-parameter family of 
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functions (10.15) defines a 15 function. Because of its close 
association with the concept of a geodesic, we shall call this 
particular function the geodesic 15 funtion. 

11. GEODESIC 15 FUNCTION 

Let F (x" Ix') be any biscalar with a regular coincidence 
limit [F] = F(x" Ix") and 

/(1')_ fdOX' F(x"lx')D7 (x"lx'). (11.1) 

We want to show that 

lim /(1') = F(x" Ix"). (11.2) 
7..--0 

To do that, we replace the integration variables x' by the 
Riemann normal coordinates (3.26) of the point x' based on 
the fixed origin x". The Jacobian of this transformation was 
introduced in Eq. (3.42). In the new variablesYa'" 

/(1') = fd oy" ,I,~ l(x"lx'(x",y"))F(x"lx'(x",y")) 

XgI/2(x'(x" ,y"))(21Ti-ll1') - 012 

{ I "b" } Xexp (2i-ll1')- ~ Ya"Yb" . 

We change the variables once more, scaling them by 
(-111')-1/2: 

(11.3) 

As 1'-+0 at a fixedza" ,Ya" -+0. This corresponds to taking the 
coincidence limit: x'(x" ,y" = 0) = x". Because 
[,I,,, ] = g(x"), 

lim /(1') = F(x" IX")g-1/2(x").(21Ti) - 012 
7---0 

By Eq. (10.2), 

f d °z" exp [ - (2i)-I~"b "Za"Zb" ] = (21Ti)"12g1/2(X"). 

(11.6) 

This shows that for 1'-+0 the family 157 (x" Ix') defines the 15 
function, Eqs. (11.1)-(11.2). 

Let now F(x" Ix') be a biscalar whose expansion in the 
powers of (T starts with a second-order term, 

F(x"lx') =Fa'b'(x'~,a'~,b' + o(~). 

We want to prove that the integral 

J(1')=1'-1f d ox' F(x" Ix')D
7
(x" Ix') 

(11.7) 

(11.8) 

has a finite limit J as 1'-+0. By the same substitutions which 
brought us to Eq. (11.5), we get 

J = lim J(1') = -liFa"b "(X")g-1/2(X")(21Ti) - 012 
7..--0 

When we differentiate Eq. (11.6) with respect to ~"b", we 

Karel Kuchar 2139 



                                                                                                                                    

learn that 

(21Ti) - "/2 J d "Z" Za" Zb" 

Xexp{ - (2i)-Ig""b"Za"Zb"} = ig l
/

2(x")ga"b". (11.10) 

Therefore, 

J=iflga"b"Fa"b". (11.11) 

To summarize l5
: Let F(x" Ix') be a biscalar with the expan

sion (11.6). Then 

lim T~ 'Jd "x' F(x" Ix')8 r (x" Ix') = iflga"b"Fa"b". 
r~->O 

( 11.12) 

12. SCHRODINGER'S EQUATION FOR THE 
PROPAGATOR 

The proof that the classical propagator (10.14) has the 
desired properties (9.18), (9.19) is entirely based on the two 
properties, Eqs. (11.1 H 11.2) and (11.12), of the geodesic 8 
function. 

It is obvious that the classical propagator reduces to the 
8 function as t "--4t '. Indeed, 

lim A 1!2ei1T + <P
rl8r = [A ]1/2ei

[ TI8(x" Ix') = 8(x" Ix'), 
r-.o 

(12.1 ) 

because[T] = ObyEq. (8.36)and [A ] = 1 byEq. (10. 10). The 
only remaining task thus is to prove that C (x" ,t " lx' ,t ') satis
fies the Schrodinger equation (9.19) as T~. 

We must apply the operator ifl a," - H" to the func
tion (1O.14)~(1O.15) which is a product of the factor 
(21Tiflr) - nl2A 1/2(X" Ix')g'/2(x') with the exponential 
exp{ ifl~ I(T~ 1.2' + T + T<P ll. We can neglect the terms pro
portional to T and r and collect the remaining powers of T, 

namely, T~2, T~ I, and TO. Using Eq. (9.4) for the Hamilton 
operator H, we get 

(ifla,,, -H")C(x",t"lx',t') 

= [T~ 1(.2' - !.2',a".2' .a") 

+ T~ I( _ .2',a" (T,a" _ AU") 

+ !ifl(..1 ".2' - n + A ~ 'A. a".2' ,a")) 

+ TO(( - !(T.a" - Aa" )(T,a" - Aa,,) 

+ .2'.a" <P ,a" + <P + V") 

+ !ifl(..1 "T-A a"la") + iM ~'A,a,,(T,a" -A a") 

+ !fl2A ~ 1(..1 "A - A ~ 'A,a"A ,a")) + OtT) J 

XC(x",t"lx',t'). (12.2) 
This equation vastly simplifies when we take into account 
the Hamilton~Jacobi equations (8.21)~(8.23) for the expand
ed Hamilton's principal function. We get 

(ifla," -H")C(x",t"lx',t') 

2140 

= [T~ '!ifl(..1 ".2' - n + A ~ 'A,a".2' ,a") 

+ !ifl(..1 "T - A a"la") + iM ~ 'A,a" (T,a" - A a") 

+!fl2A ~1(..1 "A -A ~'A.a"A ,a") +o(Tll 

XC(x",t "Ix',t '). (12.3) 
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Let us note in passing an alternative form of the coefficients: 

..1 ".2' - n + A ~ 'A.a".2' .a" = A ~ '((A.2' ,a")la" - nA ), 

(12.4) 
!A ~1(..1 "A -A ~'A,u"A,a")=0 ~1/2..1 "A 1/2. 

We shall now take the limit T~. This is easy in the 
absolute term TO: Due to Eqs. (11.1 )~( 11.2), we have only to 
replace the coefficient ofC (x" ,t " lx' ,t ') by its coincidence lim
it. Taking into account the coincidence limits (8.29) and 
(8.33), we are left with the expression 

!fl2[A ] ~ I( [..1 "A ] - [A ] ~ I [A,a" ][A ,a"] )8(x" Ix'). 
(12.5) 

From Eq. (10.10) and the coincidence limits (3.17), (3.20), 

[A]=I, [Ala"] =0, [..1"A]=~AR". (12.6) 

The expression (12.5) thus reduces to 

(12.7) 

The term proportional to T~ I is handled through Eq. 
(11.11). The biscalar..1 ".2' - n was expanded in Eq. (3.40). 
From the expanded form of A, Eq. (10.10), we conclude that 

A ~ I A ,a".2' ,a" ;:::: ~R a" b ".2'.a" .2',b " . 

As a consequence, the T~ I term yields 

- M - 1 + U )fl2R "8(x" Ix') 

in the T~ limit. 

(12.8) 

(12.9) 

Putting the two contributions, (12.7) and (12.9), togeth
er, we conclude that the classical propagator C (x" ,t "Ix' ,t ') 
satisfies the Schrodinger equation (9.19) corresponding to 
the Hamilton operator (9.5) in the limit T~. It has thus the 
vital properties (9.18)-(9.19) which guarantee that the path 
integral (9.14) leads to the quantum propagator (9.12) which 
satisfies the Schrodinger equation (9.10) with the Hamilton 
operator (9.5), (9.4). 

The curvature term fl2 R " occurs in the Schrodinger 
equation with the coefficient i( 1 - A ). In the last column of 
our Table I, we give the values of this coefficient for different 
phase space principal functions. For A = 1, the scalar curva
ture drops out from the Schrodinger equation. In particular, 
this happens for the principal function modified by the fac
tors D !<", D ,1(" and D ,-: 2/" and by the chain measures 
(.2' la'b'), (.2' a'b ') ~ I, (.2' ,a'b ")~2, and (.2' a'b ")2. From these con-
trived principal functions, the last one seems the least con
trived, All these cases, however, are oflittle interest in com
parison with the main result of this paper: 

Theorem: The phase space principal function generated 
by the geodesic deviation transport leads to the quantum 
propagator which satisfies the Schrodinger equation without 
curvature term. 

Two other cases deserve special attention. For A = 0, 
we get the trivial measure (A = 1) corresponding to Feyn
man's procedure. The absolute term (12.5) then strictly van
ishes, but the T~ I term gives a non vanishing contribution 
(12.9) leading to the if!2 R " potential in the Schrodinger equa
tion. On the other hand, for A = i we get the Pauli-DeWitt 
measure. The T~ 1 term then strictly vanishes, but the abso
lute term gives a nonvanishing contribution (12,7) leading to 
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the rili2 R " potential in the Schrodinger equation. For A = 1, 
both terms are present, but they mutually cancel. For 
AE( - 00,00), we get an arbitrary potential term in the Schro
dinger equation. 
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We define a pair ofGel'fand triplets <Pi Cdr, C <P ;, i = 1,2, where the linear spaces <Pi are formed 
by suitably chosen entire analytic functions on the Riemann surface associated to the 
transformation w = r. Virtual scattering states are well defined as pairs offunctionals, 
respectively, in <P; and <P ~ . 

PACS numbers: 03.65.Db, 24.90. + d 

I. INTRODUCTION 

At low energy, proton-neutron scattering presents an 
anomalously large cross section corresponding to the pres
ence of a single state. 1-4 The scattering length of this state is 
- 23.7 X 10- 13 cm. The minus sign reveals that it cannot be 

produced by a bound state. 1-2 
In the S-matrix formalism such a state is being charac

terized by a pole in the negative imaginary axis of S (P) in the 
momentum representation. This corresponds to a pole on 
the negative real axis in the second sheet in the energy repre
sentation. Conversely, every pole oftheS-matrix on the neg
ative real axis in the second sheet in the energy representa
tion produces a large cross section. The closer the pole is to 
zero, the bigger is the perturbation. We say that the pertur
bation is due to the presence of a "virtual scattering state," 
one example of it being the proton-neutron singlet. The aim 
of the present paper is to present a description of virtual 
scattering states in the framework of rigged Hilbert spaces 
(RHS). 

As the reader already knows, a rigged Hilbert space is a 
triplet of vector spaces: 

<PCdt"C<P', (1) 

where dt" is a Hilbert space. <P is a dense subspace of dt" 
endowed with a nuclear topology which is finer than that one 
inherited from dt" and makes <P complete. <P' is the topologi
cal antidual of <P, i.e., the vector space of all continuous 
antilinear functionals on <p.5

-
9 Rigged Hilbert spaces have 

been used as an alternative to Hilbert spaces for the math
ematical apparatus of quantum mechanics. 1.6-9 Moreover, it 
offers some advantages: it rigorizes the Dirac formulation of 
quantum mechanics6-8 and allows us to disregard domain 
problems of operators provided that the basic observables 
for every actual physical problem have a common invariant 
dense domain on which they are essentially self-adjoint. 8

•
10 

Furthermore, the RHS formulation appears specially suit
able for the description of resonance phenomena. I 1-15 

Our method to describe virtual scattering states con
sists in a refinement of that one used for the description of 
resonances. I 1.12.15 In Ref. 15 the space <P in (1) was a nuclear 
space of Hardy class functions in a half-plane. Now we want 
the functions in <P to be analytically continued at least to a 
strip of the other half-plane (here we work in the second 
sheet of the Riemann surface associated to the transforma
tion E = p2/2m) and still have their restrictions to R + fulfill 

the imposed conditions to <P. In Sec. II, we shall see that the 
functions can be chosen to be entire. In Sec. III, we shall 
apply the mathematical construction to describe virtual 
scattering states and resonances. 

II. A RIGGED HILBERT SPACE OF ENTIRE HARDY 
CLASS FUNCTIONS 

Let <P be the space of L 2(R +) functions such that 
(i) If cp (E )E<P, cp (E) is the restriction to R + of a Hardy 

class function in the lower half-plane. 
(ii) If cp (E )E<P, En cp (E )E<P for all nEN. 
(iii) The space <P can be endowed with a nuclear (non-

necessarily metrizable) topology. 
(iv) The space <P is dense in L 2(R +). 
(v) Every cp(E) is an entire analytic function. 

<P can be constructed in the following way: Consider 
fiJ (R +) the space of the Schwartz functions with compact 
support in R +. 

A Paley-Wiener theorem asserts that the Fourier trans
forms of Schwartz functions with compact support are entire 
analytic. 16 A second Paley-Wiener theorem says that the 
Fourier transform of a L 2(R +) function is Hardy class on the 
lower half-plane. 17 With these ideas in mind, we conclude: 
we can construct the required space <P with the restrictions 
to the positive real axis of Fourier transforms of the func
tions in !.t (R +-). 

The proof comes as follows: (i) and (v) are immediate 
consequences of the Paley-Wiener theorems. (ii) is due to the 
fact that the Fourier transform of the nth derivative of a 
Schwartz functionf(x) is the Fourier transform}(E) off(x) 
times ( - iE )n . 

We carry out the proof of(iv) as in the analogous density 
requirement in Ref. 15. Ifwe call tJI the space 5'(fiJ (R +)1 of 
all Fourier transforms of functions in fiJ (R +), we claim that 
tJI is dense in H 2_ . This is simple: !iJ (R +) is dense in L 2(R +) 
and the Fourier transform is unitary and hence it preserves 
dense sets. Therefore, tJI is dense in H 2_ and hence <P is dense 
in H 2_ + , the space of the restrictions to R + of the functions 
in H 2_ • On the other hand H 2_ + is dense in L 2(R +).18 

Consequently <P is dense in L 2(R +). 
We now only have to endow <P with a nuclear topology. 

The space tJI = .7 (.:7 (R +)) has its own topology as a sub
space of ./(R ). This topology is nuclear; however, tJI is not a 
closed subspace of J(R ). Let] be equal to .7 (~/ (R )), the 
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space of Fourier transforms of all Schwartz functions on R 
having a compact support. As we have noted earlier, all the 
functions in :r are entire analytic. Furthermore, :r has a 
natural nuclear topology and the Fourier transform is an 
homeomorphism between:r and lP (R ).19 We can therefore 
endow 1ft with the subspace topology inherited from :r . 
Since lP (R +) is a closed subspace of lP (R ) and the Fourier 
transform is an homeomorphism, 1ft is closed in :r and 
hence complete. Since any subspace of a nuclear space is also 
nuciear,20 so is 1ft. 

It only remains to fix the topology on iP. The Heaviside 
function () (x) is an one-to-one mapping from 1ft onto iP be
cause Hardy class functions are defined by their boundary 
values on a half-line. The topology on iP is going to be the 
final one with respect to 1ft and the Heaviside function () (x). 
Thus iP is a nuclear complete space because of the properties 
of initial and final topologies. 8 

As we shall see later, the functions in iP are to represent 
physical state vectors of some system in the energy represen
tation. In this representation, the Hamiltonian becomes the 
multiplication operator on iP. A well behaving observable 
should be an essentially self-adjoint operator, i.e., a symmet
ric operator having a unique self-adjoint extension. Let us 
check whether the multiplication operator H on iP is essen
tially self-adjoint. [H q; (E) = Eq; (E) VIE )EiP). 

We shall use the following theorem21
: A symmetric op

erator B defined on a dense subspace lP of a Hilbert space JY' 
is essentially self-adjoint if and only if the equation 

Af= ± if (2) 

has no solution in lP . 

Consider now the equation 
Eq; (E ) = ± iq; (E ), (3) 

where q;(E )EiP. q; is continuable to an entire function. Thus, 
we can expand it in Taylor series around the origin: 

00 

q;(E)= IamEn. (4) 
n=O 

However, Eqs. (3) and (4) give an = 0, for all n. This means 
that q;(E ) = 0 which proves our assertion. 

In summary we have constructed two rigged Hilbert 
spaces 

(5) 

and 

(6) 

where iP' and 1ft' are the dual spaces, respectively, of iP and 
1ft. Every vector in iP' (resp. 1ft ') is a continuous antilinear 
functional on iP (resp. 1ft). These two triplets are equivalent in 
the sense that every term of one of them is homeomorphic as 
well as isomorphic to the corresponding term in the other. 
However, the functions which give this correspondence are 
not the same. The correspondence between 1ft and iP is given 
by means of the Heaviside function which has nothing to do 
with the unitary transformation that provides the equiv
alence bet wen H ~ and L 2(R +). The Heaviside function 
transforms H 2_ onto H 2_ + . However, H 2-; + with the in-
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herited topology from L 2(R +) is not a Hilbert space but a 
dense subspace. 

A change in the notation is now necessary. Henceforth, 
we shall call the triplet (5) 

iP _ CL 2(R +)C <P '_ (7) 

and the triplet (6) 

1ft _ C H 2_ C 1ft '_ (8) 

The reason for such a change is the following: We could have 
constructed <P as the space Y (g (R -)) of all Fourier trans
forms of Schwartz functions with compact support in R -. 
This new space <P (henceforth <P +) fulfills all the properties 
(i)-(v) except that any q;EiP + and be extended to a Hardy 
class function of the upper half-plane. We now obtain two 
new triplets in the same way that we have done with (7) and 
(8), 

<p+CL2(R +)C<P'+, 

1ft + CH 2+ C Ift'+ . 

(9) 

(10) 

The sign plus or minus means that the respective functions 
are Hardy class on the upper or lower half-plane. 

Finally, note that every function in <P + or iP _ can be 
extended to an analytic function on the whole Riemann sur
face associated to the transformation 0) = Z2. In fact, on ev
ery sheet we shall have a function which is the exact copy of 
the val ue of the function on the other sheet at the same point. 

III. THE VIRTUAL STATE VECTORS AND THEIR 
ASSOCIATION WITH THE CORRESPONDING POLE OF 
THE S-MATRIX 

In this section we shall proceed as in the second part of 
Ref. 15. We may suppose that the interacting Hamiltonian H 
does not have bound states. The corresponding S-matrix in 
the energy representation has a simple pole on the negative 
part of the real axis in the second sheet plus pairs of conju
gate poles near the positive real axis in this second sheet and 
no more singularities. As we have already mentioned, the 
pole on the negative real axis in the second sheet is to be 
associated with the appearance of a virtual state. The pairs of 
conjugate poles are linked to resonance phenomena. The S
matrix is assumed not to grow faster than a polynomial in the 
second sheet. 

As in Ref. 15, we consider the integral 

(lpoUI(t), S¢; m(t)) = (¢-(O),¢; +(0)) 

= l.¢-(E)S(E+iO)¢;+(E)dE, (11) 

where¢-(E)E<P + and¢; +(E )EiP _. ¢-(E)and¢; +(E)arethe 
vectors in the energy representation which, respectively, 
correspond to ¢-(O) = fl -¢out(O) and ¢; +(0) = fl +tfn(o) in 
the Schrodinger representation. According to Ref. 5, we 
may find antilinear functionals IE ± )E<P 'Of such that for 
almost every EER +, 

[¢; +(E))* = (+¢; IE+) = (+EI¢; +)*, 

[¢-(E))* = (-¢IE -) = (-E i¢-)*. (12) 

Since the functions we are dealing with are continuous, it 
results that the functions IE ± ) are defined for every E> O. 
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These vectors are generalized eigenvectors of the total Ha
miltonian. Therefore, Eq. (11) can also be written 

(¢-ltP +) = 1. (-¢IE -)S(E + iO)(+E ItP +) dE. 

(13) 

Now we assume that the S-matrix has a simple pole on 
the lower half-plane in the second sheet at Z R = E R - ir /2. 
Also we find a simple pole at Zv = - Evon the second sheet. 
The functions in tP + can be extended to be functions of 1/1 + 

in the second sheet~ There -

(¢- ,tP +) = 1.-dw(-¢lw-)Sn(w)(+wltP +) 

+ L dw(-¢lw-)SII(w)(+wltP +) 

+ l,dW( -¢lw-)Sn(w)(+wltP +). (14) 

R <- is the path over R -- plus the small semicircle of radius E 

around Zv' C l is the inner path which embraces Zv and Z R (see 
Fig. 1). C is the lowest circular path. Su (w) is the S-matrix in 
the second sheet in the energy representation and (- ¢Iw -) 
and (+ wltP +) are the corresponding extensions of (-¢IE -) 
and (+ E ItP +). We may deform the integration paths to 
reach in the limit a situation like this: C tends to the infinite 
semicircle in the lower half-plane and 

1 dw(-¢lw-)Sn(w)(+wltP +) 
R, 

= l-E"+<dE(-¢IE-)Sn(E)(+EltP+) 

+ L.dw(-¢IW-)Su(W)(+w ltP +) 

+ L-E~_/W(-¢IE -)Sn(E)(+ E ItP +)', (15) 

where C. is the small semicircle above of - Eu (see Fig. 1). 
The integral over C has been proven to be zero in Ref. 15. 
When E goes to zero (15) tends to 

p l-~dE(-¢IE-)SIJ(E)(+EltP+) 

-rri(-¢IE v- >Sv(+EvltP +), (16) 

s" being the residuum of SIJ (w) at - Ev' P stands for the 

c 

FIG. I. 
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principal value. The integral over C l becomes 

- 2rri(-¢lzi )SR (+ZR ItP +) 

- 2rri(-¢1 - E v- )su (+( - Ev)ltP +). 

Therefore we finally obtain 

(17) 

(¢-,tP +) = background - 2rri(-¢lzi ItP +)SR (+ZR ItP +) 

- ~ rri(-¢I - E v- )sv (+( - Ev)ltP +), (18) 

where 

background = P 1- "'dE (-¢IE -)SIl(E)( + E ItP +). (19) 

The analysis of resonance behavior does not differ from 
that we have already made in Ref. 15. If we omit the arbi
trary vector ¢-EI/I + we have 

tP+= l-"'dEIE-)Sn(E)(+E'tP+) 

- 21T"isR IZi )(+ZR ItP +) 

- ~rrisvl-Ev-)(+(-Eu)ltP+). (20) 
2 

This equation has to be understood as an equation in 
1/1 '+ . The integral exists in the weak sense only. If tP + is to 
represent a decaying state vector, it is the sum of three parts: 
alz; > decaying exponentially,12.15 the background, and 
/31 - E ,:- ) which corresponds to the virtual state. 

IV. BEHAVIOR OF THE VECTOR I - Ev- > 
The evolution U (t) = e - irE (E > 0) is a well-defined op

erator on L 2(R +). On the other hand, if t > 0, eirE tP + C tP +' 

as can be easily proven. Hence, if/IE )EtP +' U *(t !f(E) 
= eirlJ(E )EtP + and, therefore, can be extended to a function 

in 1/1 + which we also denote by eilE I(E ) (EER now). Corre
sponding to U *(t ) (t < 0) on tP +, we have an operator U r(t ) 
= eirE (t> 0 and - 00 < E < (0) so that Ur(t )/(E) = eilE 

I(E) V/(E) 1/1 +.Since Ur(t )isthecounterparton 1/1+ ofU *(t) 
and it is also unitary, we can look at its adjoint Ul(t) as the 
evolution operator on the extended space 1/1+. We are inter
ested in obtaining the action of Ul(t) on I - E v- ) and the 
result will be the time evolution of the "state" I - E u- > for 
t> 0.22 

Let [tP -(E )]* = (- tP IE - )EI/I +. SincetP -(E )iscontin-
uous everywhere the functional I - E v-) when applied to 
tP -(E)givesthevalueof[tP -(E)]*on - E,,:(-tP 1- E:; ).If 
we now apply I - E v-) to the function U r(t)tP - (E). we 
have 

(-Ur(t)tP I-Ev-) = (-tP IUl(t)I-E v-)' 

(-eitEtP I - E v- ) = [e - itEtP -( - Ev)] * 

= eitE
" [ tP -( - Ev)] * = eitE,,(-tP 1- E v-)' (21) 

The first equality defines the extension of Ul(t) to 1/1 '+ . 
By omitting the arbitrary vector tP -EI/I + we finally obtain 

Ul(t)I-Ev-) =eiIE"I_E v-) (t>O) (22) 

which gives us the evolution of the vector state I - E ,:- ) for 
positive times. 

The virtual state is equally well described by the func-
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tional I - E ,," > acting on tf! _. We can repeat the preceding 
procedure in the upper half-plane in the second sheet to ob
tain for lP- a similar formula to (20). Time evolution for 
I - E ,: > is now only defined when t < 0 and its explicit form 
is 

(23) 

v. CONCLUDING REMARKS 

Virtual scattering states can be described by a pair of 
functionals I - E,,- > and I - E ,,+ >, respectively, acting on 
the spaces tf! + and tf! _ defined as above. Both functionals are 
continuous on the corresponding spaces. They associate ev
ery function on tf! + or tf! _ with its value at the point - E". 
Using a similar argument to the one showing the non-nor
malizability of the Dirac delta, we can see that I - E ,- > and 
I - E ,;+ > are non-normalizable as well. 

In Ref. 15 we have described resonances with the help 
of a less refined model. We can here translate this description 
practically word by word. The difference is that the state 
spaces tJJ ± are now made up by functions which are analytic 
in the whole Riemann surface, allowing the study of possible 
virtual states along with resonances. 

Summarizing, we could compare virtual states and re
sonances within the present framework: 

1. Virtual states are described by a pair of non-normali
zable continuous functionals I - E v+ > and I - E v- >. They, 
respectively, exist and are stationary when t < 0 and t> O. 

2. Resonances are described by a pair of normalizable 
vectors in L 2(R ). They are, respectively, called the growing 
and decaying Gamow vector. However, their time evolution 
should be studied as functionals on tf! + and not as vectors in 
L 2(R ).12.15 Then, the decaying vector-exists only when t> 0 
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and its norm vanishes exponentially. The growing vector 
exists when t < 0 only and its norm grows exponentially in 
the positive direction of time. Norm conservation is assured 
with the existence of a background term. 
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It is shown here, by using the methods of Gel'fand and Levitan, that one may alter in certain ways 
the spectral data (eigenvalues and normalizations) of the Schrodinger equation for a finite 
interval, by suitably altering the potential. These alterations include the deletion and insertion of a 
finite number of eigenvalues and/or renormalization of a finite number of eigenfunctions. The 
deletion of an eigenvalue requires the addition of a singular potential, while the insertion of an 
eigenvalue requires an adjustment of the boundary conditions resulting in a non-self-adjoint 
operator. Similarly the insertion of a continuous spectrum leads to non-self-adjoint operators. 
The non-self-adjoint operators have, nevertheless, complete sets of eigenfunctions and a 
corresponding spectral decomposition in a suitable subspace. 

P ACS numbers: 03.65.Nk, 03.65.Ge 

1. INTRODUCTION adjoint on JY', with domain fiJ(Ho) = g; 0, with spectrum 

The Gel'fand-Levitan equation has long been used to 
obtain potentials from spectral data for the one-dimensional 
Schrodinger equation on the infinite interval [0,00]. In their 
original paper! Gel'fand and Levitan also considered the 
same equation on the finite interval [0,1]. See also Crum. 2 In 
this case the Schrodinger equation with appropriate bound
ary conditions becomes a Sturm-Liouville system with a 
necessarily discrete spectrum. Gel'fand and Levitan show 
that this spectrum may be replaced by any other satisfying 
the same asymptotic conditions by a suitable change in the 
potential. 

In this paper we reconsider the problem on the finite 
interval, to see whether it is possible to insert or delete an 
eigenvalue in the spectrum--cases not covered by the work 
of Gel'fand and Levitan. We consider here only finite rear
rangements of the spectrum, i.e., modification of only a finite 
number of eignevalues and/or normalizations, to avoid deal
ing with convergence questions. We show that it is always 
possible to delete an eigenvalue, at the cost of adding a singu
lar potential, but that it is possible to insert an eigenvalue 
only in a generalized sense, and only at the cost of sacrificing 
the self-adjointness of the Schrodinger operator. 

2. THE GEL'FAND-LEVITAN THEOREM 

We consider here only the interval [0,1T), and only Dir
ichlet boundary conditions on [0,1T]. Let JY' denote the Hil
bert space of all square-integrable functions on the interval 
[O,1T] and § 0 the subspace oftwice-ditferentiable functions 
which vanish at 0 and 1T: 

,:W' = L 2 [ 0, 1T ], 

(2.1) 

Set Ho = - d 2/ dx2 on fiJ o' Then Ho is essentially self-

a}This research was sponsored by the Air Force Office of Scientific Re
search, Air Force Systems Command. United States Air Force, under 
Grant No. AFOSR-81-02S3. 

b) This work was supported in part by National Science Foundation Grant 
No. MCS-8103409. 

(A" =n2
, n = 1,2,3, ... l, 

and with eigenfunctions 

! 1/;" = sin nx/n, n = 1,2,3, ... ), 

normalized so that 

1/1,,(0) =0, 

1/1;,(0) = 1. 

(2.2) 

(2.3) 

(2.4) 

These eigenfunctions satisfy the orthogonality conditions 

(" l/;i( x)l/;j( x)dx = D'J 
Jo c, 

and the completeness relations 

f l/;i( X)l/;i(y) = D( x - y), 
i -:" I C i 

where the normalization constants c, are given by 

c, = 1T/2i2• 

(2.5) 

(2.6) 

(2.6') 

Next we define a family offunctions; (X,A ), parameter
ized by the real variable A: 

sinf;f x 

S(X,Aj= x, 

sinhF=-Tx 

F=-T 
Then; (O,A ) = 0,; '(O,A ) = 1, and 

d 2 

- -~ ( X,A ) = A; ( x,A ); 
dx2 

note that S (x,p) = l/;; (x). 

(2.7) 

(2.8) 

Now we introduce a sequence (Aj,C; J ,""'= I of eigenval
ues A; (numbered in increasing order) and normalization con
stants Ci , comprising the new spectral data, and define 
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We assume that {J ( x,y) is well defined and well behaved [cf. 
Ref. 2; this is the case in all finite rearrangements, since then 
(2.9) reduces to a finite sum] and construct the Gel'fand
Levitan equation I: 

K ( x,y) + {J ( x,y) + f K ( x,z){J (z,y)dz = 0. (2.10) 

Theorem 1: Assume that {J ( x,y) is a twice-differentiable 
function of x andy for 0<Y';;X';;1T. Then (a) The Gel'fand
Levitan equation (2.10) admits a unique twice-differentiable 
solution K ( x,y) valid for O<y.;;x.;; 1T. (b) The functions 
1'( x,A;) defined by 

1'( x,A;) =;- (x,Aj) + fK (x,y);- (y,Aj )dy (2.11) 

satisfy the differential equations 

( -~+ V(X))x(x,Aj)=AjX(X,Aj), (2.12) 
dx2 

where 

d 
V( x) = 2-K (x,x). 

dx 
(2.13) 

(c) The functions 1'( x, Aj) satisfy the boundary conditions 

1'(0, Aj) = 0; 1"(0, Aj) = 1. (2.14) 

(d) Finally, the functions 1'( x,Aj) satisfy the completeness 
relation 

(2.15) 

with the normalization constants C; . 
The proof of Theorem 1 is similar to proofs in Refs. 1, 3, 

4 and 5 and will not be given here. 
This theorem and its proof do not depend in any way on 

the boundary condition at x = 1T. Indeed, the theorem says 
nothing about whether or not the functions 1'( x,Aj) are or
thogonalon [O,1T] or whether or not they vanish atx = 1Tand 
so lie in !iJ(Ho). It is precisely these points which we wish to 
investigate here: Under what conditions do the 1'( x,Aj) form 
an orthogonal basis in !iJ (H oj? 

Gel'fand and Levitan essentially show in Ref. 2 that if 
Aj = F + o (l/i) and ifCj = 1T12? + O(IN), then indeed 
the functions 1'( x,Aj) do vanish at x = 1T. We verify this di
rectly for finite rearrangements below. If, however, an eigen
value is inserted or deleted, then for large i, Aj = (i ± 1 )2, and 
these results do not apply. We show directly that if an eigen
value is deleted, then the 1'( x,Aj) are orthogonal on [0,1T] and 
do vanish at x = 1T, while if an eigenvalue is inserted, then 
they are not and do not. More precisely, we establish for any , 

+ ~ r[tfj+ I {y)tfl(y)S~tfl(Z)tfj+ I (Z)dZ] dy 
1TJo 1 - (211T)S~tfl(z)2dz 

+ ~ r[S~tfj+ 1 (Z)tPl (Z)dZtPl(y)tfj + I (y)] dy 
1TJo 1 - (211T)Sbtfl(z)2dz 

finite rearrangement, i.e., any modification of a finite num
ber of eigenvalues andlor normalizations, the following. 

Theorem 2: In any finite rearrangement of the spectral 
data for Ho, the resulting eigenfunctions 1'( x,Aj) are orthog
onal on [O,1T] and vanish at x = ° and x == 1T if and only if no 
extra eigenvalues are inserted. 

The proof consists essentially of examining three cases, 
which are treated separately below. 

3. DELETION OF AN EIGENVALUE 

We calculate explicitly the case where the lowest eigen
val ue A n = n 2 = 1 is deleted from the spectrum of H o' In this 
case IAjoe;) = !Ii + If, 1T12(i + 1)2J, and the Gel'fand-Le
vitan kernel (2.9) becomes 

fl (x,y) = - (2I1T)tfl( X)tfl(Y)' 

where tfl( x) = sin x. 

The Gel'fand-Levitan equation (2.10) becomes 

2 2lx 

K (x,y) = -tfl( X)tfl(Y) + - K (x,z)tfl(z)tfl(y)dz. 
1T 1T 0 

(3.1) 

(3.2) 

Since the kernel {J ( x,y) is separable, we may assume a solu
tion of the form 

(3.3) 

withb (x) to be determined. Substituting (3.3) into (3.2) yields 

b (x) = 1 + b ( x)d ( x), (3.4) 

where 

(3.5) 

Hence 

b(x)= l/[I-d(x)] (3.6) 
and 

K (x,y) = ~ tfl( X)tfl(Y) 
1T 1 - (2I1T)S~tfl(zfdz 

(3.7) 

Now for Aj = (i + 1)2 and Xj ( x) = 1'( x,Aj), 

.( )_.1. ()+~ tfl(X)S~tfl(y)tfj+I(y)dy X, x -o/j+1 x . 
1T 1 - (2I1T)S~tfl(Z)2dz 

(3.8) 

As X--+1T,tfj + I ( x)--+O, and one verifies easily that in the re
maining term the numerator is offourth order in (1T - x) 
while the denominator is of third order, so that this term--+O 
also. Thus 

Xj( x)--+O as X--+1T. (3.9) 

We also note that 

+ -±- (X[ S~tPj+ I (z)tPdz)dztPl(y)2S~tPl(Z)tPj+ I (Z)dZ]} d . 

r Jo (1 - (2I1T)Sbtfl(zfdzf y 
(3.10) 
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Since 

- 1 - - ¢1(z)2dz = + _¢1(y)2 1 - - ¢I(zfdz d( 21Y )-1 2 (21Y )-2 
dy 1T 0 1T 1T 0 

(3.11 ) 

we may integrate the last term of (3.10) by parts to obtain 

Qi ,Xj) = lim [ (X ¢i + I (y)¢j + I (y)dy 
X_1T Jo 

(3.12) 

Here the first term--(¢i+ I '¢j + I) aSX-1T. The second term 
vanishes to sixth order in the numerator and to third order in 
the denominator, and so vanishes as X_1T. Hence 

(3.13) 

so that the Xi satisfy the same orthogonality conditions as do 
the ¢i + I . They are complete by (2.15) 

What happens to the missing eigenfunction? Formally, 
we may define 

( x) - ,I. ( x) + ~ r ¢d x)¢I(y)2dy 
XI - 'f'1 1T Jo 1 _ (211T)g¢I(Z)2dz 

¢I(X) 
(3.14) 

As X-1T, the numerator vanishes to first order, but the de
nominator vanishes to third order, so that X I ( x) has a pole of 
second order atx = 1T.1t follows that XIEtJY'; i.e., the missing 
eigenfunction X I is not normalizable. 

What about V( x)? We have 

d 
V( x) = 2 -K( x,x) 

dx 

=2~~ ¢dX)2 
dx 1T 1 - (211T)S~¢I(Z)2dz 

(3.15) 

Now asx-1T,K (x,x) vanishes to second order in thenumer
ator, and to third order in the denominator. Hence V( x) also 
has a pole of second order at x = 1T, and hence is not bound
ed. Nevertheless, H = Ho + V is essentially self-adjoint on 
!iJ(Ho)' with eigenvalues (A, = (i + 1)21t"~ I and eigenfunc
tions (Xi 11OC~ I' 

4. INSERTION OF AN EIGENVALUE 

Now we calculate explicitly the case where an extra 
eigenvalue is inserted into the spectral data of Ho. We take 
A I = ° for the extra eigenvalue, with normalization constant 
CI = 1. In this case (Ai,Ci 1 = (0,1] ((i -1)2,1T12(i - If], 
and n ( x,y) becomes 

n ( x,y) = ¢o( x)¢o(Y), 

where 

¢o( x) = x-; ( x,O). 

Now we assume that K ( x,y) has the form 
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(4.1) 

K (x,y) = ¢o( x)b ( x)¢o(y). (4.2) 

Substituting (4.1) and (4.2) into the Gel'fand-Levitan equa
tion (2.10) and solving for b ( x) as in the previous section, we 
find 

K(x,y)= 
¢o( x)¢o(y) 

1 + S~ ¢0(z)2dz' 
(4.3) 

Hence if X ( x,A i) = Xi' then 

(x) = ¢ ( x) _ S~ ¢o( x)¢o(yfdy 
XI 0 1 + S~¢0(z)2dz 

¢o(X) 
(4.4) 

and for i> 1, 

i ( x) = ¢i _ I ( x) _ S~ ¢o( x)¢O(Y)¢i - I (y)dy. 
X 1 + S~ ¢0(z)2dz 

(4.5) 

We first consider the orthogonality relations: 

l:Yi,Xj) = fTXi( x)Xj( x)dx. (4.6) 

A calculation entirely similar to that in the previous section 
shows that 

Iv. .) = (,I.. ,I.. ) _ (¢i-I ,¢o)(¢o'¢j- I). (4.7) 
\,{ "Xl 'f',- I ''f'} - I 1 + (¢o,¢o) 

Since ¢o( x) = x and ¢n ( x) = sin nxln, we find 

(¢o,¢n) = 2[( - tr+ Iln2], 

(¢o,¢o) = ~ 13, (4.8) 

so that for iJ> 1 

whilefor i> l,j = 1 

(¢i-I'¢O) 
Q;.xtl = 1 + (¢o,¢o) 

I,,) (¢o,¢o) 
\,{ pX I = 1 + (¢o,¢o) 

(- IV =6 , 
(3 + ~)(i - 1)2 

~ 

3+~ 
(4.10) 

We see here that the eigenfunctions X i are not orthogonal at 
all, and that Qpxtl#CI,Qi,Xi )#(¢i-I ,¢i- I) for i> 1, so 
that Xi are not properly normalized, either. Nevertheless, 
the completeness relation (2.15) still holds. 

At the boundary x = 1T, we find 

(1T) = ¢ (1T) _ ¢o(1T)S;¢o(Y)¢,_ I (y)dy 
XI 1- I 1 + S;¢o(zfdz 

= ¢i- I (1T) _ (¢i-I ,¢o)¢o(1T) 
1 + (¢o'¢o) 

= ¢i _ I (1T) -Qi,Xtl¢o(1T)· 

Since ¢o(1T), and ¢n (1T) = 0, n > 0, we have 

(_ l)i+ I 

Xi(1T) = 61T(3 + ~)(i _ 1( i> 1, 

XI(1T) = 31T/(3 + ~). 
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Thus Xi (17l¥=O, andXi~90 = 9(Ho), although Xi is bound
ed. 

If we define the subspace 9 I of J7'" by [cf. (2.1)] 

9 1 = [fEC 2f(0) = 0,/(1T) = -If,XI)tPo(1T)}, (4.13) 

then Xi E9 I for i > 1. It follows that the operator U = 1+ K 
carries 9 0 into 9 I' and since the tPi span J7"', the 
Xi + I = UtPi must also span J7"'. In fact, if 
fE9 0'/ = ~~ d2P 11T) If,tPi )tPi' then Uf = ~r= I (2P I 
1T)lf,tPi )Xi + I , and since U is invertible, every function in !iJ I 
is of the form Uf Moreover, since HU = UHo, we see that 
9 I = 9 (H) is the domain of H = Ho + V, and not 
!iJ 0 = 9(Ho). Since the boundary condition defining !iJ I at 
x = 1T is not of self-adjoint form, we see that H cannot be self
adjoint; this is why the eigenfunctions of H are not orthogo
nal. 

What about XI? From (4.12) we see that 

XI(1T) = +1T tPo(1T) (4.14) 
1 + (tPo,tPo) 

so that X I does not lie in 9 I. This is no real surprise, since tPo 
does not lie in 9 o. Nevertheless the completeness relations 
(2.15) still hold! In fact, for any fEJr"', and g = Uj, 

'" 2F 
g = I -If,tPi )Xi+ I; 

i= I 1T 
(4.15) 

in particular, iff = tPo· Then g = XI' and 

(4.16) 

Since by (4.10) 

() If,tPo) 
g,XI = 1 + (tPo,tPo) 

(4.17) 

and 

(4.18) 

we have 

(4.19) 

which leads to the completeness relation (2.15). 
If gE9 I then HgEL 2 and formally we have 

00 2F 
Hg= I -(g,Xi+I)HXi+1 + (g,XI)HXI 

i= I 1T 

00 2i'~ 
= I -(g,Xi + I )Xi + I . (4.20) 

i= I 1T 

The trouble here is that X 1~!iJ I' so HX I is not defined except 
formally. However, if gE!iJ I and g(1T) = 0, then g = Ufwith 
/E!iJo,and 

0= g(1T) = /(1T) - (g,XIltPO(1T). (4.21) 

Hence if gE!iJ I and g(1T) = 0, then (g,X I) = 0, and it follows 
that (4.20) holds for all suchg. In fact, for all suchg we obtain 
from (4.19) that 
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00 2P 
g = I -If,tPi)Xi+ I' 

i= I -rr 
'" 21-4 

Hg = HU/ = UHof = I -If,tPi )Xi + I 
i= I -rr 

'" 21-4 
= I -(g,Xi + I )Xi + I (4.22). 

i= I -rr 
so that (4.20) holds for the smaller domain !iJ In!iJ o. In this 
way we see that the true spectrum of H is the same as that of 
H o, and that we have inserted the spectral data 
[A = O,C = 1 J, not into the spectrum o/H, but rather into the 
completeness relation (2.15). 

In the same way we find that if gE9 In9 0 then 

'" 2.2 

exp(I=THt)g= I exp(I=TPt)_I_(g,Xi+I)Xi+l. 
i= I 1T 

(4.23) 

The sum here actually converges in norm for all g, and repre

sents the one-parameter group W(t) = exp(~Ht) of 
(nonunitary) operators generated by H, related to 

Wo(t) = exp(~Hot) by the similarity transformation 
W(t)U= UWo(t). 

Finally, for V( x) we have 

V( x) = 2~K( x,x) = - 2~ln(1 + LX tfo(z)dz). 
dx dx 0 

(4.24) 

It should be understood that the operator H = - d 21 
dx2 + V( x) with domain 9 I discussed here is not the same 
as the Sturm-Liouville operator H2 = - d 21dx2 + V( x) 
with domain 9 o. The operator H2 is self-adjoint and has for 
its eigenvalues and normalization constants a set of data 
completely different from that of our operator H. These data 
can be calculated by standard Sturm-Liouville methods. 

More generally, ifS (x,A. ) is any eigenfunction of - d 21 
dx2 [cf. (2.7)] with eigenvalue A, normalized so that 
; (O,A. ) = 0,; /(O,A. ) = 1, and if K (x,y) is given by (4.3), then 
X ( x,A. ), defined by 

X( X,A. ) = ; ( X,A. ) + LX K ( x,z); (z,A. )dz, (4.25) 

isaneigenfunctionof - d 21dx2 + V( x) with thesameeigen
value and the same normalization, if V( x) is given by (4.24). 
Hence the spectrum of the operator H2 consists precisely of 
those A for which X ( x,A. ) vanishes at x = 1T, while the spec
trum of H consists of precisely those A for which 
X (1T,A. ) = (x ,X IltPo(-rr)· In fact, one can determine in this way 
the spectrum of any operator of the form - d 21dx2 + V( x) 
on any interval [0,/] with boundary conditions X (0) = 0 and 
X(/) specified. 

5. REPOSITIONING AN EIGENVALUE 

Finally, we calculate explicitly the case where the low
est eigenvalue is moved from AI = 1 to AI = O. This case is 
already covered by the work of Gel'fand and Levitan, and we 
know that the eigenfunctions Xi (x) must vanish atx = 1T. On 
the other hand, this case can be considered as a deletion of 
A I = 1 followed by an insertion of AI = 0 with the same nor-
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malization and in view of the results of the preceding sec
tions, it is not clear how this vanishing comes about. 

In this case we take n (x,y) to be 

n (x,y) = (2hT)(tPo( x)tPo(y) - tPd X)tPl(Y)) 

{
tPl( x) = sin x, 

X tPo( x) = x( = S ( x,O)), 

2 {iJ = 0 or 1, 
= -;ItPi( x)CijtPj(Y) Cij = ( _ l)it5ij (5.1) 

and assume that K ( x,y) has the form 

K (x,y) = ~ ItPi( x)bij( x)tPj(y), iJ = 0 or 1. (5.2) 
rr ij 

Substituting (5.1) and (5.2) into the Gel'fand-Levitan equa
tion (2.10) and solving for bij ( x) as in the previous sections, 
we find 

bij( x) = - Cij - Ibid x)dk/ ( x)Clj' 
kl 

where 
Cij = ( - l)it5ik 

and 

2ix 

dij( x) = - tPi (Y)tPj (y)dy. 
rr 0 

In short, we have 

B= -C-BDC 

with solution 

B= -(C+D)-I 
or 

(

1 - dll ( x) do.( x) ) 
t5( x) t5 (x) 

bij( x) = d lO( x) - 1 - doo( x) , 

t5( x) t5( x) 

t5( x) = det(C + D) = (d ll ( x) - l)(doo( x) + 1) 

- do.( x) d lO( x). 

We note here for later reference that 

B -iI x)~B (x) = D '( x)B ( x), 
dx 

where 

d 
D'(x)=-D(x), 

dx 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

t5- I ( x)~( x) = - tr(D '( x)B ( x)) = - K (x,x). (5.8) 
dx 

From (5.2) and (5.7) we find 

( ) = (1+ K).I. (x) = .1, (x)(l - d ll (x)) + tP (x)dlO(x), 
Xo x '/'0 '/'0 t5( x) • 8( x) 

do.( x) (1 + drJ. xl) 
XI(X) = (I+K)tP.(x) = -tPJ..x) 8(x) +tP.(x) 8(x) , 

and for n> 1 

Xn( x) = (I + K)tPn( x) = tPn( x) 

(5.9) 
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For the orthogonality relations we calculate 

(xm ,Xn) 
2 ("" (X 

= (tPm,tPn) +-;tJo tPm(x)tPi(x)bij(x)Jo tPj(y)tPn (y)dy dx 

4 ("" (X 
+ r~Jo Jo tPm (y)tPj(y)dybid X)tPk (x)tPd x)blj( x) 

X f tPj (y)tPn (y)dy dx. (5.10) 

Integrating the last term by parts and using (5.8), we find [cf. 
(3.12) and (4.7)] 

2 
(xm ,Xn) = (tPm ,tPn) + - I(tPm ,tPi)bij(rr)(tPj,tPn)' (5.11) 

rr ij 

Hence boo(rr) = 0, and since (tPn ,tPl) = 0 if n > 1, we see that 
for m, n> 1, 

(5.13) 

Moreover, if m > 1, 

= (tPm ,tPol( 1 - (2/rr)(~I'tPo) ! (tP.,tPo)) 

= 0 (5.14) 

and 

Iv ) = (.1 .• 1.) _ (tPo,tPO)(tPO,tPl)(tP.,tPO) 
V(o,Xo '/'0' '/'0 (tPo,tP.l2 

(tPo,tP.)(tP .. tPo)(tPo,tPo) 

(tPl,tPof 

+ (rr!2)(tPo,tP.J(l + (2/rr)(tPo,tPo))(tPl'tPo) 

(tPo,tP.l
2 

= rr/2. 

In summary: 

(x m,X n ) = (tPm ,tPn), m,n = 2,3,4 ... 

(xo,Xo) = (tP.,tP.l = rr/2. 

As x--+rr, we see from (5.9) that for n > 1 

Xn (rr) = tPn (rr) + ItPi(rr)bij(rr)(tPj,tPn) 
ij 

= 0 + tPo(rr)boo(rr)(tPo,tPn ) 

=0. 

Ifn = 0, 

Xo(rr) = tPo(rr)boo(rr) + tP.(rr)blO(rr) 

=0. 
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But ifn = 1 

XJ(1T) = - tPo(1T)boJ (1T) + tPd1T)bJl(1T) 

= tPo(1T) 
(tPo,tPJ) 

#0. (5.19) 

Thus the eigenfunctions Xi all vanish at x = 1T except the 
deleted one, X I' The other eigenfunctions all lie in fiJ (H 0) and 
satisfy the orthogonality relations (5.16) and the complete
ness relations (2.15). 

Finally, we see from (5.8) that in this case the potential 
V( x) has the form [cf. (3.15), (4.24)] 

d 
V(x) = 2-K(x,x) 

dx 

d 2 

=2-trlnB 
dx2 

d 2 

= - 2-1n8(x), 
dx2 

where ( 1 d) doo + 01 
8( x) = det( C + D ( x)) = det d d _ 1 ' 

x 10 II 
dij( x) = ~ ( tP, LY)tPJy)dy. 

1T Jo 
In particular, V( x) is smooth and bounded on [0,1T]. 

(5.20) 

(5.21) 

Note that we could move the eigenvalue A I to ..1,0' where 
..1,0 is any real number different from the An' If ..1,0 is positive 
(negative) then tPo( x) must be replaced by 

; ( x,A,o) = sinver-aX sinhJ=ToX 

~ J-Ao 
and everything else goes through as before. If we move A I 
above 2, however, then we must reorder the eigenvalues, so 
that we actually move more than one. Note that we cannot 
move A I exactly to ..1,2' since then the spectrum of H would 
have a double eigenvalue. In that case the determinant 8 (x) 
in (5.7) vanishes to sixth order at x = P, so that bij( x) has a 
pole of order at least 3, and so both tPo{ x) and tPI( x) have 
poles of order 2 at x = 1T. 

6. DISCUSSION 

It is clear that by iterating the arguments of the previous 
sections, we can treat any finite rearrrangement ofthe spec
tral data for Ho. We have not discussed explicitly the case of 
a simple change of normalization constant, say CI , since that 
is covered by the results of Gel'fand-Levitan and in any case 
it follows a similar pattern. With some care, the general case 
of a finite rearrangement can be treated by matrix methods 
as in Sec. 5, giving a complete proof of our Theorem 2, but 
the results are not so transparent. 

It is formally possible to add a continuous spectrum to 
the spectral data for Ho, in the same manner that we add a 
single eigenvalue. One finds that in this case none of the 
eigenfunctions of H again will vanish at x = 1T. We consider 
this case in the last section. 

7. INSERTION OF A CONTINUOUS SPECTRUM 

In this last section we consider the possibility of insert
ing an absolutely continuous segment into the spectrum of 

2151 J. Math. Phys., Vol. 24, No.8, August 1983 

Ho. Explicitly, we propose for the spectrum of H the set 

{p, 2;2} [(0,00 ),1Tj. 

We take for fl (x,y) the following: 

fl (x,y) = ~ (00 sin kx ~in ky dk 
1TJo k 

= ~f + 00 sin kx ~in ky dk. 
1T -00 k 

Residue calculus gives 

fl ( x,y) = Y77( x - y) + x77LY - x), 

where 77( x) is the Heaviside function: 

{

I, if x>O, 

77( x) =~, if x = 0, 

0, if x<O. 

(7.1) 

(7.2) 

(7.3) 

For x;>y, then, the Gel'fand-Levitan equation becomes 

K(x,y) = -y-(lX K(x,z)dZy- J:K(X,z)ZdZ. 

(7.4) 

One readily obtains from (7.4) the differential equation 

1j2 
-2 K(x,y) =K(x,y) 
Jy 

with general solution 

K( x,y) =A (x)eY + B( x)e-' Y . 

Substituting (7.6) into (7.4), we find 

A ( x) = - B (x) = - ~ sech x. 

Hence 

(7.5) 

(7.6) 

(7.7) 

K (x,y) = - sechx sinh y, (7.8) 

V( x) = 2 -.:!......K (x,x) = - 2 sech2x, (7.9) 
dx 

X;( x) = (i2 + 1)-1 [(F + l)tPi( x) + tanh xtP;( x)], 

X( X,k 2) = (k 2 + 1) - I [(k 2 + 1); (x,k 2) + tanh x; '( X,k 2) ]. 
(7.10) 

The boundary condition at x = 1T becomes 

Xi(1T) = -(tPi,t_J)sech(1T), (7.11) 

where; -I = ; ( x, - 1) = sinh x [cf. (2.7)]. Again this con
dition is satisfied by the eigenfunctions Xi corresponding to 
the original spectrum, and not by the eigenvalues X (X,k 2), 
corresponding to the inserted segment. Nevertheless, the 
completeness relation holds: 

00 2.2 2 (W 
i~J -;-Xi( X)XiLY) + -;Jo X( x,k

2
)XLY,k

2
)dk = 8( x - y). 

(7.12) 
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Hill's equation, modified by a potential that vanishes as x -+ ± 00, is considered. The direct 
scattering problem is studied; analytic and asymptotic properties of solutions of Hill's equation as 
well as of solutions of the modified equation are established. A new version of Levinson's theorem 
is proved. The inverse scattering problem is solved by means of a Marchenko-like equation. 
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1. INTRODUCTION 

This paper treats the direct and inverse scattering prob
lems in one dimension for Hill's equation modified by a de
creasing function that is added to the periodic one. In phys
ical terms we are dealing with the scattering of Bloch waves 
by an impurity in a crystal. Such scattering problems have 
been discussed in the literature, 1 but little is known about the 
analyticity and asymptotic properties of the solutions, which 
form the basis on which the solution of the inverse problem 
in the Marchenko technique rests. Even for Hill's equation, 
i.e., a purely periodic potential, not enough information 
about the needed analytic and asymptotic properties exists in 
the literature. 2 

Somewhat surprisingly, it is necessary first to consider 
the scattering, on the full line - 00 < x < 00, by the potential 
of one cell, that is, without its periodic repetition. The well
known solution3

•
4 to this problem is given in Sec. 2, mostly to 

establish notation and some needed facts. Section 3 sets up 
the Bloch solutions of Hill's equation. Rather than express
ing these in terms of the conventional solutions2 defined by 
boundary conditions at a point, it turns out to be more useful 
to express them in terms of the scattering solutions of Sec. 2. 
Analytic and asymptotic properties ofthe Bloch functions as 
functions either of the square root of the energy, or of the 
wave number, are proved and collected in Lemma l. The 
conventional solutions are discussed in an appendix. 

In Sec. 4 Hill's equation is modified by adding a poten
tial that tends to zero as x -+ ± 00 to the periodic potential. 
The direct scattering problem for such an "impurity" is 
solved, a "regular solution" is defined, and a Jost function is 
introduced. Lemma 2 establishes the needed analytic and 
asymptotic properties. Bound states of the modified Hill's 
equation are treated in Sec. 5, and a Levinson theorem5 

(Theorem 1) is proved. 
Section 6 solves the inverse scattering problem. The 

technique is based on the solution of a Riemann-Hilbert 
problem by means of a Marchenko equation, as in Refs. 4 
and 6-9. Theorem 2 states the reconstruction method if an 
underlying potential is known to exist, and Theorem 3 solves 
the construction problem ifthe existence of such a potential 
is not known. In both cases the periodic potential is assumed 
known, and so are the bound states and their characters,4 as 
well as the scattering data. It turns out to be necessary to 
assume that all the bound states lie below the first allowed 
band of the spectrum. If they do, the solution of the inverse 
problem is unique if it exists. The existence of a solution 

depends on the occurrence of a "miracle" of the same kind as 
in Refs. 4 and 6-8. No solution technique with nonsingular 
integral equations is known if there are bound states in any of 
the regions between allowed spectral bands. 

2. THE SCHRODINGER EQUATION IN ONE CELL 

A. The scattering solution 

It is useful first to consider the Schrodinger equation on 
R 

A 

y" +Ey= Vy, 

where V vanishes for x < 0 and x > l. We shall write 

V(x) = V(x)8(x)8(I-x), 

(2.1) 

in which 8 (x) is the Heaviside function. The results and pre
cedures in this case are, of course, well known.4 We write 
them down here for later convenience. 

Let us define a pair of standard scattering solutions 
Yl(X) and rz(x) and combine them in a two-component col
umn vector lO y(x), r = (YI' rz), by the integral equation 

~ I II . y(x) = Xix) 1 + -.- dy e'A Ix-yl V(y)y(y), 
2lA ° 

(2.2) 

where 

o ) . , e - IA.~ 

A = flI and i is the column vector each of whose entries are 
unity, I = (1,1). If VEL 2(0,1), then Eq. (2.2) defines y(x) in 
O<;x<; 1 uniquely unless its Fredholm determinant vanishes. 
The vanishing of this Fredholm determinant at E = EO im-

A 

plies a bound state on the full line, - 00 < x < 00, for V, and 
hence EO < O. Thus y(x) is uniquely defined for all real A. It 
has the symmetry I I y( - A, x) = Y(A, x)·. 

We obtain from (2.2) 

YI(O) = 1+711, y;(O) = iA (1 - 711)' 

Y2(0) = 1 + 713, y~ (0) = - LA (1 + 713)' 

where 

711 = _1_. t dx e,A.xV(x)YI(x), 
2lA )0 

713 = 2:A L dx e
iAX

V(x)Y2(X). 

Similarly, 

(2.3) 
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Y2(l) = eiA1]2 + e- iA, y2(l) = i). (e iA1]2 - e- iA
), 

where 

1]2 = _1_. t dx e - iAxV(X)Y2(X), 
2i). Jo 

1]4 = _1_. t dx e - iAXV(X)YI(X). 
2iA Jo 

(2.4) 

Evaluating the Wronskian W(YI'Y2) = YIY~ - Yi Y2 atx = 0 
and at x = 1, we find 

W(YI'Y2) = - 2iA. (1 + 1]3) = - 2i). (I + 1]4), (2.5) 

and therefore 1]3 = 1]4' One also easily obtains expressions of 
the complex conjugates (for real..i ) ofYI and Y2 in terms ofYI 

and Y2' 

11 = 1]iYI + (l + 1]f)yz, 

i.e., 

y* = QS~y, 

where 

Q= (~ ~) 
and 

(2.6) 

(2.6') 

A 

So is the S matrix of the scattering problem defined by V. 
Therefore, 

11]11 2 + II +1]31 2
= 11]21 2 + 11 +1]31

2
= l, 

1]1(1 + 1]f) + 1]f(1 + 1]3) = 0, 

i.e., So is unilaryl2: 

So S 6 = S 6 So = :H.. 

It also satisfies the equation 13 

50 = QSo Q. 

(2.7) 

(2.7') 

(2.8) 

The effect of shifting V(x) by t, that is, of replacing V(x) 
by V,(x) = V(x + I), is to replace y(x) by 

y,(x) = X(I )-ly(X + I), (2.9) 

as is well known, and to replace So by 

So, =X(t)SoX(I)-I. (2.10) 

B. Analyticity and asymptotics 

The integral equation (2.2) implies that YI and Y2' and 
hence also 1] I' 1]2' and 1]3 are merom orphic functions of ..1, 
except for the possibility of singularities at ..1 = O. In order to 
show that they are analytic also at ..1 = 0, we define a solution 
of (2.1) by the Volterra equation 

. 1 11 A z(x) = e'AX - - dy sin). (x - y) V(y) z(y). (2.11) 
..1 x 

From its value and derivative at x = I we infer that 
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YI(X) = (I + 1]))z(x), and therefore 

_1_ = I __ 1_ rl 

dx e - iAXV(X)z(x), 
1 + 1]3 2i). Jo 
_1]_1_ = _ dx eiAXV(x)z(x). 1 11 
1 + 1]3 2i). 0 

If VEL I, then z(x) is an entire analytic function of ..1. Since 
(2.7) implies that, as). -+ 0, 1]) remains bounded, 1]1' 1]3' and 
YI are analytic there also. The same holds for 1]2 and Yz, by 
similar arguments. 

Note that there are two possibilities at ..1 = O. In case (a) 
lim" ~ 0 f~ dx Vz#O, the generic case, we have lim 1]1 
= lim 1]2 = lim 1]3 = - 1 and lim YI(X) = lim Y2(X)=0. In 

case (b) lim" .-0 f6 dx Vz = O. Then lim 1]1 = lim 1]2 
= lim 1]3 = ic/( 1 - ic), creal. 

The poles ofYl' Y2, 1]1' 1]2' and 1]3 inl4C+ are simple, on 
the imaginary ..1 axis, and all at the same points, namely, 
where the Fredholm dete;:minant of(2.2) vanishes, i.e., at the 
full-line bound states of V. 

The integral equation (2.2) also implies that as 
..1 -+ ± 00 or as I). I -+ 00 in C+ 

YI(x)e - i"x, YzeiAX = 1 + 0 (). -I). (2.12) 

Consequently, 

1]1,1]3=0(..1 -I) (2.13) 

and 

(2.13') 

C. The Jost function 

The fact that So is the S matrix of the scattering problem 
for the potential V implies the existence of a unique Jost 
function Jo with the following properties4

: Jo is an analytic 
function of ..1, holomorphic in C+ and continuous on the real 
axis. In C+ det Jo has simple zeros at the points where the 
Fredholm determinant of (2.2) vanishes (i.e., the bound 
states of V), and nowhere else. These points lie on the imagi
nary axis and are finite in number. The null space of J o at 
each of these points is determined by the "character" of the 
corresponding bound state of the full-line problem with V. 
As).-+ ± 00 or as 1).1-00, 

Jo = :H. + 0(1/..1). (2.14) 

Finally, Jo satisfies the equation 

(2.15) 

It should also be noted that a shift of V leaves the bound 
states of (2.1) unchanged. 

3. HILL'S EQUATION 

A. The Bloch solutions 

We next study the Schrodinger equation 

y" + Ey = Vy, (3.1) 

with a periodic potential, V(x) = V(x + I), which is also 
known as Hill's equation. It will be understood that the func
tion V(x) is identical with Vin (2.1) for O,;;;x,;;; 1. 

A solution.B (x) of (3.1) with the property 
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/3 (x + 1) = a/3(x) (3.2) 

exists by Floquet's theorem. 15 In the interval [0,1] it must be 
expressible as a linear combination of YI and Y2' The require
ment (3.2), being equivalent to 

/3(1) = a/3(O), /3/(1) = a/3/(O), 

leads to the equation 

a 2 
- 2aLl + 1 = 0, 

where, by (2.7), 

1 eiA e - iA 
..1= ---+ ---

2 1 + 71T 2 1 + 7,13 

(3.3) 

(3.4) 

for real A; ..1 is known as the discriminant. Thus there are two 
solutions of(3.3), 

(3.5) 

The periodic spectrum consists of those values of E for which 
..1 = ± 1: If ..1 = 1, the corresponding solution/3 has period 
1; if ..1 = - 1, it has period 2. The periodic spectrum 

- 00 <Eo<EI<E2 <E3'" 

separates those intervals (Eo, E I ),(E2 , E3 ), ••• for which 
..1 2 < 1, which are the allowed bands, from those where 
Ll 2> 1, the/orbidden bands. The intervals 
(E I, E2),(E3' E4)' ... will be called the band gaps. In the for
mer a:±- are complex, a _ = a*+- ,of modulus 1, and the solu
tions /3i' i = 1,2, which correspond to a + and a _, when 
continued by (3.2) to all oflR, are uniformly bounded; in the 
latter a+ = lIa _ are real and the solutions/3i are unbound
ed either as x - + 00 or as x - - 00. We shall denote the 

set of points E where Ll 2< 1 as IRa; the set of points A = ,JE 
such that A 2 E lRa will be denoted by lR~ . 

The variable E in (2.1) is defined only to within an addi
tive constant. If we start with one definition, 
y" + E Iy = V Iy, we may also write y" + Ey = Vy, where 
E = E I + a, V = V I + a. Let the first point in the periodic 
sl"ectrum, in the first parametrization, be E b. Then we may 
choose a = - E b, and, as a result, in the second parametri
zation the first point in the periodic spectrum is Eo = 0. We 
shall from now on assume that this shift has been done so 
that Eo = 0. 

We define the function d (E ) as that branch of 
k = cos - I Ll (E) for which k = ° when E = Eo = 0. The 
function k (A ) has branch points of the square-root type at the 
periodic spectrum, which we connect by cuts along the band 
gaps. The inverse function A (k) has branch points in each 
band gap, and we connect each such branch point in the 
upper half of the k plane by a cut with the symmetric point in 
the lower half-plane. The left-hand forbidden band, 

- 00 < E < 0, which corresponds to the positive imaginary A 
axis on the first sheet of the E plane, and to the negative 
imaginary A axis on the second sheet, is mapped into the 
positive and negative imaginary k axis, respectively. The re
sulting mapping is indicated in Fig. 1. Except for the cuts, 
each quadrant of the A plane corresponds to the same quad
rant in the k plane. 

We now have a ± = e ± ik. The corresponding solutions 
of (3.1) are the Bloch/unctions /3,(x), i = 1,2. They are such 
that 
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A plane 

o 

k plane 

FIG.!. The mapping A. <-+ k. The heavy lines in theA. plane indicate branch 
cuts of k (A. I. whose end points are the periodic spectrum. The heavy lines in 
the k plane are branch cuts of A. (k ) . 

/31(X + 1) = eik/3l(x), /32(X + 1) = e - ik/32(X), 

which implies that 

/31(X) = eikxfl(X), /32(X) = e- ikxf2 (X), 

where fi(X) is periodic, 

fi(X + 1) = fi(X), 

(3.6) 

Let us combine /31 and /32 in a two-component column 
vector /3. Since in the interval [0,1] Eqs. (2.1) and (3.1) are 
identical, the solutions /3 and yare there related by 

/3 (x) = My(x), 

where M can be chosen as 

1 (eiAI* _ e- ik 

M = 2iA eiAI * _ eik 

and its inverse is given by 

M - J = _ i( 1 + 7,13) (e
iA 

- Ie - ik 
2E sin k eik - I *eiA 

in which 

and 

E = (I *eiA - Ie - iA )l2iA. 

We also define 

iA ( iA 1 - 71T _ iA 1 - 7,11) EI=-e ----e ---
2 1 + 71T 1 + 7,13 

and 

(3.7) 

(3.8) 

leik _ eiA ) 
I *eiA _ e - ik ' 

(3.9) 

(3.11) 

(3.12) 

1 1-71T iA 1 1-7,11 -iA (3.13) 
E2 = ----e + ----e . 

2 1 + 71T 2 1 + 7,13 

The quantities E, E I , and E2 are all real for real A. Equation 
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(3.7) may now be used to continue y(x) for all x E lR as a 
solution of (3.1) rather than of (2.1). From now on this will be 
the meaning of y(x). 

It follows from the expressions (A4) in the Appendix 
that when E is in an allowed band, then f31 and f32 are one 
another's complex conjugates, f31 = f3 f· In the band gaps on 
the other hand, each f3, is real, f3i = f3 r. Their Wronskian is 
given by 

W(j3I' f3z) = - 2iE sin k. (3.14) 

One readily finds that 

EEl = (Ez - eik)(e - ik - Ez). (3.15) 

This equation implies that when either E = 0 or E I = 0 then 
either E2 = eik or E2 = e _. i\ which shows that neither E nor 
E I can vanish in an allowed band. The points E ~ where E = 0 
are those values of E for which a solution of(3.1) exists that 
vanishes at x = 0 and x = 1 (see the Appendix). These points 
constitute the first tied spectrum (for boundary conditions at 
x = 0) in the terminology of Trubowitz. 16 At the points E ~ 
where EI = 0, a solution of(3.1) exists whose first derivative 
vanishes at x = 0 and x = 1. These points make up the sec
ond tied spectrum (for boundary conditions at x = 0). The 
tied spectra are known to interlace the periodic spectrum 17: 

- 00<Eo<EI<E;<E2<E3<E;<· .. , 

- 00 <E;'<E()<EI<E~<Ez<E3<E~<···. 

We note that the tied spectra depend on the point at 
which boundary conditions are assigned, whereas the peri
odic spectrum does not, and neither do the solutions f3i [ex
cept for their scale as defined by (3.7)]. 

The relation between the Bloch solutions and the func
tions y. and yz may be written as 

f31 = (l/2iA )(e±ik - Ez)(YI -Iyz) + 1-E(YI + I -11I y2), 
2 2 1 + 113 

(3.16) 

which, together with (3.15), shows that when E = 0, i.e., at 
the first tied spectrum, one of the Bloch solutions vanishes 
identically, and the other vanishes at x = 0 (mod 1) (see Ap
pendix). For E in an allowed band, i.e., .4 2 < 1, f3i cannot 
vanish for any value of x. This is because if f31(x) = 0, then 
also f32(X) = f3 fix) = 0 and hence every solution would have 
to vanish there. Suppose, on the other hand, that, for E = E, 
not in an allowed band, f31 (xo) = 0 [or f32(X O) = 0]. Then also 
tp I (xo + 1) = 0 [or f32(XO + 1) = 0], and hence E, is in the first 
tied spectrum for boundary conditions at x = Xo' Since the 
tied spectra are known to be real, E, must be real. Thus f3i 
can vanish for any point x only if E is in a band gap or in the 
periodic spectrum. In fact, for every point Xo there is exactly 
one value of E in each band gap for which one of the two 
Bloch solutions vanishes. 

For real A we find from (2.6') and (3.8) 

f3 * = M *y* = M *QS t M - 1f3; 
but for real k we also have f3 * = Q/J while, for purely imagi
nary k (mod 1T), f3 * = f3. It follows that in the allowed bands 

So=QM-IQM*, (3.17) 

and in the band gaps 
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(3.17') 

Direct calculation also shows that, although M - I is un
bounded at the periodic spectrum, M - 1M * remains bound
ed as sin k --+ 0, both as approached from the allowed side 
and from the gap. 

The solutions f3i serve also to define a Green's function 
'? +(x, x'), such that 

[ J2? + E _ V(X)] '? +(x, x') = £5(x - x'). 
Jx-

Using (3.7), we obtain, for all x and x', 

9'+(x, x') = f31(x> )/32 (x < ), 

2iE sin k 
(3.18) 

where x"> = max(x, x') and x < = minix, x'). Note that 
(3.15) and (3.16) imply that f/ + (x, x') remains bounded at the 
points where E = O. In the band gaps '7 + is real. Another 
Green's function is given by 

{

f3I(X)f32(X') -: f31(X')f32(X) , 
,?(x, x') = 2iE sm k 

0, 

x' <x, 
(3.19) 

x'>x. 

This function is real for real E,,?*(x, x') = f/(x, x'). The alter
native form (A 7) for (3.19) shows that the singularities of 
(3.19) at k = 0 (mod 1T) are removable. 

Let us consider the effects of shifting V(x) by an amount 
t, that is, of replacing V(x) by Vt(x) = V(x + t). We shall 
refer to such a translation as a comprehensive shift if at the 
same time we also shift the reference points 0 and 1, which 
enter into (2.2) and hence into the definitions ofy andp'o For 
y as a solution of (2.1) on lR this is an ordinary shift of V, and 
as a solution of(3.1), ystill changes as in (2.9), and So changes 
as in (2.10). The Green's function (3.18) does not change, i.e., 

'?r+ (x, x') = '? +(x + t, x' + t). (3.20) 

B. Analyticity and asymptotics 

We state the main results in the form of 
Lemma 1: If VEL 2(0, I), then the quantities E, I, 1 *, and 

.4 have analytic continuations off the real axis that are entire 
analytic functions of A with the asymptotic forms as 
,,1,--+ ± <Xl or as 1,,1, 1 --+ <Xl in C+, 

E = (sinA)lA + 0(,,1, -2 eV
), (3.21) 

/=1+0(,,1,-1), (3.22) 

.4 = cos A + 0 (A -I eV
), 

where v = 1m A. In the same sense 

k = A + 0 (A -I) (mod 21T). 

(3.23) 

(3.24) 

The matrix M is an analytic functions of A holomorphic 
everywhere in the plane cut as in Fig. 1, except for the possi
bility of a simple pole at A = 0; M - I is meromorphic in the 
cut A plane with poles at the zeros of the Fredholm determi
nant of(2.2), i.e., the bound states ofV. The matricesJo M- I 

and MJ 0- I are holomorphic in C + and continuous on R As 
A --+ ± <Xl or as 1,,1, 1 --+ <Xl in C+, 

M = l(sin A )1,,1, + 0 (A -2 eV
). (3.25) 

The Bloch functions are analytic functions of A, hoI om or-
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phic in the cut...t-plane. The function y(x) = M - '/3 (x) has the 
asymptotic behavior, for each fixed x E JR, as A - ± 00 or 
1,.1, 1- 00 in C+ 

x -'y(x) = i + 0(,.1, -I). (3.26) 

The Green's function (3.1S) is the boundary value of an ana
lytic function of A, holomorphic in C + , continuous on JR, and 
as A - ± 00 or 1,.1, 1 - 00 in C + , 

9' + (x, y) = (1/2iA )ei" Ix -- yl + 0 (A -- 2 e - '''x - YI). (3.27) 

The Green's function (3.19) is an entire analytic function of 
A 2 with the asymptotics on JR and in C+ 

y«x, y) = sin A (x - y)/ A + 0 (A -2 e'ix - Yl). (3.2S) 

Proof One easily sees that I = z(O), where z(x) is the 
function defined by (2.11). Therefore, I is entire. Particularly, 
it follows that if 173 = - 1, then also 17, = - 1 and 
172 = - 1. This can (and generally will) happen only at 
A = O. It also follows that I * has an analytic continuation 
that is entire analytic. Furthermore, I is real for A = O. 
Therefore, by (3.11), E is entire. The expression for L1 given in 
the appendix shows that it is an entire function of A 2. The 
asymptotic forms (3.21)-(3.23) follow from (2.13), (2.13') and 
(3.10); and (3.24) follows from (3.23). [Note that (3.24) im
plies the well-known fact'S that the lengths of the band gaps 
tend to zero as E - 00.] 

The analyticity of M follows from that of I and k. In case 
(a) of Sec. 2B, M has a simple pole at A = 0, and so does 
det M, but M -, is holomorphic there. In case (b) 
lim".o 1= 1 and both M and M -I are holomorphic there. 
That M -, is meromorphic follows from (3.9) and the fact 
that173ismeromorphic. Wehavedet M = E sin k /,.1, (1 + 173)' 
which has simple zeros at the bound states of V. Thus the 
residue of M - , at such a pole is a singular matrix of rank one. 
That Jo M - I is holomorphic there follows because y has a 
pole at a bound state ofVbut/3 does not, and the null space of 
Jo equals the range of the residue of y. As the zeros of det Jo 
and det M are both simple, MJ 0- , is holomorphic too. The 
asymptotic form (3.25) follows from (3.S) and (2.13). 

The analyticity of the Bloch solutions follows most sim
ply from their expression given in the Appendix. The asymp
totics (3.26) follow from (2.12). For O..;;x..;; 1, (2.12) is directly 
applicable. Therefore, X (1) - Iy( 1) = y(O) + 0 (A - I) and 
X(I)-'y'(I) = y'(O) + 0(1). As a result, 
Xix + l)-ly(X + 1) = X (x)y(x) + 0(,.1, -')forO..;;x..;;1.Repe
tition leads to (3.26) for all fixed x E lR. 

The analyticity and asymptotics of the Green's func
tions follow from those of E, k, and /3i' 

4. SCATTERING BY IMPURITIES 

A. The solutions 

We now consider the Schrodinger equation 

y" +Ey=(V+ UlY, (4.1) 

where Vis periodic, V(x + 1) = V(x),and U tends to zero as 
x _ ± 00. A suitable Green's function is given by (3.19), 
and we define two solutions of(4.1) by the integral equations 
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(4.2) 

X2(X) =/32(X) + r oc dx' y«x,x')U(X')X2(X'). 

If U E L I( - 00,(0), these equations can be solved by iter
ation. 

As x - ± 00 the form (3.19) of 9'(x, x') shows that 
when E is in an allowed band, 

xdx)=/3,(x) +0(1), as x- 00, 

= /3dx)/TI + /32(x)R,/T, + 0(1), as x - - 00, 

(4.3) 

Xz(x) = /32(x)lTz + /3,(x)R z/T2 + o( 1), as x - 00, 

= /32(X) + 0(1), as x - - 00, (4.3') 

where 

1 csc k foc 
-= 1- -.- dX/32(X)U(X)XI(x), 
T, 21E _. 00 

_I = _._ dx/3l(x)U(X)XI(X)' R csc k foc 
TI 2IE.- 00 

(4.4) 

1 csc k foo 
-= 1- -.- dX/3I(X)U(X)X2(X), 
T2 21E - 00 

R2 CSC k foc 
- = -.- dX/32(X)U(X)X2(X). 
T2 21E - 00 

The Wronskian of X I andxz may be evaluated atx - + 00 

or x - - 00, which yields 

W(xI,X2) = W(fJI,/32)1TI = W(f3I,/32)1T2 

= - (2iE sin k )IT!> (4.5) 

and hence T, = T2=T. We form a two-component column 
vector X out of XI andX2,j = (x1,X2)' 

It is also convenient to define another two-component 
solution tf by the integral equation 

tf(x) =/3 (x) + I~ 00 dy 9'+(x,y)U(y)tf(y), (4.6) 

where 9'+ is defined in (3.1S). Asx - ± 00, (4.6) gives 

tfl(X) = /31 (x) TI + 0(1), as x - 00, 
=/3I(x)+/32(x)R I +0(1), as x_- 00, (4.7) 

tf2(X) = /32(X) + /31 (X)R2 + 0(1), as x - 00, 
=/32(x)T2+0(l), asx--oo. (4.7') 

These asymptotic forms may also be written more compactly 
as 

tf(x) - /3 (x) = /31(X) A (6) + 0(1), as x - 00, 

/32(X)A (~) + 0(1), as x - - 00, 

where the 2 X 2 matrix A is given by 

A = r; ~2)_1 
and its elements have the representation 

csc k foc '" Alj = -.- dx/3/(x)U(x)tfj(X)' 
21E - oc 
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Because U is real, the integral equatins (4.6) lead to the alter
native representation 

csc k foo AIj = -.- dx tPn(x)U(x).8j(x), I =/=n. 
2lE ~ 00 

(4.9') 

In matrix form (4.9) and (4.9') imply 

A =QAQ. (4.10) 

We note that comparison of(4.7) and (4.7') with (4.3) 
and (4.3') leads to the conclusion 

tP = Tx. (4.11) 

By the same argument as in Appendix A of Ref. 4 one proves 
that the Fredholm determinant of (4.6) equals liT 

When E is in an allowed band, the function tP ~ ==QtP*, 
Ip~ = (tP!, tPf), is also a solution of(4.1). Hence there must 
exist a 2 X 2 matrix S such that 

(4.12) 

Comparing the asymptotic form for x - ± 00 of tP with 
that of tP*, we conclude that 

S=l+A, (4.13) 

and, furthermore, that S is unitary, 

sst=StS=l. (4.14) 

According to (4.8), S is made up of the transmission and 
reflection amplitudes, 

S= (; ~2). 
1 

The unitarity equations (4.14) read more explicitly 

IRll2 = IR212 = 1 -ITI2, 

Rl R2/1Rl R21 = - TZ/ITI2. 

They also imply 

detS= TIT*. 

(4.8') 

(4.14') 

(4.15) 

Equations (4.12) and (4.14) imply that for A. in an al
lowed band 

tP* = QS*tP· 

Now define 

¢ = M ~ltP, 

X=M~IX' 

(4.12') 

(4.16) 

(4.16') 

where M is defined in (3.8). Equation (4.12') then leads to 

¢* = QS *¢, (4.17) 
where 

S=QM~lQSM* 

in allowed bands, and by (3.17') 

¢* = QS~ ¢ 

(4.18) 

(4.17') 

in the band gaps. We note that if S = 1, then S = So, by 
(3.17). 

Consider the effect of a "comprehensive shift" of the 
lattice and the impurity together. That is, let V(x) and U (x) be 
replaced by 

V,(x) = V(x + t), U,(x) = U(x + t), 

and at the same time let the reference points 0 and 1 be 
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shifted to - t and 1 - t. Then y(x) = M ~ I{J (x) changes as in 
(2.9) while the Green's function:;: + changes as in (3.20). 
Therefore, by (4.6) the corresponding change in M ~ ItP is 
(M ~ ItP),(X) = X(I )~IM ~ ItP(X + t). Consequently, the ma
trix S, after the shift is 

St = X(t )SX(t)~ 1 (4.19) 

in the allowed bands, and in the band gaps the shifted So is, as 
in (2.10), 

(4.19') 

For reasons that will become clear in Sec. 4B [see Eq. 
(4.32)] it is useful to consider the function 

(4.20) 

According to (4.17), (4.17'), (4.19), and (4.19'), this function 
satisfies the relation 

VI*(x) = QS~ VI(x) 

in allowed bands, and 

VI*(x) = QS~x VI (x) 

in band gaps. 

(4.21) 

(4.21') 

The x dependence of VI will from now on no longer be 
explicitly indicated. Instead it will be its dependence on A. 
that is of importance, and we shall often simply write VI (A. ). 

A pair ¢ of "regular" solutions of (4.1), ¢ = (¢ P¢2)' is 
defined for x~O by the Volterra equation 

¢ (x) = JoY(x) + LX dy :;:(x, y)U (y)¢ (y) 

and for x,;;; 0 by 

¢ (x) = JoY(x) - [ dy:;:( y, x) U ( y)¢ (y), 

(4.22) 

(4.22') 

where Jo is the "single cell" Jost function with the property 
(2.15). Because:;: is real, Eqs. (2.6'), (2.15), and (2.7') imply 
that for real A. 

¢ *(x) = Q¢ (x). (4.23) 

The solution ¢ must be expressible as a linear combina
tion of ¢I and ¢z, Therefore, there must exist an x-indepen
dent 2 X 2 matrix J such that 

¢ =J¢. (4.24) 

Since by (4.5) 

W(x,x) = _ 2iE~nkp, 

where P = (o~ 1 ~), and, by (4.11), J is given by 

J = (csc k 12iE) W(¢,X)MPM. (4.25) 

We also have W(¢,¢ ) = - 2iE sin k Jo M ~ IpM ~ 1)0' from 
which it follows that 

det J = det JolT. (4.26) 

Equation (4.18), together with (4.23) and (2.15), then leads to 
the decomposition 

S= QJ~IQJ*, 
which for later purposes we shall write in the form 

J*~I = QS*J~IQ (4.27) 
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in the allowed bands, while in the band gaps 

J.-I = QS't J -IQ. (4.27') 

B. Analyticity and asymptotics 

We state the principal conclusions in the form of 
Lemma 2: Assume that VEL 2(0,1) and that 

U E L I( - <Xl, <Xl) n L 2( - <Xl, <Xl), Ixl U E L I( - <Xl, <Xl). Then 
X is an analytic function of E, holomorphic in C'\Ra' As a 
function of k it is analytic in C+ cut as indicated in Fig. 1 
with branch points of the square-root type at those purely 
imaginary (mod tT) points where dLJ. IdE = 0. The functions 
tP and T are analytic in A, meromorphic in C+ and in the 
band gaps and continuous in the allowed bands and the peri
odic spectrum. The poles of T and tP in C + and in the gaps are 
simple and occur at the same points, on the positive imagi
nary axis or in the band gaps only. The asymptotic forms of ¢ 
and T as A ....... ± <Xl or as IA I ....... <Xl in C+ are 

e - ikX¢I(X), eikx¢2(X) = 1 + 0 (A -I), (4.28) 

T= 1 + O(A -I), (4.29) 

while as A --> ± <Xl 

(4.30) 

The solution rp of (4.22) and (4.22') is an analytic func
tion of E, holomorphic in C'\Ra' The Jost function J is an 
analytic function of A, holomorphic in C+ and in the gaps 
and continuous in the allowed bands and at the points of the 
periodic spectrum. The asymptotic form of J as A....... ± <Xl 

or as IA I ....... <Xl in C + is 

J = 1 + O(A -I). (4.31) 

The function If! defined by (4.16) and (4.20) is an analytic 
function of A, meromorphic in C+ and in the band gaps, 
continuous in R~. Its asymptotic form as A ....... ± <Xl or as 
IA I ....... <Xl in C + is 

If! (A, x) = i + 0 (A -I), (4.32) 

where i = (: ). The matrix S defined by (4.18) has the 
asymptotic form as A....... ± <Xl 

(4.33) 

(This is to be understood in the sense that as A ....... ± <Xl it 
takes on only values in the allowed bands.) In R~ and the 
periodic spectrum S is continuous. 

Proof The Green's function (3.19) in (4.2) may be ex
pressed in the form (for x' <x) 

9'(x,x') = cS2~k [e,kIX-X')SI(X)S2(X') 
IE 

- elk lx' - X)SI (x')s 2(X)] , 

and thus the integral equation for X I may be written as 

. csc k lac XI(x)e-,kx = SI(X) - -.- dy [SI(X)S2(y) 
21 x 

- e2iklY - X)SI(Y)S2(X)] U( y)XI( y)e - iky. 
(4.2') 

The functions SI and S 2 are periodic and uniformly bounded, 
and 9'(x, x') is an entire analytic function of E. Therefore, 
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X I eikx is well defined by the iteration of (4.2') for all k E C + if 
U ELI. If furthermore, Jx I U ELI, then X I is an analytic 
function of E holomorphic in C'\Ra' As a function of kits 
analyticity follows from Sec. 3A. The same holds for X2' 

In contrast to (4.2), (4.6) cannot in general be solved by 
iteration. If U ELI n L 2, then its kernel is in the trace class 
for all k E C+, and for all real k except where sin k = 0. As 
sin k --> 0, /31 ....... /32' and according to (4.4), liT 
~ 1 - a csc k, R/T~a csc k, where a = S/3IUX, dx. 
Therefore, if a # 0, then T ~ - ( sin k )I a and 
R I ~ Ta csc k ....... - 1; similarly for R 2 • Therefore, in general 
(i.e., unless a = 0) at the periodic spectrum, i.e., at the end 
points of the allowed bands, R I = R2 = - 1 and T = 0. If 
a = 0, then, at sin k = 0, R I = R 2 = ° and T = 1. 

It follows from this analysis and (4.11), since X is bound
ed at sin k = 0, that at the periodic spectrum tP = ° in gen
eral. In exceptional cases T = 1 at such points and tP is 
bounded. 

Since (4.6) is a Fredholm equation, its solution tPwill not 
exist at the exceptional points E = Ee> where the Fredholm 
determinant vanishes. It will be seen in Sec. 5 that these 
points Ee must lie on the real axis, in fact in band gaps or 
below Eo. In C+ and the band gaps (except at the points Ee) tP 
is a holomorphic functions of A, and on R~ it is continuous if 
U E L 2. The Fredholm determinant of (4.6), and hence also 
liT, is analytic in C+ and in the gaps and continuous in R~. 
The poles of T at the exceptional points will be seen below (in 
Sec. 5) to be simple. 

It follows from (3.28) that as v = 1m A ....... <Xl the Hil
bert-Schmidt norm of I U 11/29' + U I U 1- 1/2 tends to naught. 
Therefore, the Fredholm determinant of (4.6) approaches 
unity as v ....... <Xl. If U ELI, the same holds asA ....... ± 00. For 
the same reason we find (4.28) from (4.6) and (3.26). The 
asymptotic form (4.30) follows from (4.28) and (4.9). 

If U ELI, the solution rp of the Volterra equations (4.22) 
and (4.22') is easily seen to be an analytic function of E holo
morphic in C'\Ra, because JoY(x) is entire analytic. The anal
yticity and asymptotic form (4.32) of J follow from (4.25). 
The only point at which J appears to have a singularity is 
A = 0. However, it was shown in Sec. 2 that in the generic 
case y(x) = ° at A = 0, and therefore rp (x) = xix) = 0; fur
thermore, it is then easily seen from (3.8) that 
lim" _ 0 AMPM exists. In the special case (b) when M and 
M - I are holomorphic at A = 0, W (Mrp,X) tends to zero as 
A .......0 and hence J again is holomorphic. Thus J is holomor
phic as a function of A in C + '\ R~ . 

The analyticity and asymptotics of If! (x) follow from 
those of tP(x) and M. The results (4.29) and (4.30) imply that 
as A --> ± <Xl (always in allowed bands) 

S=l+O(A-'). 

The definition (4.18) together with (3.25) therefore lead to 
(4.33). 

We also note that as E approaches the end of an allowed 
band, i.e., sin k ....... 0, in general, as we saw, S ....... - Q; in 
exceptional cases S ....... 1. It then follows from (3.17) and the 
remark below (3.17') that in all casesS remains bounded even 
at the periodic spectrum. 

ASA -+ 0, one easily shows by means of(4.18), (3,9), and 
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(3.10) that S remains finite both in the generic and in the 
exceptional cases. Q.E.D. 

5. BOUND STATES 

A. Eigenvalues and characters 

Suppose that E = E b is not in an allowed band or in the 
periodic spectrum, and that the imaginary part of 
kb = cos- 1 Ll (Eb) is positive. Then, as x - 00, 

Xl(x)e- ikx = SI(X) + 0(1) 

and, as x - - 00, 

X2(x)e ikx 
= S2(X) + 0(1). 

Therefore, if W(xI,X2) = 0, then XI = CX2 decreases expon
entiallyasx_ ± 00 andhenceEb is an eigenvalueof(4.I); 
there is a bound state. It follows from the se1f-adjointness of 
(4.1) that Eb must be real, i.e., kb purely imaginary (mod 1T). 
By (4.5) at such a point lITvanishes and hence Eb must be a 
zero of the Fredholm determinant of (4.6) and thus a zero of 
det J. It follows that the points Eb are identical with the 
exceptional points Ee defined in Sec. 4B. 

When A is real and k (A ) is purely imaginary (mod 1T), 
then k ( - A ) = - k *(A ). Therefore, /3 ( - A ) = /3 (A ) and 
X ( - A ) = X (A ). Consequently, if T has a pole at A = Ab , 

then it also has one at A = - Ab ; similarly for if;. Thus the 
bound-state poles in the band gaps occur in pairs symmetric 
with respect to the imaginary axis. (This is true both in theA 
plane and in the k plane.) 

From the Schrodinger equation (4.1) we also find that 

and since for purely (mod 1T) imaginary k and real EX2 is real, 
this cannot vanish. Therefore, T has simple poles at the 
bound states. We note that bound states may occur at posi
tive or negative E; the only requirement is that Eb not be in 
an allowed band. 19 

Suppose then that E = Eb, in a band gap or Eb < 0, is a 
bound-state eigenvalue. Then if; has a simple pole at E = Eb 
and its residue is of the form 

1ft,es(x) = U b (x)s, 

where Ub (x) is the eigenfunction. [Apart from normalization 
this function is unique because otherwise every solution of 
(4.1) at Eb would have to vanish as x - ± 00; it may be 
chosen to be rea1.] From the fact that the residue of the full 
resolvent of (4.1) at E = Eb is proportional to Ub (x)ub (x') it 
follows that the normalization of Ub may be chosen so that 

s = f: 00 dx U b (x)U (x)/3 (x). 

On the other hand, it follows from (3.18) and (4.6) that 

(2iE sin kb)U b (x) 

= {/31(X)s2 + o(e'kJiC) as x - + 00, 
/32(X)s1 + ole - ikJiC) as x _ - 00. 

Thus the relative values of the components of s measure the 
relative asymptotic values of the bound-state eigenfunction 
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as x - ± 00. We refer to the ray s as the character of the 
bound state. Define s = M -IS, with M evaluated at Eb • 

Now at E = Eb we must also have detJ = detJo/T 
= 0. So there must exist a vector s' such that Js' = ° at 

E = Eb • Since <p =J¢ = (TJ)(¢IT) is holomorphic at 
E = Eb and ¢ and T have simple poles there, the residue 
¢1,es(x) = Ub (x)$ of ¢(x) must be such that.lS = 0. Apart from 
normalization therefore s = s'. (It is easy to see that if J = ° 
at E = Eb then there are two linearly independent bound
state eigenfunctions. Since this is impossible, two linearly 
independent vectors s' cannot exist.) We conclude that the 
character of the bound state is the null space of JM - I at 
E = E b' As a function of A,J has equal nontrivial null spaces 
atA =Ab andatA = -Ab ifAb ER'\R~. 

It follows from (4.26) that J is a singular matrix also at 
those points at which Jo is a singular matrix, i.e., at the bound 
states ofV. Equations (4.22), (4.22'), and (4.25) show that the 
range of J there equals the range of Jo, but their null spaces 
generally differ. 

Suppose there are N bound states with the eigenvalues 
Eb = A;, b = 1,00', N, including both the eigenvalues of 
U + V and those of V. We then define N real projections 
Bb = B t = B ~ successively as follows, for b = 1,00', N: 

If Eb < 0, so that kb = cos -I Ll (Eb) is positive imagi
nary, then 

k +kb 
Fb(k) = ll-Bb + Bb --; 

k - kb 

if Eb > 0, so that kb is positive imaginary (mod 1T), then 

k - kt k + kb 
Fb(k)=I- Bb+ Bb ; 

k - kb k + kt 

Cb = FI(kb)··· Fb_ 1 (kb), C I = 1, 

(1 - Bb)C b- II[I~es = 0, 

where l[I~esis the residue of 1[1 (x) = X -1~(x)atE = E b • Also 
define 

ll=FI···FN 

and 

(5.1) 

Then 1[1 red is holomorphic at A = A b and otherwise has the 
same analyticity and asymptotic properties as 1[1. 

Next we define, for E E Ro 

s~ed = Qll -IQSxll *. 

Then by (5.1) and (4.21) for E E Ro 

l[lred* = QS~ed*l[Ired. 

In the band gaps (4.21') leads to 

where 

S~~u = Qll -IQSox ll*. 

We note that Ik I - 00 

II = II + 0 (k -I). 

(5.2) 

(5.3) 

(5.3') 

(5.4) 

(5.5) 

Therefore, by (4.34), (2.13), and (2.13') aSA ~ ± 00 in al
lowed bands 
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s :ed = 1 + 0 (A - I) 

and in the band gaps 

S~:d = 1 + OrA -I). 

(5.6) 

(5.6') 

A similar reduction is performed on the Jost function. If 
we denote by Jx the Jost function for a potential comprehen
sively shifted by x, then we define 

J:ed = Jx IT 

and the decompositions (4.27) and (4.27') lead to 

(J:ed - 1)* = Qs:ed*J:ed - IQ 

in the allowed bands, and 

(J:ed- 1)* = QS~:d*J:ed - IQ 

(5.7) 

(5.8) 

(5.8') 

in the band gaps. It follows from the fact that the null space 
of Jx atAb equals the range of the residue of 1[1 there thatJ :ed 

has the same analytic properties as Jx , and det Jx has no 
zeros in C+ or in the gaps. Its asymptotic behavior is the 
same as (4.31). 

B. Levinson's theorem 

Let u~ define ~ as the argument of T, T = IT lei6
• Then 

we have by (4.15) in the allowed bands 

(5.9) 

where D = ;5 (mod 17"). We shall require that 
D ( - A ) = - D (A ), which we may since S ( - A ) = S *(A ) 
[see Sec. 6]. 

In the band gaps, on the other hand, Tis real and hence 
;5 = 0 (mod 17"). Since S is continuous, D will be defined to be 
continuous in the allowed bands for E> O. At the points of 
the periodic spectrum, T has (in the generic case) simple ze
ros, and, as we circumscribe a simple zero in the clockwise 
sense in the upper half-plane, the phase decreases by 17". The 
phase D, which is defined only in the allowed bands, will 
therefore be defined so that at each band gap the difference 
between the left-hand limit of D at the left gap end and its 
right-hand limit at the right gap end is equal to 217". As 
E ----+ 00, Eq. (4.29) allows us to define D to be zero. This 
defines D uniquely in all the allowed regions. Its value at 
E = 0 + is then given by 

Theorem 1 (Levinson theorem): Let n be the total num
ber of bound states (i.e., those at negative energies and those 
in band gaps). If at each point of the periodic spectrum (in
cluding E = 0) T = 0 (which is the generic case), then the 
phaseD defined above is such that its valueD (0) = lim D (E las 
E ----+ 0 + is D (0) = 7T(n _ ~).20 

Proof We apply the argument principle to the analytic 
(by Lemma 2) function T and a contour that runs along the 
real axis from - 00 to + 00, avoiding each point of the 
periodic spectrum, including the origin, and each pole of Tin 
a band gap, by a small semicircle in C+, and that is closed by 
a large semicircle in C + . 

The result is that;5( - (0) - ~(oo) = 217"n' if n' is the 
number of poles of Tin C+, i.e., the number of negative
energy bound states. We define D ( 00 ) = 8( 00 ) = O. Since each 
bound-state pole in a gap appears once for A > 0 and once for 
A < 0, and at each such pole;5 increases from left to right by 17" 
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while at each gap end it decreases by 17", whereas D decreases 
by 217" across each gap, we have D (E) = 8(E) + 17"n" and 
- D (E) = D ( - E) = 8( - E) - 17"n" - 8( - (0) if E is a small 

positive number and n" is the number of positive-energy 
bound states. Furthermore, ;5(E) - 8( - E) = 17" because T has 
a simple zero at the origin. The solution of these equations is 
D(E) = 17"(n' + n" - ~). We then allow EtO approach zero and 
set n = n' + n". Q.E.D. 

6. THE INVERSE SCATTERING PROBLEM 

We now have all the ingredients needed for the solution 
of the inverse scattering problem associated with Eq. (4.1). It 
will be given by the solution of the Riemann-Hilbert prob
lem suggested by Eq. (4.12') and the analyticity of J/;. More 
specifically, it is the function 1[1 defined by (4.20) and (4.16) 
rather than J/; that has to be considered, because of its simple 
asymptotic form (4.32). 

The first need is to recognize a symmetry possessed by 
all the functions we have dealt with. The function r defined 
by (2.2) satisfies the relation r*( - A, x) = r(A, x) for real A. 
As a result of this and of the definition of k adopted the Bloch 
solution, /3 has the same symmetry property. This is true 
even in the band gaps because it is the limit on the real axis of 
/3 *( - A *, x) = /3 (A, x)and - A * is mapped into - k *.Asa 
result, all the functions defined in Sec. 3 obey this relation, 
and those defined in Secs. 4 and 5 inherit it. For any function 
I of A, we shall use the notation I _, defined by I_(A ) 
=/(-A). 

Combining Eqs. (4.21) and (4.21 ') into a single equation 
for all real A we may now write them in the form 

1[1 _ = OJQI[I, 

where 

{ QS~ Q, when A E 1R:, 

OJ = QS ~x Q, when A Ef 1R~ 
Similarly, (5.3) and (5.3') become 

where 

OJ red = IT * -IOJQITQ 

(6.1) 

(6.2) 

(6.3) 

with IT as defined in Sec. 5. Similarly, Eqs. (4.27) and (4.27') 
may be combined to read 

(J x- 1)_ = OJQJ x- IQ, (6.4) 

and (5.8) and (5.8') 

(6.5) 

The relevant Riemann-Hilbert problem Jf' to be solved 
now is this: Given OJ

red on the real A axis, we wish to find a 
(2 X 2)-matrix-valued function J:ed - 1 that is holomorphic 
and zero-free (i.e., its determinant nowhere vanishes) in C+, 
continuous on the real axis, satisfies the asymptotic relation 
(4.32), and that obeys Eq. (6.5). IfJ:ed 

- 1 solves this problem, 
then 

satisfies (6.2) and all other requirements for 1[1 red. The advan
tage of solving (6.5) instead of(6.2) directly is that ifan under-
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lying potential is known to exist, then we know that the prob
lem Jf" has a solution. By Lemma 3 of Ref. 9 this solution is 
unique. It then follows that the solution of the problems for 
IJIred is also unique. No such uniqueness could be directly 
guaranteed for a Hilbert problem with vector-values solu
tions. 

To find the solution of Jf" we first define the Fourier 
transform of «/ed - 1: 

~(p) = _1_foo dA eiAP[Wred(..i) - 1]. (6.6) 
21T - 00 

If there are no positive-energy bound states, i.e., no bound 
states in the band gaps, the function wred is continuous for all 
X E R, and by (5.6) and (5.6'), 

(6.7) 

as A ---+ ± 00, both in allowed bands and in the band gaps. If 
there are positive-energy bound states, then II has poles and 
hence wred has poles in the band gaps. We shall from now on 
assume that there are no positive-energy bound states. If we 
regard IJI red, J red, and w red as functions of A on R, then 
( IJI red _ 1) E L 2, ( red _ 1) E L 2, and (wred - 1) E L 2. The 
Fourier transform (6.6) therefore exists in the L 2 sense. We 
then have the following two theorems, the first dealing with 
the reconstruction of an underlying potential that is known 
to exist for the given data and the other dealing with the 
existence and construction of an underlying potential from 
arbitrarily given data: 

Theorem 2: Suppose that VEL 2(0,!.l, 
U E L I(R) n L 2(R), So is the S matrix of V [defined below 
(2.1)], S is the S matrix of V + U as defined in Sec. 4, and w red 

is defined as in (6.3) and Sec. 5 in terms of the bound state 
eigenvalues and characters of Vand V + U. Assume that 
there are no bound states in the band gaps. Define ~ as in 
(6.6) and let rr be the self-adjoint operator L 2(R+) -+ L 2(R+) 
whose kernel is ~ (p + q). Then rr is Hilbert-Schmidt; as
sume that 1 is not in its spectrum. Then the linear integral 
equation 

alp) = ~(p)j + I'" dq ~(p + q)Qa(q) (6.8) 

for P;;.O has a unique solution in L 2(JR+). If rr does not have 
the eigenvalue - 1 either, then the Neumann series of (6.8) 
converges. The Fourier transform of the solution of(6.8) 

IJIred(..i)= j + -I-L'" dpeMPa(p) (6.9) 
21T 0 

is such that if; = XlllJI red satisfies the Schri::idinger equation 
(4.1) with the potential 

V + U = - 2 -.!!.... lTl(x) = 2 -.!!.... lT2(x), (6.10) 
dx dx 

where 

iT(x) = a(0 + ) - lim _1_ f'" d..ieiAP[ll (A) - 1] 1. 
p_o+ 21T - 00 

(6.11) 

[Recall that lland w depend onx, and hence, sodo ~(p)and 
a(p).] 

Theorem 3: Suppose that a real V(x), x E R, and a uni
tary(2 X 2)-matrix-valuedfunctionS (A) = S *( - A ),A E R;, 
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are given such that V(x + 1) = V(x) and V [as defined below 
(2.1)] E L 2(0,1), Sis continuous, (S - 1) E L 2(R~ )andSsatis
fied the Levinson theorem (Theorem 1) for n bound states. 
Also given are n negative eigenvalues and corresponding 
bound-state characters. Define the self-adjoint operator rr on 
L 2(JR +) by its integral kernel ~ (p + q) in terms ofthe Four
ier transform of w red as in (6.6), where w red is defined by (6.3), 
(4.18), and (4.19), and II as in Sec. 5; also define rro by the 
kernel - ~ ( - p - q). Suppose that rr is Hilbert-Schmidt 
and neither rr nor rro has the eigenvalue I, and that ~ (p) is 
continuous at p = 0. Then Eq. (6.8) has a unique solution 
O'(p) in L 2(R+). Define CT(x) as in (6.11). Suppose further that 
the solution 0' is "miraculous" in the sense that 
IT)(x) = - lTz(x). Then the Fourier transform of u as in (6.9) 
is such that if; = XlllJI red satisfies the Schri::idinger equation 
(4.1) with the potential given by (6.10), Sis the corresponding 
S matrix, the chosen eigenvalues and characters are those of 
(4.1) with the potential (6.10), and the residues of if; at the 
poles of II are the corresponding bound-state eigenfunc
tions. 

The proofs of these two theorems are identical to those 
of Theorem 2.1 of Ref. 7 and of Theorem 3.1 of Ref. 8, and 
they need not be repeated here. It should be noted that an 
im portan t ingredient of the proof of the latter theorem is the 
fact that (6.1) may be obtained from the Riemann-Hilbert 
problem Jf" whose solution is an operator-valued (or in the 
pre~ent case, square-matrix-valued) function by operating 
on 1. This was the main purpose of the introduction of the 
Jost function here. 
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APPENDIX 

It is customary to define two solutions by boundary 
conditions at x = 0: 

YI(O) = Y; (0) = 1, Y; (0) = h(O) = 0. (AI) 

For o<;x<; 1 these functions satisfy the Volterra equations 

(whereA = JE) 
ydx) = cos AX 

1 IX + - dt sin A (x - t )V(t lYdt), 
A 0 

(A2) 
Y2(X) = (sin AX)! A 

I LX + - dt sin A (x - t )V(t lY2(t), 
A 0 

which have unique solutions obtainable by iteration if 
VEL 1(0,1). The two functionsYI andY2 arelinearlyindepen
dent and their Wronskian is 

(A3) 

The Bloch solutions Pi' i = 1,2, are expressible as linear 
combinations ofYI andyz as follows: 

Roger G. Newton 2161 



                                                                                                                                    

and the quantities E, E1, and E2 are given by E = Y2(1), 
EI = Y; (I), E2 = YI(I). The discriminant is given by 

(A4) 

.Ii = H Yi (1) + E2 ], and the relation between Yi and Yi is 

YI(X) = (I + l1dvl(x) + fA (I -l1dY2(x), 

Y2(X) = (I + 113)YI(X) - fA (I + 113)Y2(X), 

and, conversely, 

YI(X) = J.. YI(X) + J.. 1 -111 Y2(X), 
2 2 1 + 113 

1 
Y2(X) = 2fA [YI(X) -IY2(x)), 

(AS) 

(A6) 

The Green's function (3.19) may, by (A4), be expressed 
in the alternative form 

9'(x, x') = YI(X)Y2(X') - YI(X')Y2(X), x' < x. (A 7) 

The Volterra equations for YI andY2 imply that if 
VEL 1(0,1), then both of these solutions are entire analytic 
functions of E. Furthermore, they easily lead to the conclu
sion that as IE I - 00 with v = 1m A, 

YI(X) = cos Ax + 0(,1 -Ielvllxl), 
(A8) 

Y2(X) = (sin Ax)/A + 0(,1 -2elvllxl). 

Therefore, L1 is an entire analytic function of E of order !, as 
is well known. 
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The transmission coefficient for a one-dimensional system of N potential barriers of general 
shapes (unequal or equal) is expressed exactly, by means of the phase-integral method ofN. 
Froman and P. O. Froman, in terms of quantities characterizing the separate barriers and wells of 
the system. The exact formula, being of interest for further rigorous studies of transmission 
properties, can for evaluation readily be converted into a useful approximate formula by insertion 
of available phase-integral expressions (of an arbitrary order) for the characteristic quantities 
mentioned above. Error estimates are given. The sub- and superbarrier cases are treated in a 
unified way. Some key facts about the phase-integral method are given in Appendix A. 

PACS numbers: 03.65.Sq 

1. INTRODUCTION 

Tunneling phenomena, widely discussed in physical li
terature ever since the early days of quantum mechanics, 
play an important role in several fields of physics such as, 
e.g., solid state l

•
2 and surface physics,3 soliton theory,4.5 mo

lecular theory, and the theory of nuclear fission. 6 Some gen
eral results concerning tunneling7 have recently been ob
tained in connection with the study of black holes. 

In the present paper and some papers to follow,s-IO 
transmission properties of smooth one-dimensional multi
barrier potentials of general shapes will be studied by means 
ofa powerful phase-integral method, due to N. Froman and 
P. O. Froman, which is developed in five pUblications. 11-15 
In Ref. 11 a rigorous method for mastering connection prob
lems was jointly constructed by N. Froman and P. O. Fro
man. Subsequently, N. Froman introduced the "symmetric" 
higher-order phase-integral approximations 12-13 into this 
method which were later generalized by both authors, in 
Ref. 14 and on pp. 126-131 in Ref. 15, yielding a versatile 
tool in semiclassical physics, sometimes useful even outside 
that domain. 16 The advantages, as documented in Ref. 17, of 
using higher-order phase-integral approximations instead of 
the related higher-order JWKB approximations are primar
ily due to their simpler form, the relation between phase and 
amplitude being, in a classically allowed region, the same as 
for the first-order JWKB approximation and, more impor
tant, the same as for the exact solution of the Schrodinger 
equation (see p. 14 in Ref. 11). It is this formal structure of 
the phase-integral functions that renders them useful in the 
phase-integral method. In a series of papers during the past 
15 years the Froman method has been successfully applied to 
various physical problems. Simple formulae admitting accu
rate evaluations have been given for a number of physical 
quantities such as energy eigenvalues, level densities, norma
lization factors, quantal expectation values, quantal matrix 
elements, dispersion relations, and transmission and reflec
tion coefficients.16.ls-28 

Some important features of the treatment in the present 

and subsequent papers8
-

1O are comprised in the following 
points: (i) the considered multibarrier potentials are of gen
eral shapes; (ii) the subbarrier and superbarrier cases are 
treated in a unified way; (iii) the calculations are performed 
without approximations resulting in exact final formulae; 
(iv) phase-integral expressions (of an arbitrary order) for 
characteristic quantities appearing in the final formulae are 
given with rigorous error estimates. Particularly in higher 
orders, these expressions are often extremely accurate. 
Hence, the exact final formulae can readily be converted into 
useful approximate ones of high accuracy. 

In Sees. 2-8 below we shall consider a one-dimensional 
potential function V(x) forming a system of N potential bar
riers of general shapes (unequal or equal). Certain quantities 
characterizing the individual barriers and wells in the system 
will be introduced, by means of which convenient matrices 
called P matrices are defined, one for each barrier interval. 
The transmission and reflection coefficients are finally ex
pressed in terms of these P matrices, by Eqs. (43a), (43b) and 
(44a), (44b), which are the end results of this paper and 
which, further, form the starting point for the investigations 
in Refs. 8-10. For the benefit of the reader who is not already 
acquainted with the phase-integral method, some key facts 
about this method have been gathered in Appendix A. In 
order to make the present paper more easy to read, we shall 
sometimes refer to this appendix instead of to the original 
papers. Further references are then given in Appendix A. In 
Appendix B we give a list of phase-integral expressions (of an 
arbitrary order) for the characteristic quantities appearing in 
the exact final formulae. Error estimates are given, and 
ranges of validity are discussed. 

Specializing (43a), (43b) and (44a), (44b) to the subbar
rier case and first-order approximation, using phase-integral 
expressions given in Appendix B (with omission of correc
tion terms) and putting all 0" quantities equal to zero, we 
arrive at approximate formulae which are equivalent with 
Eqs. (109) and (110) in a paper by Ponomarev29 (if misprints 
in his equations are corrected). 
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2. EXACT FORMULAE FOR THE TRANSMISSION 
COEFFICIENT 

The phase-integral method, developed by N. Froman 
and P. O. Froman in Refs. 11-14and on pp. 126-131 in Ref. 
IS, forms the basis for the treatment in the present paper of 
particle transmission through a system of an arbitrary num
ber of potential barriers of various shapes. The particular 
cases of a single potential barrier and a system of two poten
tial barriers have previously been treated by means of the 
phase-integral method, in Refs. 11,26 and Ref. 27, respec
tively. By approaching the general case of N potential bar
riers along similar lines we shall be able to utilize some of the 
considerations and arguments in Refs. 27 and 11. Certain 
knowledge about the principal features of the phase-integral 
method will be presupposed below; this refers, for instance, 
to the function q(z), the phase-integral functionsf](z) and 
f2(Z), the Riemann surface for defining w(z), the choice of 
lower limit in the w(z) integral, and the matrix F(z], Z2)' The 
reader is referred to Appendix A, where some key facts 
about the phase-integral method extracted from the works 
mentioned above, have been collected. For further details we 
can refer, besides to the original papers, to a recent review 
article by N. Froman in a monograph30 on semiclassical 
methods in molecular scattering and spectroscopy. 

We study the one-dimensional Schrodinger equation 

~:~ + Q 2(Z)1j; = 0, (1) 

where 

(2) 

z being a complex variable (the real values of which will be 
denoted by x) and E being the energy of a particle with mass 
m moving in the potential field V (x) which, havingN humps, 
forms a general system of N potential barriers. We assume 
that Q 2(Z) is real on the real axis, i.e., V (x) real. Furthermore, 
we assume that Q 2(Z) is an analytical function of z in the 
complex plane. 

We shall restrict the possible choices of the function q(z) 
to the unmodified phase-integral expressions given by (A36) 
in Appendix A. 

Figures l(a) and l(b) show the leftmost barrier, B (1), of 
the considered system in the cases of subbarrier and super
barrier transmission, respectively. Figures 2(a)-(d) show (for 
n;>2) the nth barrier from the left, B (n), together with the 
neighboring barrier to the right, B (n + 1), in the different 
cases of subbarrier and superbarrier transmission that are 
possible. With the exception of part p, Figs. 2(a)-(d) are ap
plicable also for n = 1. The phase of qI!2(Z) on the real axis of 
the first Riemann sheet as well as the lower limit of integra
tion in the integral defining w(z) have been chosen, as in Ref. 
27 (see there pp. 629-35), in the way described in the last 
fourth part of Appendix A. 

We shall make the following assumptions concerning 
the behavior of V (x) for large values of Ix I. We assume that 
Q 2(X) and hence also q2(X) is positive for sufficiently large 
values of Ixl and that the integralll(x],x2N+])' defined by 
(4.2) in Ref. 11, with the integration performed along some 
convenient path on the upper half of the first Riemann sheet, 
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V(xl-E 

01. 

y 

FIG. Ila). Barrier BII) in the subbarrier case: la) Qualitative behavior of 
Vlx) - E. (j3 - y) Contours of integration for obtaining w(z). Those parts of 
the contours which lie on the second Riemann sheet are indicated by dashed 
lines. The heavy line indicates a cut. (6 ) Phase of q'/2(Z) on the real axis of the 
first Riemann sheet. 

converges as X] tends to - 00 and as X2N + ] , lying to the 
right of the barrier system, tends to + 00. From this it fol
lows, similarly as on p. 92 in Ref. 11, that if z does not coin
cide with a singularity or zero of l(z), the limits F( - 00, z), 
F(z, + 00), and F( - 00, + 00) exist and are finite, which in 

V(xl-E 

FIG. I(b). Barrier B II) in the superbarrier case. The figure should be inter
preted in the same manner as Fig. I(a). 
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FIGS, 2(aHd), The barriers B (n) and B (n + I) in the four possible cases of subbarrier and superbarrier transmission: (a) Qualitative behavior of V(x) - E. 
V3 - {j) Contours ofintegration for obtaining w(x). Dashed lines indicate those parts of the contours which lie on the second Riemann sheet. The heavy lines 
indicate cuts between zeros of Q2(Z). (€) The phase of q'/2(Z) on the real axis of the first Riemann sheet is specified in Figs. I(a) and I(b). 
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turn implies that the limits a I ( ± 00) and a2( ± 00) exist and 
are finite, and that!l(x) and!2(x) for increasing values of Ixl 
approach two linearly independent solutions of the Schro
dinger equation. These solutions may be interpreted as 
waves traveling in opposite directions. 

Thus, in the expression 

t/'(x) = al(x)iI(x) + a2(x)!2(X) (3) 

for the solution of the Schrodinger equation on the real axis 
obtained from (A3) in Appendix A, the two terms may, as 
Ixl-oo, be interpreted as waves moving in opposite direc
tions. According to (9.5) in Ref. 11, the corresponding prob
ability currents are given by 

(li/m)qlaJI12, (4a) 

and 

(4b) 

respectively, where!1 and!2 are defined by (A4a) and (A4b) 
in Appendix A. We observe that the sign of q decides the 
directions of the two waves. In consequence of the choice of 
phase of qI/2(Z), shown in Figs. l(a) and l(b), the sign of q(z) on 
the real axis of the first Riemann sheet is positive to the left of 
the barrier system, while to the right of the system it is nega
tive in the case of an odd number of barriers but positive for 
an even number. 

Assuming that there is only an outgoing wave far to the 
right of the barrier system, we conclude from (4a) and (4b) 
that the transmission coefficient is exactly given by 

T = \ a2( + oo)e - iw( + 00 I \ 2 

odd () iu~ - 00 I a l - 00 e 
(Sa) 

when the system contains an odd number of barriers, and by 

T =lal(+00)eiWI+OCi\2 (Sb) 
even a l( _ CI) )eiW( - 00) 

in the case of an even number of barriers. It is clear from the 
remarks above, that the difference in appearance between 
(Sa) and (Sb) is due to the fact that the outgoing wave, far to 
the right of the barrier system, is represented by a2(z)fl(Z) in 
the case of an odd number of barriers but by al(z)fI(Z) in the 
case of an even number. 

3. EXPRESSIONS FOR w(x) 

It is convenient to introduce for n = 1,2,3, .. , the quanti-
ties 

Kn = ( - 1)n+ I~f q(z) dz, (6) 
2 rKn 

Ln = ( - 1 )nRe( + LLnq(Z) dZ) (positive), (7) 

which both are real, in consequence of the reality of Q lIz) on 
the real axis. The integration contours are shown in Figs. 
2(a)-(d). When the first-order expression for q(z) is used [Le., 
q(z) = Q (z) according to (A36) in Appendix A], the quantity 
Kn is positive in the case of subbarrier transmission for the 
barrier B (n) but negative in the superbarrier case while the 
quantity Ln is always positive. The same is true also when a 
higher-order expression for q(z) is used, except for energy 
values lying close to the top of the barrier B (n) or, alternative
ly (as concerns Ln), the barrier B (n + 1). The behavior of Kn 
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and Ln as the energy approaches a proper barrier top is eluci
dated in the discussion on pp. 316-18 in Ref. 19 . We remark 
that K" K2, and L, are the same quantities as are defined by 
Eqs. (6a), (6b), and (7) in Ref. 27. 

We further define for n = 1,2,3, .. · 

W,(XIl=Re( +L,q(Z)dZ). (8a) 

W2n + 1 (x" + I) = Re( + L" , ,_ rl"q(Z) dZ)' (8b) 

w2,. (X,. + 1 ) = Re( ~ f q(z) dZ). (8c) 
2 r" j , 

The integration contours are shown in Figs. l(a), lIb), and 
2(a)-(d). The subscript 2n in the notation W 2,. (xn + I) indicates 
that the proper integration contour encloses the turning 
point t 2n with the same subscript. Analogously for the sub
script 2n + 1. The quantity wln (xn + 1) is positive if n is an 
even number, and negative otherwise. The quantity 
W2n + 1 (X,. + I) is instead negative if n is an even number, and 
positive otherwise. 

From (7), (8b) and (8c) it follows that 

W2n(X,. -t 1) = W ln + 1 (Xn+ I) + (- I)"L,., n = 1,2,3, .. ·. (9) 

Having chosen the lower limit in the integral defining 
w(z) as described in Appendix A, we obtain with the aid of 
(6)-(9) the following expressions for w(z) in the different re
gions of the real axis 

w(xIl = w1(x), (lOa) 
n 

w(xn + I) = w2n + I (xn + I) + I ( - 1)"(L, + iK,,), 
V= 1 

n = 1,2,3, .. ·. (lOb) 

We note that 

1m w(xIl = 0, (lla) 
n 

1m w(x n + I) = I ( - IrK,., n =-= 1,2,3, .. ·. (lIb) 
1'=-__ 1 

4. ALTERNATIVE FORMULAE FOR T 

Since there is only a transmitted wave far to the right of 
the barrier system, we have a I ( + 00) = 0 in the case of an 
odd number of barriers but a l ( + 00) = 0 in the case of an 
even number [see the text in connection with formulae (3)
(5)]. From (3.16) in Ref. 11 it then follows that 

(12a) 

when the system contains an odd number of barriers and that 

al( - 00) =F,,( - 00, + oo)a l( + 00) (12b) 

in the case of an even number of barriers. 
Inserting (1Ia), (lIb) and (12a), (12b) into the exact ex

pressions (Sa) and (Sb) for the transmission coefficient T, we 
get the exact formulae 

_1_ = IFn( - 00, + 00 Wexp [ - 2 i ( - IrK,.], 
Todd ,~I 

for N odd, (13a) 
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_1_ = 1F1l( - 00, + oo Wexp [2 t (- ItK v], 
Teven v_ 1 

for N even, (13b) 

where N is the number of potential barriers in the system. 
Formula (I3a) should be used whenNis odd and (I3b) when 
Nis even. 

5. BARRIER CHARACTERISTICS 

The transmission properties of the leftmost barrier B ( 1 ) 
are contained in the matrix F(x 1,x2), where x I and X2 are two 
points on the real axis on opposite sides of the barrier, defin
ing the barrier interval. 

The following notations are introduced 

AI = IFdx
"

x2)1, (I4a) 

B, = 1F22(x p x 2)i, (I4b) 

a l = Harg Fdx
"
X2) - !1T], (I4c) 

1'1 =! argF22(x l ,x2)' (14d) 

From Eqs. (S.7a) and (S.7b) in Ref. 11, which are valid 
when the unmodified phase-integral expressions are used for 
specifying q(z) and when the lower limit in the integral w(z) is 
chosen as in the present paper, we obtain with the aid of( lla) 
and (lIb) the symmetry relations 

F Il (x"X2) = - F!2(x l ,x2)exp(2KI), (ISa) 

F21 (XI,X2) = - FT2(xpx2)exp(2Kd. (ISb) 

By virtue of(14) and (IS) the matrix F(x,,x2) can be written 

F(x"x2) = 

( 
- B, exp(2K, - i2r ,) 

-A, exp[2K, - i(2a, + !1T)] 
AI exp[i(2a, + !1T)]). 
B, exp(i2rd 

(16) 

Inserting (16) into the exact equation det F(x ,,x2) = 1, which 
is valid according to (3.19) in Ref. 11, we obtain 

Ai -Bi = exp( - 2Kd· (17) 

We shall now define corresponding quantities for the 
other barriers in the system. Consider B (n), the nth barrier 
from the left. In order to obtain quantities which properly 
correspond toA"B

" 
aI' and 1'1 for the barrier B (1), we must, 

when defining An' B n , an' and l' n for the barrier B (n) in 
accordance with (14), take care that the phase of q(z) on the 
real axis as well as the lower limit in the w(z) integral are now 
specified so as to be related to the barrier B (n) in the same 
way as they were related to the barrier B (1) in the definitions 
of AI, B

" 
aI' and 1'1' 

We introduce the notation F(t 2m _ I ,n;Z 1,z2) for that 
F(zl,z2) matrix which is obtained by choosing the lower limit 
in the w(z) integral in the neighborhood of the turning point 
t 2m _, instead of the turning point t I' but otherwise in pre
cisely the same way as it was chosen in the neighborhood of 
tl earlier in the present paper, and by choosing the phase of 
q(z) on the real axis in the way shown in Fig. 3, where the 
situation at the barrier B (n) is depicted. The matrix F(z 1,z2) 
appearing in (14) is thus identical with F(t

"
I;Z,,z2)' 
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We now define, for n = 1,2, ... ,N, 

An = IFdt2n _ I ,n;xn,xn +' )1, (18a) 

(I8b) 

(I8c) 

(I8d) 

The definition of an is consistent with the definitions of a I 
and a 2 in Ref. 27. A comparison between the contributions 
from the individual barriers to the transmission coefficient is 
facilitated by these uniform definitions of the barrier charac
teristics. Phase-integral expressions (of an arbitrary order) 
for the quantities An , Bn, an' and 'Tn are given by (BI), (B2), 
(B8), and (B9) in Appendix B. 

With the aid ofEqs. (18) and the symmetry relations for 
the matrix F(t2n _ I ,n;xn 'Xn + I ), which are the same as those 
for the matrix F(x 1,x2) displayed in (IS) if only K, is replaced 
by K n , we can write 

( 
- Bn exp(2Kn - i2rn) 

- An exp[2Kn - i(2an + !1T)] 

n = I,2, ... ,N. 

An exp[i(2an + !1T)]) 
Bn exp(i2rn) , 

(19) 

Insertion of (19) into the relation 
det F(t 2n _ "n;xn,xn + I ) = 1, which follows from (3.19) in 
Ref. 11, yields 

A~ -B~ =exp(-2Kn). (20) 

6. DEPENDENCE OFTHE F-MATRIX ELEMENTS ON THE 
LOWER LIMIT IN THE w(z) INTEGRAL AND ON THE 
PHASE OF q(z) 

It follows from formulae (3.22a)-(3.22d) in Ref. 11 that 
the quantities Fdz,,z2)exp[2iw(zd], F 21 (z"z2)exp[ - 2iw(z,)] 
and the diagonal elements F1,(z,,zz) and F 22(z,,z2) are inde
pendent of the lower limit of integration in the integral defin
ing w(z). This implies that 

Fdl2n _ "1;Z,,z2) = Fdll' I;zl,z2)exp(2i8n _ d, (2Ia) 

where 

(22) 

the quantity wit 1;Z) being identical with w(z) as it is defined in 
the present paper (as well as in Ref. 27), while the quantity 
wit 2n + I ;z) is obtained from w(tl;z) by replacing, in thedefini
tion ofw(tl;z), the turning point II by t 2n + I , which amounts 
to moving the lower limit of integration in the w(z) integral 
from the neighborhood of t I to the neighborhood of t 2n + I . 
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FIG. 3. Choice of phase of q'/2(Z) on the real axis of the first Riemann sheet 
for the definition of the matrix FIt 2m _, ,n;z"z2)' The picture shows the re
gion in the neighborhood of the barrier B (n) in the (a) subbarrier and (f3) 
superbarrier case. 

Formulae (21) are valid for two arbitrary points z 1 and Z2 
situated in the region where the F matrix is uniquely defined. 
It is evident that the value of 8 n is independent of the posi
tion of the point Z I' For n = 0, Eq. (22) simply reads 

8 0 = 0. (23a) 

Putting first z 1 = Xn + 1 in (22) and then using the identities 

W(tl;xn + I) = w(xn + I)' 

W(t2n + 1 ;Xn + I) = W2n + 1 (xn + I)' 

where the latter identity can easily be verified with the aid of 
(8b) together with Figs. 2(a)-(d), we find from (22) and (lOb) 
that 

n 

8 n = I ( - W(L, + iK,.), n = 1,2, ... ,N - 1. (23b) 
\'= 1 

Choosingz i = xn andz2 = Xn + 1 in Eqs. (21), we obtain 

F 12(t2n _ I' l;xn 'Xn + 1 ) = Fdt l, l;xn 'Xn + 1 )exp(2i8n - I)' 

(24a) 

n = 1, ... ,N. (24b) 

For the sake of completeness we shall also write down the 
corresponding relations for the diagonal elements [see the 
text above (21)] 

F 11 (t2n _ I' l;xn 'Xn + 1 ) = F11(t l, l;xn 'Xn + I)' (24c) 

F22(t2n _ 1 ,1;xn,xn + I) = F22(t p l;xn,xn + I)' 

n = 1, ... ,N. (24d) 

Examining the structure offormulae (3.22a)-(3.22d) in 
Ref. 11, we find that if the phase of q(z) is altered by an odd 
multiple of 1T, i.e., if q is replaced by - q, the elements of the 
matrix F(z 1,z2) change their values in such a way that the new 
matrix elements are obtained from the original ones accord
ing to the scheme 

2168 

F7~W(ZI,z2) = F~~ig(ZI,z2)' 

F7~W(z 1,z2) = F~;ig(Z 1,z2)' 
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(25a) 

(25b) 

F~~W(ZI,Z2) = F~~ig(ZI,z2)' (25c) 

F~~W(ZI,Z2) = F~;ig(ZI,z2)' (25d) 

A change in the phase of q(z) by an even multiple of 1T, how
ever, leaves the matrix F(ZI,z2) unaffected [cf. the remark 
below (3.22d) in Ref. 11]. 

We can now express the matrix F(xn 'Xn + I)' for 
n = 1,2, ... ,N, in terms of elements ofF(t 2n _ I ,n;Xn 'Xn + I ). 

From (24) and (25), with comments, we obtain, if n is an odd 
integer, 

(26a) 

Fdxn 'Xn + 1 ) = Fdt2n __ 1 ,n;Xn 'Xn + I )exp( - 2i8n _ I)' 

(26b) 

F2I (xn ,xn + 1 ) = F21 (t2n _ 1 ,n;Xn 'Xn + 1 )exp(2i8n _ 1 ), 

(26c) 

F22(x n 'Xn + I) = F22(t2n _ 1 ,n;Xn 'Xn + 1 ), (26d) 

and, if n is even, we find 

(27a) 

Fdxn 'Xn + I) = F2I (t2n _ 1 ,n;Xn 'Xn + I )exp( - 2i8n _ 1 ), 

(27b) 

F21 (x n 'Xn + I) = Fdt2n _ 1 ,n;Xn 'Xn + 1 )exp(2i8n _ 1 ), 
(27c) 

F22(Xn 'Xn + I) = F 11 (t2n _ I ,n;Xn 'Xn + 1 ). (27d) 

7. THE P MATRIX 

In the present section we shall introduce a matrix 
P(xn 'Xn + 1 ), for n = 1,2, ... ,N, the elements of which are sim
plefunctions of the quantities An and Bn and (ifn>2) also of 
the linear combination Ln _ 1 - Un _ 1 - Un - 7 n _ 1 + 7 n· 
For n>2, the matrix P(xn ,Xn + 1 ) is thus associated with the 
barriers B (n) and B (n - 1) and the potential well between 
these barriers, but for n = 1 it is associated only with the 
barrier B (1). 

The transmission coefficient, besides being a function of 
the quantitiesA n andBn , n = 1,2, ... , N, is further a function 
of the quantitiesLn , Un' and 7 n, but in fact only through the 
linearcombinationsL n - Un - Un + 1 - 7 n + 7 n + I' where 
n = I,2, ... ,N - 1. It will later be shown, in Eqs. (43), that the 
transmission coefficient for a system of N barriers can be 
conveniently expressed in terms of the matrices P(xn 'Xn + 1 ), 

n = I,2, ... ,N, which are now defined by 

(
Bn An ) 

P(Xn 'Xn + I) = (2 f3 ) B (2 f3 )' An exp I n _ 1 n exp I n -- 1 

n = 1,2, ... ,N, (28) 

where 

(30 = 0, 

(3n = ( - Itan 

= ( - 1)n[ Ln - (un + Un + I) - (7n - 7 n + I)] 

for n = I,2, ... ,N - 1. 

(29a) 

(29b) 

The quantity a 1 is identical with a defined by (27) in Ref. 27. 
From (28) we obtain the symmetry relations 

P11(Xn,xn + I) = PT2(Xn,Xn+ 1 )exp(2i(3n __ I)' (30a) 
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PdXn 'Xn + I) = P TI (xn 'Xn + I )exp(2iPn - I)' 

and from (20) and (28) we see that 

det P(xn,xn + I) = - exp( - 2Kn + 2iPn _ I) 

and 

(30b) 

(31) 

IPdxn 'Xn + I W - IPII(Xn 'Xn + I W = exp( - 2Kn)' (32) 

We also introduce a matrix P(xl,xn + I ), associated with 
all the barriers B (1), B (2), ... , B (n), by the definition 

Pix I,Xn + I) = Pix I,X2)P(X2,X3)",P(xn 'Xn + I ) 

which are valid when n is an odd integer. Equations (27), (28), 
and (37) give 

(39a) 

Fn/xn,xn + I) = Pn/xn,xn+ I) 
Xexp[2Kn +i(!1T-2en_ 1 -20'n)],(39b) 

F21 (Xn 'Xn + I) = P21 (Xn,x" + I) 

XeXp[i(!1T+2en_ 1 -2{:1n-1 +20'n)]' 
(39c) 

for n = 1,2, ... ,N. (33) F22(xn 'Xn + I) = P22(Xn ,x" + I) 

From (33) and (31) it follows that 

det P(xl,xn + I) 

= det Pix I'X2) det P(x2,x3) .. ·det P(x" ,x" + I) 

xexp[2Kn +i(1T-2{:1,,_1 -27,,)], (39d) 

valid when n is an even integer. 
With the aid of(33), (38), and (39), and the formula 

F(xl,x" + I) = F(X I,x2)F(X2,x3) .. ·F(x",x" + I)' (40) 

= ( - l)"exp( - 2
v
tIK ,. + 2<t:Pv). (34) which follows from (3.27) in Ref. 11, it can be proved by 

Using repeatedly the symmetry relations (30) in (33), we 
find the following symmetry relations for the matrix 
P(xl,x" + I ): 

( 

n - I ) 

PII(XI,Xn+l) = PT2(X p X,,+ I)exp 2ivi;IPv , 

Pn/XI,Xn + I) = PTtlxl,x" + I )exp( 2i:t:pv). 

From (34) and (35) it follows that 

(35a) 

(35b) 

IPdxl,xn + I W - IPltlxl,xn + I W 

= (- 1)n+ lexp( - 2vtlKv ) (36) 

for n = 1,2, ... ,N. 

8. THE TRANSMISSION COEFFICIENT IN TERMS OF 
THE MATRIX P(Xl,XN+ 1) 

From (19) and (28) we obtain, for n = 1,2, ... ,N, 

F II (t2n _ I ,n;Xn'Xn + I) = - PII(Xn,Xn +-1) 
Xexp[2Kn -i27n ], (37a) 

Fdt2n _ I ,n;Xn 'Xn + I) = P I2 (X n 'Xn + I ) 
X exp [i(20'n + ~1T)], (37b) 

F2tlt2n_l,n;Xn,Xn+I)= -P2I (xn,xn+ l ) 

Xexp[ 2Kn -i(20'n +2{:1n-1 +!1T)], 
(37c) 

Xexp[i(27n -2Pn_I)]' (37d) 

Equations (26) and (37) yield 
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FII(Xn 'Xn + I) = PII(xn 'Xn + I )exp [2Kn + i(1T - 27n)], 
(38a) 

FdXn,Xn + I) = Pdxn,xn + I) 

Xexp[i(~1T - 2en _ I + 20'n)], (38b) 

F2 dxn,xn + I) = P21 (Xn,Xn + I) 

Xexp[ 2Kn + i(!1T + 2en_ 1 
-2Pn_1 -20'n)], (38c) 

FZZ{xn,xn + I) = P22(x n,xn + tlexp[i( - 2Pn _ I + 27n)], 
(38d) 
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complete induction in a straightforward way that 

and 

F II (X I,X2,,) = P II (X I,X2,,)exp [ 2vt1K2V-1 

+ i( n1T + 22v~ll( - W7v)], 

Fn/X I,X2n ) = Pn/X I,X2n )exp[ 2:t:K2V 

+ {in - !)1T + 20'2n _ I 

+ 22v~12( - l)V(7v - Lv))], 

F II (X I,X2n + I) = P II (X 1,x2n + I )exp [ 2vt1K2V-1 

(41a) 

(41b) 

+ {n1T + 2v~l( - W7v)], (42a) 

Fdx 1,X2n + I) = Pn/X I,X2" + I )exp [ 2 vtlK2V 

+ {in + 1)1T - 20'2n 

+ 22v~ll( - l)V(7v - Lv))], (42b) 

for n = 1,2,3, .. ·. 

Inserting finally (41b) into (l3a) and (42a) into (l3b), we 
obtain with the aid of(36) the following exact expressions for 
the transmission coefficient pertaining to a system of N po
tential barriers: 

= 1 + IPII( - 00, + ooWexP(2vtIKv) 

IPni - 00, + ooW 

IPd - 00, + ooW -IPII( - 00, + ooW ' 
N odd, (43a) 

brjan Dammert 2169 



                                                                                                                                    

I Z (N ) -- = IP II ( - 00, + 00)1 exp 2 I K,. 
Teven 11 = 1 

= I + IPd - 00, + ooWexp(2"tIKv) 

IPII ( - 00, + ooW 
IPII ( - 00, + ooW -IPd - 00, + ooW ' 

N even, (43b) 

For the reflection coefficient R we obtain, since 
R=I-T, 

Rodd = 1 PII ( - 00, + 00) I

Z
, N odd, 

Pd-oo,+oo) 
(44a) 

R -IIPd - 00, + 00) IZ 
N even - , even. 

PII ( - 00, + 00) 
(44b) 

The elements of the matrix P( - 00, + 00) appearing in (43) 
and (44) are the limiting values of the elements of the matrix 
PIx I'X N + I ) which are obtained by letting x r-+ - 00 and 
x N + 1-++ 00. For the definitions of the P matrices, we refer 
to (33), (28), (29) and also to (7) and (18). By substituting for 
An, Bn , Un' and 'Tn the phase-integral expressions given in 
Appendix B (omitting correction terms) we can immediately 
convert (43) and (44) into useful approximate formulae of 
high accuracy. 

Formulae (43) and (44) form the starting point for some 
further investigations. 8-10 In Ref. 8 a necessary condition for 
complete transparency is derived and a maximum transmis
sion problem of a general kind is solved. In Ref. 9 a system of 
N identical barriers is considered. Concise formulae for Tare 
obtained and, also, equations determining the resonance en
ergies which give Tequal to unity. In Ref. 10 an equation for 
calculating the bound state energies of a general potential 
well containing N humps of arbitrary shapes is derived from 
a condition for total transmission through a system of poten
tial barriers. 
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APPENDIX A: SOME KEY FACTS ABOUT THE PHASE
INTEGRAL METHOD 

with 

We consider the one-dimensional Schrodinger equation 

d
Z
¢ + QZ(z)¢ = ° (AI) 

dzz 

Q2(Z) = 2m[E - V(z)]lIiZ, (A2) 

z being a complex variable (the real values of which will be 
denoted by x) and E being the energy of a particle with mass 
m moving in the potential field V (x). We assume that Q Z(z) is 
real on the real axis, i.e., V(x) real. Furthermore, we assume 
that Q 2(Z) is an analytical function of z in the complex plane. 

We write the solution ofEq. (AI) as follows: 
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(A3) 

where/I(z) and/2(z), the phase-integral functions, are defined 
by 

with 

/dz) = q-1/2(z)exp[iw(z)], 

/2(Z) = q-1/2(z)exp[ - iw(z)], 

w(z) = rq(Z) dz, 

(A4a) 

(A4b) 

(A5) 

the function q(z) being a so-far unspecified function of z, the 
choice of which will be described further on, and the lower 
limit of integration for w(z) being any arbitrary point where 
the integral for w(z) converges [cf. Eqs. (3.1), (3.25a), (3.24a), 
(3.24b), and (3.3) in Ref. II]. 

By imposing on a I (z) and az(z) the condition 

a; (Z)/I(Z) + a; (Z)/2(Z) = 0, (A6) 

we can write the derivative of the solution (A3) as follows: 

(A7) 

This expression is formally obtained from (A3) by treating a I 
and a2 as constants in the differentiation [cf. (3.10) and 
(3.25b) in Ref. II]. 

Introducing the row vector f(z) 

f(z) = (f1(Z),JZ(z)) 

and the column vector a(z) 

a(z) = (al(z)), 
a2(z) 

we can write (A3) and (A7) in the form 

¢(z) = f(z)a(z), 

¢'(z) = f(z)a(z). 

(A8) 

(A9) 

(A lOa) 

(A lOb) 

By specifying the values of a I (z) and az(z) at some point 
zo, we specify a unique solution ¢(z) ofEq. (AI), since, ac
cording to Eqs. (A 10), the values of ¢(zo) and ¢'(zo) thereby 
become determined. We are able to trace this solution ¢(z) 
from the point Zo to an arbitrary point z by using the formula 
[cf. (3.23), (3.12), and (3.26) in Ref. II] 

(All) 

where F(z,zo) is a 2 X 2 matrix, the elements of which are 
given by the convergent series (3.22a)-(3.22d) in Ref. II. 
Thus, formulae (A3) and (All) together give a representa
tion of the solution ¢(z). 

According to (3.27) and (3.19)-(3.20) in Ref. 11, the ma
trix F(z,zo) has the following properties: 

det F(z,zo) = I, 

(AI2) 

(AI3) 

(AI4) 

where z\ is an arbitrary point. The last equation can also be 
written 
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Useful estimates of the elements of F(z,zo) have been 
derived in Ref. lIon the assumption that Zo and z can be 
connected by a path A in the complex plane a long which 
lexp[iw(z)] I increases monotonically from Zo to z. These esti
mates, given by (4.3a)-(4.3d) in Ref. 11, can be written as 
follows [cf. (3.7a)-(3.7d) in the article by N. Froman in Ref. 
30] 

/F1.(Z,zO) - 11 <'yl + "', 
IFdz,zo)I<lexp[ - 2iw(zo)]I('yl + ... ), 
/F21 (z,zo) I < I exp[2iw(zo)] I ('yl + ... ), 
\F22(Z,zO) - II <'yl 

+ lexp[2i[w(z) - w(zo)]) 1(,iu2 + ... ). 
The quantity fl appearing in Eqs. (AI6) is defined by 

(AI6a) 

(AI6b) 

(AI6c) 

(AI6d) 

fl =fl(z,zo) = ('I (Q 2 
- q2 + q-l/2 :z: q-1/2) dzl 

Jzo q 
(AI7) 

with the integration performed along the path of monotoni
city [cf. (4.2), (3.3), and (3.5a) in Ref. 11]. Introducing the 
quantity E(Z) by the definition 

(AIS) 

we can write 

fl(z,zo) = Lk(z)q(z) dzl· (AI9) 

By means of the relations 

1/2 d
2 

-1/2 _ 2n + 1 ( _nd n)2 1 ( _n d2 n) 
q dz2q -~ q dz q -"'2,; q dz2q 

(A20a) 

and 

_ (_1 q_n_l,!!""qn)2 
2n dz 

d (I _ n _ I d n) -- -q -q, 
dw 2n dz 

(A20b) 

which hold for n being an arbitrary real number ( =1= 0), we can 
write E(Z) in different useful ways. The successive choices 
n = -~, 1, - 1,2 in (A20a) yield the expressions (3.5a), 
(3.5b), (3.5c), and (3.5d) in Ref. 11. 

We recognize that in order that the estimates (A 16) will 
be useful, we must choose the function q(z) in such a way that 
fl(z,zo) becomes small compared to unity [see (A 17)]. In the 
extreme case that q(z) is chosen such that E(Z) is everywhere 
equal to zero, implying that fl(Z,zo) = 0, we find from (A 16) 
and the mUltiplication rule (AI2) that the matrix F(z,zo) is 
equal to the unit matrix, not only for two points which can be 
joined by a path of mono tonicity, but in fact for arbitrary 
points Zo and z. From (A3) and (All) we conclude that.t;(z) 
and/2(z) are in this case two linearly independent exact solu
tions of the Schrodinger equation (AI). 

General properties of the function Q 2(Z) in Eq. (AI) are 
reflected in properties of the matrix F. Thus, if the functions 
Q 2(Z) and q2(Z) are real on the real axis, there exist certain 
relations between the elements of the matrix F(X1,x2) for 
points Xl and Xl lying on the real axis. These symmetry rela-
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tions are given by Eqs. (5.7a), (5.7b), (5.8a)-(5.8d), (5.9a), and 
(5.9b) in Ref. 11. Similarily, in the special case that 
Q 2(Z) = Q 2( _ z) and q2(Z) = q2( _ z), or if Q 2(Z) and q2(Z) are 
periodic with respect to z, there exist other symmetry rela
tions between the elements of F [see, e.g., Eqs. (A. 10) and 
(A.ll) in Appendix A in Ref. IS.] 

When applying the phase-integral method to physical 
problems, the general procedure is to derive an exact expres
sion for the physical quantity or physical relation of interest 
and then omit "small" quantities, expressed in terms of ele
ments of the matrix F. In general situations when the points 
Zo and z cannot be joined by a path along which I exp[iw(z)] I is 
monotonic, one has to divide the path chosen into monoton
ic parts, use the relations (AI2)-(A15), and possibly other 
relations existing, to bring the expression for the quantity of 
interest into a convenient form, and then use the basic esti
mates (A16) for obtaining upper bounds for the terms ne
glected (cf. p. 10 in Ref. 30). It is sometimes preferable not to 
resolve the exact expression into its smallest components, 
i.e., F-matrix elements for the separate monotonic parts, but 
rather to stop at an intermediate stage, retaining certain 
F(z I h)-matrix elements also for some pointsz l and Z2 which 
cannot be joined by a monotonic path. The needed estimates 
of these F-matrix elements can be derived from the basic 
estimates (A 16) for the separate monotonic parts by means of 
the multiplication rule (A12) together with other relations 
existing. They can suitably be written in the form of exact 
expressions for those matrix elements [see, e.g.; Eqs. (Bl)
(B5) in Appendix B], expressions which contain a main part 
plus a "small" additional part [estimated in terms of the 
quantity Il(ZI,Z2) evaluated for the path chosen between Zl 

and Z2], which is to be omitted in the final step, when these 
expressions are substituted for the proper F-matrix elements 
in the exact expression for the physical quantity of interest. 

Let us now describe how q(z) is specified in the phase
integral method. Writing !/I(z) in the form 

!/I(z) = q-1/2(z)exp[ ± JZq(Z) dz J. (A21) 

and inserting this expression into Eq. (A 1), we obtain for q(z) 
the differential equation [cf. (3.6) in Ref. 11] 

d 2 

Q 2(Z) - q2(Z) + q+ 1/2(Z) dz2 q-1!2(Z) = 0, (A22) 

which is rigorously equivalent to the initial Schrodinger 
equation. Inserting, into (A22), the expression 

q(z) = Qmod (z)g(z), (A23) 

where Qmod (z) is a so-far unspecified function, we obtain a 
differential equation for the function g(z) instead, which can 
be written as follows: 

d 2 

1 + Eo - g2(z) + g+ 1/2(Z) ds 2 g-1/2(Z) = 0, (A24) 

where 

Eo = Q 2(Z) - Q ~od (z) + Q - 3/2(Z) ~ Q - 1!2(Z) 
Q ~od (z) mod dr mod 

and 
(A25) 
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;= j'Qmod(Z)dZ (A26) 

(cf. pp. 105-6 in Ref. 14). By means of the relations (A20). 
used for the special case q = Qmod' we can write Eo in differ
ent useful ways. The choice n = 2 in (A20b) gives expression 
(11") in Ref. IS. 

Substituting (A23) into (AIS). we obtain the following 
relation between Eo and E: 

E = (I + Eo) -.f + g-3/2~ g-l/2 (A27) 
.f d;2 

[cf. (AlS) and (A2S)]. We note that if we could determine a 
function Q ~Od (z) which makes Eo. given by (A2S). identically 
equal to zero. Eq. (A24) would have the solutiong(z) = 1. 
which according to (A23) means that q(z) = Qmod (z) would 
be a solution ofEq. (A22). Hence. on substitution of Qmod for 
q(z). formula (A21) would yield two linearly independent ex
act solutions of the Schrodinger equation (A 1); cf. the discus
sion below (A20). 

Suppose that somehow we have found a function 
Q ~od (z) which makes Eo [(A2S)] small compared to unity 
(even though not exactly equal to zero) in a region of the 
complex plane. We shall then seek to find a solution g(z) of 
Eq. (A24) which deviates only very little from unity. by try
ing a series expansion for g(z) (in powers of a small param
eter). the first and dominant term of which is equal to unity. 
By truncating this series. to be determined below. after some 
fixed number of terms and then substituting the truncated 
series for g(z) in formula (A27). we obtain an expression for 
E(Z) which can be expected to be smaller in magnitude. the 
smaller we have made Eo [(A2S)] by means of a clever choice 
of Q ~od (z). As is seen from (A 19). a small E is of great impor
tance for obtaining a small value of /1. and a small /1 is what 
guarantees the goodness of our final approximate formulae. 
which are obtained from the exact formulae by omission of 
"small" parts. for which upper bounds are given in terms of 

/1. 
Let us now obtain the formal series solution for g(z); cf. 

Ref. 14. We note that the function Q 2(Z), given by (A2), is 
inversely proportional to the small constant 112. This in gen
eral makes Q 2(Z) large at points in the complex plane lying 
well away from any zero of Q 2(Z). In order to take the large
ness of Q 2(Z) explicitly into account, we introduce a small 
parameter p2, and consider Q 2(Z) to be inversely proportional 
top2. We shall represent this way of looking at Q 2(Z) by writ
ing Q 2(Z)! A, 2 instead of only Q 2(Z). The notation is meant to 
indicate that we consider Q 2(Z), in itself, to be inversely pro
portional to p2. The symbol A, 2, attached to Q 2(Z), is not sup
posed to add anything to the value of the expression, but 
should be regarded merely as a sign, carrying information 
about Q 2(Z). For convenience. we shall sometimes permit 
ourselves to say that we represent the dependence of Q 2(Z) on 
p2 by means of Q 2(Z)! A, 2, or that we represent the largeness of 
Q 2(Z) by means of Q 2(Z)/ A, 2, or even that we represent Q 2(Z) by 
Q 2(Z)/A, 2, when we mean to say, precisely, that we shall con
sider Q 2(Z) inversely proportional to p2. Having utilized A, for 
obtaining the series expansion for g(z), we shall then delete A, 

from all expressions, which we technically achieve by put
ting A, = 1. 
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It is not necessary to let the value of p2 be equal to the 
value of 112 although this is a possible specification. In any 
case, we shall not regardp2 as firmly tied to the actual occur
rence of the symbol nz. The advantage of using a parameter, 
not tied to nz, becomes apparent when we want to treat cases 
where Q 2(Z) is not given by expression (A2) but instead by a 
sum of two parts, where one part is inversely proportional to 
nz while the other does not contain 11 at all, as in the radial 
Schrodinger equation 

d 2 dJ + Q 2(r)x = 0, (A2S) 

where (with obvious notations) Q 2(r) is given by 

Q2(r) = 2m[E - V(r))/112 -I(l + l)/r (A29) 

[cf. Eqs. (11.1) and (11.2) in Ref. 11]. Also the largeness of the 
second term in (A29) can be taken into account by means of 
the parameter p2, and indeed in different ways, which may be 
more or less favorable within different ranges of values for r 
and I. For instance, if the expression [l (I + 1 )!r]A, ° satisfac
torily serves to represent the second term in (A29) for a cer
tain range of r values and for small values of I. it seems rea
sonable to expect that the expression [I (I + 1 )!r]l A, 2 will be 
more suitable when we (keeping to the same range of r values) 
turn to consider values of I which are sufficiently large for us 
to regard the second term in (A29) as being on a level with the 
first term, which is represented by [2m[E - V(r)]/112]/ A, 2 in 
both cases. 

The following rules are now introduced. The function 
Q ~od (z) shall always be considered inversely proportional to 
p2, whereas the difference Q 2(Z) - Q ~Od (z) shall be consid
ered proportional to pO. Hence, when using the technique to 
exhibit the assumed dependence onp2. we shall replace 
Qmod (z) by Qmod (z)! A, and Q 2(Z) - Q ~Od (z) by 
[Q 2(Z) - Q ~Od (z)] A, 0. According to (A26) and (A2S) this 
leads to the replacements of; by ; / A, and of Eo by EoA, 2. With 
these replacements, Eq. (A24) becomes 

1 + EoIl 2 _ .f(z) + gl/2(Z) d 2 g-I/2(Z0 2 = O. (A30) 
d;2 

Inserting the formal expansion 
oc 

g(Z) = I Y2n A, 2n (A31) 
n=O 

into (A30), and putting the coefficients of successive powers 
of A, 2 equal to zero, we obtain Yo = ± 1 and a recursion 
formula for obtaining the functions Y 2n for n -;, 1 in terms of 
Eo and derivatives of Eo with respect to;. This formula can be 
written as follows [cf. Eq. (7) in Ref. 14] 

O~a,{3,y,b~n - I 

brjan Dammert 2172 



                                                                                                                                    

nent of (A21), we see that it is no restriction to choose 
Yo = + 1. Starting from Yo = + 1 we can successively de
termine Yl , Y4 , ••• by means of(A32). Explicit expressions for 
Y In for n< 10 can be found in Ref. 32 (cf. also Ref. 26 for 
n<4). The first few of Y In are 

Yo= 1, 

Yl = !Eo, 

(A33a) 

(A33b) 

(A33c) 

Having utilized A for deriving the series expansion for 
g(z) given by (A31) and (A32), we now put A = 1 in the formu
lae above. Inserting (A31) into (A23) and truncating the se
ries after n = M, we obtain 

M 

q(z) = QmOd(Z) I Y2n , M= 0,1,2,.··, (A34) 
n=O 

which is the phase-integral expression of order 2M + 1 for 
the function q(z). (We use the letter M so as to avoid possible 
confusion with N, equal to the number of barriers in the 
potential function considered in the present paper). Inserting 
this expression into (A4a) and (A4b), we get 

fl(z) = q-l/l(z)exp [ + JZq(Z) dZ], (A35a) 

(A35b) 

with q(z) given by (A34) and the functions Y In given by (A32) 
with Yo = 1. Being approximate solutions of the Schro
dinger equation, the functions (A35a) and (A35b) are called 
phase-integral approximations of order 2M + 1. 

The function Qmod (z) can be chosen conveniently to suit 
the particular problem to be treated. For the special choice 
Q ~Od (z) = Q 2(Z), formula (A34) turns to 

.14 

q(z) = Q (z) I Y2n , M = 0,1,2,.··, (A36) 
n=O 

which is the unmodified phase-integral expression of order 
2M + 1 for the function q(z). Formulae (A35) yield in this 
special case so-called unmodified phase-integral approxima
tions of order 2M + 1, which for M = ° are identical with 
the first-order JWKB approximations. The choice 
Q ~Od = Q 1 is satisfactory for a wide class of physical prob
lems. However, in cases where the unmodified approxima
tions break down at certain singular points of Q 2(Z), we have 
the possibility of finding instead, by means of a judicious 
choice of Q ~od (z), modified phase-integral approximations 
which are good also at the above-mentioned critical points. 
The way how to choose Q ~'0d (z) successfully is discussed on 
pp. 106--7 in Ref. 14 and on pp. 129-31 in Ref. 15. 

In the present paper we specify the function Q ~od (z) to 
be equal to Q 2(Z), which means that we are using the unmodi
fied phase-integral expressions (A36) for q(z). This choice 
will be presupposed in the following discussion in Appendix 
A. 

For the definition of w(z) by (A5), one uses a Riemann 
surface consisting of two superposed sheets which are appro
priately joined together along suitable cuts emerging from 
zeros and poles ofQ 2(Z), drawn such that Q (z) is single-valued 
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on the surface. Examples of such cuts are shown in Figs. 1-3, 
where they are indicated by heavy lines. On the introduced 
Riemann surface, the function q(z) = Q (z)~~ ~ ° Y2n is in fact 
also single-valued since Eo and all the functions Y In (z) are 
single-valued functions of z (cf. p. 544 in Ref. 12). 

When using the first-order phase-integral expression 
for q(z) [i.e., q(z) = Q (z)), we can choose a simple zero of Q liz) 
as lower limit in the integral defining w(z). Unfortunately, 
this is not possible when a higher-order expression (A36) for 
q(z) is used, since in that case q(z) is infinite at the zero, the 
function ~~~ 0 Y2n (z) having at that point a pole of order 3M 
(see p. 456 in Ref. 13). However, by a convenient choice of 
the lower limit of integration in (A5) it is possible to express 
the function w(z) by means of certain contours of integration 
on the Riemann surface avoiding the zeros of Q liz); cf. pp. 
459-60 in Ref. 13. This mode of expressing w(z), first intro
duced on pp. 545-6 in Ref. 12 and further discussed on pp. 
84-5 in Ref. 18, was used in Ref. 26 (see pp. 608-11) and in 
Ref. 27 (see pp. 629-35), and is also adopted in the present 
paper. 

Thus, in the present paper we have for w(x d the formula 
[see (8a) and (lOa)] 

w(xd = Re 2- ( q(z) dz, 
2 Jr, 

(A37) 

w here x I is any point on the real axis to the left of the barrier 
system. The contour r l is shown in Figs. l(a) and l(b) in the 
two possible cases of subbarrier penetration and superbar
rier transmission, respectively. Some remarks should be 
made in this context. From the expressions (A33) and the 
recursion formula (A32), it is realized that the functions 
Y 2n (z) are real on the real axis. This means that q(z), as given 
by (A36), is real in classically allowed regions on the real axis, 
i.e., in regions where Q 2(X) > 0, but purely imaginary in clas
sically forbidden regions on the real axis, i.e., in regions 
where Q 2(X) < O. One should further observe, that at each 
position along a cut, the values of q(z) on opposite edges of 
the cut (but on the same Riemann sheet) differ only in sign. 
Moreover, the value of q(z) at any point on the upper Rie
mann sheet differs only in sign from the value at the corre
sponding point lying on the lower sheet. 

With these remarks in mind, one realizes that when the 
first-order unmodified expression for q(z) [i.e., q = Q] is 
used, the way (A37) of expressing w(x l ) corresponds to 
choosing the point tl in Fig. l(a) as lower limit of integration 
in the subbarrier case. In the superbarrier case shown in Fig. 
l(b), however, it corresponds instead to choosing x, - ° as 
lower limit of integration, where by x, we mean the point of 
intersection between the real axis and the cut from tl to t z 
when conveniently drawn along Stokes' line [i.e., the line 
along which q(z)dz is purely imaginary] joining these two 
points. To see that this is true, it is helpful to deform the 
contour r l in Fig. l(b) so as to run close to the cut along 
Stokes' line up to the real axis and from there along this axis 
on to XI' 

With formula (A37) for w(xii at hand, the problem of 
finding the value of w(z) at an arbitrary point z is reduced to 
evaluating the integral (A5) from x I to z along a convenient 
path. Some reflection convinces us that the integration path 
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from x I to z may be replaced, equivalently, by contours on 
the Riemann surface of the kind shown in Figs. l(a), l(b), and 
2(a)-(d). It is then easily realized that w(z), in different regions 
of the real axis, can be expressed in terms of the contour 
integrals (6), (7), (Sb), and (Sc) in the way presented by for
mula (lOb). 

A pointz', which is a simple zero ofQ 2(Z), is not a zero of 
the function q(z) defined by (A36), when M> 0, but instead a 
point of singularity, as was remarked above. However, there 
exist for q(z), if M > 0, a certain number of zeros lying in the 
neighborhood of z', which are due to the function L~ ~ 0 Y2n (z) 
in (A36); cf. pp. 456-60 in Ref. 13. These zeros, which are not 
branch points for q(z), cause no complication for the evalua
tion of w(z) since the contours of integration may pass 
through the regions where the zeros are located. But these 
zeros are branch points for qI/2(Z) and hence, according to 
(A35a) and (A35b), they are singular branch points for fl(z) 
andf2(z). 

Therefore, when dealing with the unmodified phase
integral approximationsfdz) andf2(z), defined by (A35) and 
(A36), we cut the Riemann surface along the real axis and 
consider the function qI/2(Z), and hence alsofl(z) andf2(z), on 
the upper half of the first Riemann sheet from which we 
exclude a certain region around each zero of Q 2(Z) where the 
zeros of q(z) are located, in order to get qI/2(Z) single-valued. 
The shaded areas in Figs. 1-3 indicate the excluded regions 
on the first Riemann sheet. 

We assign the same phase to the functions qI/2(Z) and 
Q I 12(Z) on the real axis at some point well to the left of the 
barrier system. As explained on p. 461 in Ref. 13, this means 
that the phase of q I 12(Z) will be the same as the phase of 
Q I 12(Z) at any ether point on the real axis, outside the regions 
where the zeros of q(z) are located. Figures l(a) and l(b) show 
the phase of q I 12(Z) on the real axis around the leftmost bar
rier, as determined by thechoiceqI/2(x) = IqI/2(X)1 for x <XI' 

APPENDIX B: PHASE-INTEGRAL EXPRESSIONS FOR 
An. Bn. an. AND Tn 

Phase-integral expressions (with rigorous error esti
mates) are given for the matrix elements F22(X I ,X2) and 
Fdx I'X2) by formulae (43a) and (43b) in Ref. 26, and further, 
provided 11 expU( IK I - K )].( 1, for the combinations 
IFd + IFni, 1FJ21 - IFni, and 1FJ2/Fni by formulae (53a), 
(53b), and (52b) in Ref. 26. 

However, in the energy region where K is negative and 
large, i.e., for energies lying well above the top of the barrier 
situated between x I and X 2, the given condition for the valid
ity of (53 a) and (53b) in Ref. 26 can be considerably relaxed. 
In fact, it is shown in Ref. 31 that the conditions 11 < 0.4 and 
11 < 0.1 are safely sufficient for the validity of (53a) and (53b), 
respectively, and that (43a) and (43b) in the same paper26 are 
certainly valid if 11 < 0.4. 

By applying above mentioned phase-integral formulae 
to the matrix F(t 2n __ I ,n; Xn 'Xn + I ) defined in Sec. 5, and 
using the definitions (ISa) and (ISb) of An andBn we obtain, 
for n = 1,2, ... ,N, 

An = [1 + exp( - 2Knl] 1/2 

X(1 +exp[ -WKnl-Knl]O(.un)+O(.u~l), (BI) 
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Bn = 1 +exp[~(IKnl-Kn)]O(.un)' (B2) 

An + B n = ( [ 1 + exp( - 2K n )] I I 2 + 1)[ 1 + ° (.u n ) ] , 
(B3) 

An - Bn = ([ 1 + exp( - 2Kn)] 1/2 - 1)[ 1 + O(.un)], 
(B4) 

An/Bn = [1 + exp( - 2Kn)] 1/2 + exp( - 2Kn)0 (.un) 

= [1 + exp( - 2Kn)] 1/2(1 + exp[ - 2Kn 

-!(IKnl-Kn)]O(.un))' (B5) 

where I1n denotes the integral 

I1n = l1(xn 'Xn + I ) 

= (Xn+ 'I ( Q2 - q2 + q-1/2~ q-1/2) dzl (B6) 
L" q dr 

along the appropriate one of the paths of integration depict
ed in Figs. 6.4, 6.5, and 6.6 in Ref. 11. The quantity I1n is 
assumed to be small compared to unity. The symbol ° (.un) 
denotes a quantity at the most of the order of magnitude I1n . 
Some comments concerning the significance of 11 are given in 
Appendix A. The formulae (Bl), (B2), and (B3) are safely 
valid if I1n < 0.4, formula (B4) if I1n < 0.1, and formula (B5) if 
I1n exp[!( IKn I - Kn)] < 0.1. See Ref. 31. 

The absolute value of the error term in (B2) is supposed 
to be less than unity for every n. Hence, from (B2) and (20) it 
follows that 

An >Bn >0, n = 1,2, ... ,N. (B7) 

From (51) in Ref. 26 we get the estimate 

an = ° (.un), n = 1,2, ... ,N, (BS) 

which is valid provided IKn I is sufficiently large and the 11 
integral is performed along a path such as that in Fig. 6.4 of 
Ref. 11 when Kn is positive but along the real axis from Xn to 
Xn + I when Kn is negative. However, for energies in a region 
enclosing the top of the barrier B (n), where IKn I is small and 
an may be large (even infinite), the estimate (BS) is not suffi
cient. Being particularly important for this critical region, 
there exist, given by (10) together with (lOa)-( IOc) in Ref. 19, 
approximate formulae for an pertaining to the phase-inte
gral appoximation of order 2M + 1 in the cases M = 0,1, 
and 2, which are valid also for energies near the top of the 
barrier. Furthermore, a general approximate formula for an 
of order 2M + 1 where M can take arbitrary integer values 
( > 0), which reproduces above-mentioned formulae as spe
cial cases, has recently been proposed33

. 

From (B2) and the definitions (ISb) and (ISd), iffollows 
that 

Tn =exp[WKnl-Kn)]O(.un), 

provided 

I1n exp U(lKn I - Kn)] « 1. 

(B9) 

(BIO) 

The condition (BIO) is assumed to be fulfilled for Kn;;:;'O and 
also for small negative values of Kn. However, by applica
tion to concrete cases, it has been found that (B 10) may hold 
also for rather large negative values of Kn· 
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For a massless conformally invariant scalar field, a class of solutions is obtained to the Einstein 
equations for which the geometry of the space-time admits one timelike and two spacelike Killing 
vectors. The class of solutions admit plane-symmetric and conform ally flat solutions as special 
cases. The metrics can be interpreted as static cylindrically symmetric solutions if one of the 
spacelike Killing vectors is associated with the rotational motion. 

PACS numbers: 04.20.Jb 

INTRODUCTION 

The conformally invariant action integral for a system 
of scalar field ¢ coupled to the gravitational field is I 

1= fd4x;-=g[2~(I-k:2)R+al'¢d'"¢], (1.1) 

where R is the scalar curvature. The action integral (1.1) is 
invariant under Weyl's scale transformation 

gl'" (x)-I,b(x)gl'" (x), 

gil" (x)-I,b- I (x)g'"" (x), 

¢ (X)_I,b-1/2(X)¢ (x). 

(1.2a) 

(1.2b) 

(l.2c) 

There is also an additional discrete symmetry ¢_ - ¢. The 
equations of motion are 

(Rw -l$l'"R if(¢) = K[ - al'¢a,,¢ + 1$1'"aa¢iY'¢] 

+gl'"VaVaf-VI'V"J, (1.3) 

(l/;-=g)al' (;-=g gI''' al'¢) +! R¢ = 0, (1.4) 

where V denotes covariant derivative, and 

f=I-!K¢2. (1.5) 
The trace of (1.3) leads, with the help of (1.4), to 

R = 0. (1.6) 

Thus the energy-momentum tensor of the conformally in
variant scalar field is trace-free provided there is no other 
material distribution. Defining 

u = W6<P, (1.7) 

we can rewrite the field equations (1.3) and (1.4) in the forms 
f(u)R\~ = DI""auuiY'u - 4Ji"ua"u + 2uVI' V,, u, (1.8) 

(l/;-=g)al' (;-=g gI''' a"f1) = 0. (1.9) 
Fr0yland2 first studied the solutions off 1.3) for the stat-

ic spherically symmetric case. Among the solutions obtained 
is one with a conformally flat and asymptotically flat metric 
with total energy equal to the Schwarzschild mass. Recently, 
Vaidya and Som3 treated the same problem in the static 
plane-symmetric case. Unlike the spherically symmetric 
case, their solutions are expressible in a simple form. The 
disklike singularity of the static plane-symmetric vacuum 
solution4 disappears in some cases of their solutions. 

In this paper, we treat the problem in a more general 
space-time. We consider the solutions of(1.8) and (1.9) in a 
space-time admitting a timelike and two spacelike Killing 
vectors. These solutions include the plane-symmetric solu-

tions and conformally flat solutions as special cases. By 
choosing one of the spatial coordinates as azimuthal angle, 
the solutions can be interpreted as static cylindrically sym
metric solutions of the conformally invariant scalar field. 

II. SOLUTIONS 

We consider the metrics 
ds2 = e2°(d! 2 _ dx2) _ e2bdy2 _ e2cdz2, (2.1) 

where a, b, and e depend on the variable x only. These me
trics admit one timelike Killing vector with contravariant 
components 

5t = (1, 0, 0, 0) (2.2) 

and two spacelike vectors defined as 
5y = (0, 0, 1,0) and 5z(0, 0, 0, 1). (2.3) 

Equation (1.9) for the metrics (2.1) is equivalent to 
ul=kle-1b+cl, (2.4) 

where on the left-hand side the suffix 1 denotes a lax and kl 
is an integration constant. Equations (1.8) for the metric (2.1) 
are given by 

all + al(bl + cd = u~/f -Ifllf)a l, (2.5) 

all + blle ll + b ~ + e~ - al(bl + cd 
= - 3u~ If + (lllf)(a l + bl + cd, (2.6) 

bll + b.(b l + cd = u~ If - (lllf)b l, (2.7) 

ell + el(b l + e l) = u~ If - (ltlf)e l. (2.8) 
Equations (2.5) - (2.8) are not all independent. They are re
lated algebraically by Eq. (1.6). We shall consider (2.5), (2.7), 
and (2.8) to determine a, b, and e uniquely. We make the 
assumption 

a = a(u), b = b (u), and e = e(u). 
From (2.4) we have 

ull/u l = - (b l + cd, i.e., 
U II = - (b' + e')ui, (2.9) 

where prime denotes differentiation with respect to u. Using 
(2.9) one obtains, from (2.5), 

a" = 1If - (I'lf)a' (2.10) 
Equation (2.10) yields, on integration, 

a = ! f1ln( 1 + u)/( 1 - u) - ~lnf + ~ln k2' (2.11) 
where f1 and k2 are integration constants. Similarly one ob
tains, from (2.7) and (2.8), 

b= -!vln(l+u)/(I-u)-~lnf+pnk3' (2.12) 

e = - p, In(1 + u)/(1 - u) - !lnf + !In k4' (2.13) 
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where k3, k4 are arbitrary constants of integrations. The con
stants ofintegration v, A, andp are constrained through (1.6) 
to the relation 

pv + vA + Ap = 3. (2.14) 
The metrics (2.1), then, are given by 

dr = k2 (1 - U)I-' [dt 2 _ dx2] 
f 1 + u 

_ [k3(1 - U)V dy2 + k4(1 - U)" di2]. (2.15) 
fl+u fl+u 

The expression for the scalar field U may be obtained from 
(2.4) and (2.15) as 

U = k (1 + U)l +P(1 - U)l-p, (2.16) 
where 

k = k';~k3k4 andp = (v + ,1)/2. (2.17) 

Equation (2.16) yields, on integration, 
((1 - u)/( - 1 + u)) P = - 2p(k5 + kx), (2.18) 

where k5 is the constant of integration. k5 can be fixed by the 
requirement that at x = 0, u = O. Then from (2.18), we have 

k5 = l/2p. (2.19) 
Now adjusting constant k suitably, we can write (2.18), using 
(2.19), as 

((1 - u)/(1 + u)) P = 1 + fJx. (2.20) 
When fJ = 0, u = 0, the metric (2.15) reduces to the Min
kowski metric. However, another vacuum solution can be 
recovered by the following limiting process: Consider the 

case where u < 1. In this case one can take limf - 1. The 
1-'--+0 

metric takes the form, using (2.20), 

ds2_k2( 1 + Ax)21-'Iv+" [dt 2 - dx2] 
- [k3 (1 + Ax)2VIV + "dy2 + k4(l + Ax)2A. Iv +" dz2]. 

(2.21) 
The metric (2.21) is identical with the Kasner metric. 5 

As the theory is invariant under u- - u, the metric 
(2.15) is singular both at u = ± 1. From (2.20), it is evident 
whenu= + 1, that the plane x = -l/fJissingularifanyof 
the parametersp, v, or A is less than 1. For u = - 1, the 
plane x = 00 is then singular. 
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III. CONCLUSION 

The solutions (2.15) are obtained on the assumption 
that there exists a functional relationship between metric 
elements and the conformally invariant scalar field. The so
lution (2.15) can be interpreted as static cylindrically sym
metric solutions of the Einstein equations when the source of 
the gravitational field is a conformally invariant scalar field 
if one of the coordinatesy or z represents the azimuthal coor
dinate. One can obtain the plane-symmetric solution first 
obtained by Vaidya and Som simply by choosing v = A. 
Then from (2.14), one gets v(v + 2p) = 3. 

The conformally flat metric is found to be a very special 
case when v = p = A = 1. The metric (2.15) then takes the 
very simple form: 

ds2 = (1 + u)-2[dt 2 - dx2 - dy2 - dz2]. (3.1) 
It is singular at u = - 1. It is worth noticing that for 
u = constant~ - 1, the induced three-dimensional metric 
is flat again. If v = p = A = - 1, then the metric is singular 
at u = + 1 and flat at u = - 1. 

Another interesting feature of the solution is that one 
can write u explicitly as a simple function ofx. From (2.14), it 
is evident that v~ - A. Then from (2.20), it follows that 

u = (1- (1 +fJx)l/P)/(1 + (1 +fJX)llp) (3.2) 
when x_ 00, u-+l, and the metric (2.15) is singular if u, v, 
and A are positive. If the parameters are all negative, then 
u_l asx-+oo. 

Substituting (3.2) into (2.15), one finds that 
ds2 = [1 + (1 + fJx)l/pf{ (1 + fJx)i}l- I lip (dt 2 - dx2) 

- (1 + fJx)IV- Il/Pdy2 - (1 + fJx)I" - II/Pdi2}. (3.3) 
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The three known Backlund transformations for the Ernst equation are derived using a 
modification of the Wahlquist-Estabrook prolongation procedure. The modification requires 
that the equation to be studied be cast into a set of differential forms and their exterior derivatives, 
such that all coefficients are constant (a "CC ideal"). Analysis of the resulting equations produces 
16 solutions composed of the three basic transformations combined with identity and other 
essentially trivial transformations. The group structure of the transformations is discussed. A 
Backlund transformation (already known) for the Ernst-Maxwell equations can be found by the 
same method. Promising generalizations are mentioned. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 

In 1978-1979 three Backlund transformations (BT) for 
the Ernst equation, I 

(Re E)V2E = (VE)2, (1) 

which is the fundamental equation for vacuum stationary 
axially symmetric space times and which also occurs in non
linear field theories,2 were found--one by the present au
thor3 and two by G. Neugebauer.4 (These references will be 
denoted by I and II, respectively.) The present paper shows 
how to derive all three BT's in a unified manner, using a 
modified Wahlquist-Estabrook (MWE) approach, and it is 
noted, as has been done before, that these BT's are elements 
of a group. In addition to providing this information about 
Ernst-equation BT's, this paper demonstrates the general 
use of the MWE method, which is suitable for systems of 
equations which can be cast into an ideal of differential 
forms with constant coefficients (CC ideal). The Ernst-Max
well equations are also explored. (The term "Backlund trans
formation" is used in this paper to mean a Backlund trans
formation from solutions of an equation to solutions of the 
same equation, or "auto-Backlund transformation.") 

2. FORMULATION OF THE EQUATIONS 

We write the metric as in I, but with T replaced by f and 
Q by w in order to conform to more common usage: 

ds2 = ).f(dx l + W dX 2
)2 + S 2f -1(dx2f 

+ e2lj -1((dx3 )2 -). (dx4 f), (2) 

where)' = ± 1 and S,f, w, and r are functions of x 3 and X4 

only. ). = 1 corresponds to cylindrical waves,). = - 1 to 

axially symmetric fields. We write k = [.f ( = I or 
i), x = !(x3 + kx4

), andy = !(x3 
- kx4

). We define a linear 
Hodge star operator by *dx3 = dx4

, *dx4 = )'dx3
, yielding 

a'This material is based upon work supported by the National Science 
Foundation under Grant PHY-8008345. 

*dx = k -I dx, *dy = - k -I dy. Then ** =).. Note that 
). = - 1 in II. 

The field equation for w may be formally satisfied by 
defining a potential ifJ such that 

*difJ = S - '12 dw. (3) 

difJ is exact; closure (ddifJ = 0) yields the w field equation. 
(Alternately: the w field equation shows that *S -lf2 dw is 
closed, so we write it as an exact form A difJ.) (Note: our E is 
Neugebauer'sf, and our S is his v.) We write E = f + iifJ. 
Then the field equations for E and S may be written, where 
subscripts denote differentiation. as 

SXY = 0, (4) 

Exy +! S -1(Sx Ey + Sy Ex) =f-'Ex Ey (5) 

(f = Re E). Equation (5) is the Ernst equation, in which no 
specialization of S has yet taken place. An alternate way of 
writing Eqs. (4) and (5) is 

d(*dS) = 0, (4') 

d (5.( -1 *df) + Sf -2difJ 1\ *difJ = 0, 

d (Sf- 2 *difJ) = O. 

(5') 

(3') 

It is usual to satisfy Eq. (4) by choosing S = x + y = x 3
. 

In fact, this can always be done for the axially symmetric 
case, and this choice was made in I. However, this limits the 
possible Backlund transformations to that one which exhib
its S' = S, i.e., the one found in I. Paper II did not make this 
restriction, apparently requiring S' #- S, and found the other 
two BT's. For the purposes of the present paper, therefore, 
we make no restriction on S beyond Eq. (4). 

We now redefine the variables t, U, v, and w of I: 

t=f-'Ex -S-ISx' U =f-'Ey -S-'SY' 
(6) 

v =f-t"Ex - S -'Sx' w =f-'Ey - S -'SY' 

To compare with Neugebauer (II), we first note that his 
x' and x 2 are given in terms of our variables x and y by 
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Xl = 2x and x 2 = 2y. Then his M j and N;. in our notation, 
are 

M -II-IE N -I/-IE-1-4 x' 1-4 y' 

M - I S -IS N - I S -IS 3-2 x' 3-2 Y' 

so that we have 

t = 4MI - 2M3, U = 4N2 - 2N3, 

V = 4M2 - 2M3, W = 4NI - 2N3. 

(7) 

(8) 

Cosgrove5 also made this observation; his paper will be de
noted by III. 

Equation (5) and its complex conjugate may now be 
written 

ty =! t(u - w) - !S-I(WSx + tSy), 

Ux = !u(t - v) -! S -1(USx + vSy), 

vy = !v(w - u) -! S -1(USx + vSy)' 

Wx =! w(v - t) - ~S -1(WSx + tSy). 

We define potentials Tt and R by 

*dl = S -1j(dTt + OJ d¢> ), 

*dS=dR 

(9) 

(10) 

(11) 

whose existence is guaranteed by Eqs. (4) and (5), and we 
define I-forms as in I: 

SI=I-Idt/J, s2=S-lldOJ, 

S3 = S -1(dTt + OJ d¢», S4 = I-I dJ, 

S5 = S - IdS, S6 = S -I dR. 

(12) 

These then satisfy a set of 2-form equations [the differential 
form versions of Eqs. (4) and (9)], which are given in I and 
elsewhere.6-8 [Strictly speaking, the exterior derivatives of 
the S, may be given in terms of wedge products of the Sj 
themselves, with constant coefficients; and there exists a set 
of 2-forms, with constant coefficients, in the space of varia
bles ¢, OJ, Tt'/, S, and R, which-when annulled-represent 
two-dimensional solution manifolds of Eqs. (4) and (9).] 

It is convenient to define new I-forms Ttj, i = 1-6, 
which are self-dual or anti-self-dual up to a factor k, as fol
lows, where the subscript in parentheses goes with the lower 
sign: 

Ttl12) = S4 ± iSl + kS3 ± iks2' 

Tt314) = S4 + iSl - kS3 ± iks2' 

TtSI6) = Ss ± kS6· 

These satisfy 

*Ttj = k -ITtj , i = 1,2,5, 

*Ttj = -k-lTtj, i=3,4,6. 

We also have, in the notation ofl, 
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Ttl - Tts = 2t dx, Tt4 - Tt6 = 2u dy, 

Tt2 - Tts = 2v dx, Tt3 - Tt6 = 2w dy, 

Tt5 = 2S -ISx dx, Tt6 = 2S -lSy dy, 
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(13) 

(14) 

(15) 

and, in the notation of II, 

Ttl = 8MI dx, Tt3 = 8NI dx, 

Tt2 = 8M2 dx, Tt4 = 8N2 dy, 

Tts = 4M3 dx, Tt6 = 4N3 dy. 

(16) 

Finally, we note that the exterior derivatives ofthe Ttj are 
identically: 

4d111 = Ttl 1\ (Tt3 + Tt6 - Tt4) - Tt4 1\ Tt5' 

4dTtz = Ttz 1\ (Tt4 + Tt6 - Tt3) - Tt3 1\ Tts, 

4dTt3 = Tt3 1\ (Ttl + Tts - Ttz) - 11z 1\ 116' 

4dTt4 = Tt4 1\ (Ttz + Tts - Ttd - Ttl 1\ Tt6' 

2dTts = - 2dTt6 = Tts 1\ Tt6' 

and the following (monomial!) 2-forms vanish: 

Ttl 1\ Ttz, 111 1\ Tts, Ttz 1\ Tts (= 0), 

Tt3 1\ Tt4' Tt3 1\ Tt6' Tt4 1\ Tt6 (= 0). 

(17) 

(18) 

The content of the field equations appears in the possibility 
of the definition of the potentials ¢>, Tt, and R. 

3. MODIFIED WAHLQUIST-ESTABROOK APPROACH 

We pursue the search for BT's by a modified Wahl
quist-Estabrook (MWE) method. The original Wahlquist
Estabrook method9 consists of (1) the search for a pseudopo
tential and (2) the search for BT's. The modification given 
here is suitable for use with a constant coefficient, or CC, 
ideal, here denoted by C. The basic essentials of the MWE 
method are given in Eqs. (19) and (20) [or Eqs. (22) and (23)] 
for the pseudopotential and Eq. (45) for the BT. 

A CC ideal, by (limited) definition here, consists of two 
sets of 2-forms, built from a number of I-forms T j • The first 
set expresses the exterior derivatives dT j , in terms of sums of 
wedge products of the T j • The second set is composed of 
sums of wedge products of the T;. which are to be annulled to 
obtain the solution manifold. We see that Eqs. (17) and (18) 
are a CC ideal. CC ideals have been discussed recently by 
Estabrook. 10 Estabrook has suggested a useful alternate title 
for a CC ideal: an "invariant Pfaffian system," or IPS." By 
putting certain ("invariant") I-forms equal to zero in a set of 
Cartan-Maurer equations it may be possible to produce an 
IPS; see Ref. 10. 

4. SEARCH FOR A PSEUDOPOTENTIAL 

We require that there exist a "pseudopotential" q and a 
I-form () 

(19) 

where the functions pi depend only on q. We require that 

dB = 0 (mod B, C); (20) 

i.e., we replace dq, where it occurs, by FjT;. obtained from 
B = 0; replace the dT j by their values as given in C; and use 
the remaining 2-forms in C to further simplify the equation 
dB = 0 by treating them as equations among the various 
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monomial 2-forms. The coefficients are then set equal to 
zero. We obtain in this way a set of ordinary (nonlinear) 
differential equations for the F i. 

It is often convenient to use an alternate approach. We 
consider a column vector Q of pseudopotentials qa and a 
column vector e of I-forms ea

, assumed to be linear in the 
qQ. We write a linear representation: 

e a = - dqa + B ia f3£/ri (sum on i,/3), (21) 

where the B ia f3 are constant. The index i is summed over the 
number of I-forms 1',; the range of a and/3 is the dimension 
of the representation, as yet unspecified (but possibly even 
infinite). In matrix form we have, where the matrices 
Bi= [B iaf3J, 

e= -dQ+(B'r,)Q. (22) 

The equation 

de = 0 (mod e, C) (23) 

becomes, after substitution for dQ and dropping the vector 

Q, 
B 'd7i - BiB kri 1\ r k (mod C) = o. (24) 

Setting the coefficients of this equation equal to zero yields 
(generally) an incomplete Lie algebra for the matrices B i, the 
"prolongation structure" of the problem. If a two-dimen
sional representation for the B ' is found, a single pseudopo
tential q may be defined as q2 / ql . 

The latter approach is suitable for the Ernst equation 
CC ideal, Eqs. (17)-(18), if one makes one generalization: 
The matrices B i must be taken to be functions of the variable 

;= ![k(R+l)-S][k(R+l)+S]-ljl/2, (25) 

where I is a parameter. Ifwe takeS = x 3 and R = X4, we see 
that; may be written as 

; = [(kl - y)(kl + X)-I)I/2, (26) 

an invariant or similarity variable for the Ernst equation (5). 
[The scale transformation x 3

' = ax\ X4' = ax4
, and the 

translation, X4' = X4 + /3, a and /3 constant, leave both; and 
Eq. (5) invariant.] We note, from Eqs. (25), (11), and (15), that 

(27) 

whereg =! ;(;2 - l)andh = l; -1(;2 - 1).(Thus;itselfis 
actually a pseudopotential; this point is clear in paper II.) 

We now formulate our pseudopotential equations. We 
write, with the 17i for r i , 

(28) 

and 

de = 0 [mod Eqs. (28), (17), (18)]. (29) 

Equation (29) becomes, after expansion and use of Eqs. (27) 
and (28), 

0= B i'( g17s + h176) 1\ 17i - BIB k17i 1\ 17k + B'd17, 

[mod (17), (18)), (30) 

where' = d /d;. (We choose B 5 = B 6 = 0 without loss of 
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generality, since we may reasonably expect B 5175 + B 6176 to 
be proportional to d;, and then we may eliminate these terms 
entirely by definition of a new pseudo potential as a function 
of; and the old one.) 

Expansion of Eq. (30) now gives 

B 4 _ B I = 4gB 4, = - 4hB I', 

Bl_B2=4gBJ'= -4hB2I, (31) 

Bl_B'=4[B),BIJ, B4_BI=4[BI,B4], 

Solution of Eq. (31) yields 

B ' = a; + b, B 2 = c; + d, 

B 3 = c; - I + d, B 4 = a; - 1 + b, 

where a, b, c, and d are constant matrices. 
Equation (32) now gives 

4[a,d] =4[b,a] =a, 

4[c, b] = 4[d, c] = c, 

4[a,c] +4[b,d] =b-d, 

the prolongation structure. If we define 

e=4[b,d] 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

and use the Jacobi identity on all commutators, we get, in 
addition to Eqs. (34), (35), and (37), 

b-d-e=4[a,c], 

[a,e] = [c,e] =0, 

4[e,b] =4[e,d) =e. 

(38) 

We can specialize to a homomorphic image of the alge
bra of Eqs. (34)-(38) by taking e = 0, 4a = r - iv, 
4c = 7 + iv, and 4d = - 4b = ie. We get 

[ 7, e ] = - v, [ v, e ] = 7, and [v, 7] = e, (39a) 

the sl(2, R ) algebra, as obtained before. 3
•
7 

A particular representation ofEq. (39a) is 

(39b) 

where the CTj are the Pauli spin matrices. With this represen
tation, we define u = qz/q,; u is related to the pseudopoten
tial q defined in I by 7 

U = - it; - 1)(; + I)-I(q - l)(q + I)-I. (40) 

We now write Eq. (19) e = 0, the definition of q, in 
terms of the 17, [this is merely Eq. (8) of I]. 

4dq = q(l + q')171 - (q + ;)172 +, -Iq(q + ')173 
-, -1(1 + q; )174 + (1 - q2)(;175 +; -1 176).(41) 

We will write further equations in terms of q. 
We note the following relations of; and q to the vari

ables r and a in II: 

B. Kent Harrison 
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We also note that the pseudopotential q ( = qc> say) used in 
III, Eq. (4.22), is related to q in this paper by 

qc = - (1 + ~q)(q + ~)-I = - ~ -Ia. (44) 

5. SEARCH FOR A BACKLUND TRANSFORMATION (BT) 

Once a single pseudopotential q is found from Eqs. (19) 
and (20) [or (22) and (23)], we may assume that a BT exists 
with the following form: 

r; = A/(q)1"j (sum onj) . (45) 

This relates the exterior derivatives of the new (primed) var
iables to those of the old (unprimed) variables, providing the 
relation between first derivatives of the variables which is 
typical ofBT's. (Estabrook has already published an exam
ple of this type of transformation of the KdV equation; see 
Eq. (23) in Ref. 10.) For the Ernst equation problem, we must 
generalize by letting the A/ be functions of ~ as well. 

[The reader may ask what happens if both ql and q2 
from Eq. (21), when theB i are given by Eq. (33) and the2X2 
representation (39b), are used as arguments in Eq. (45) in
stead of just q. This calculation has been performed; the re
sults are the same.] 

Since there are six 'Y/i' we would expect there to be 36A/ 
-a nearly unmanageable number. However, we defined the 
'Y/ i to be self- or anti-self-dual [Eq. (14 )]-indeed, the current 
need for simplification was precisely the reason for making 
the definitions (13). This enables us to treat the two sets of 'Y/ i 
separately, so that we have only 2X9 = 18 coefficients A/ 
Indeed, we can go further; we assume that the fields Sand 
R-or the independent variables-transform only among 
themselves (as is true in Refs. I and II), so that 'Y/; and 'Y/~ are 
proportional to 'Y/s and 'Y/6' respectively. The final assumed 
form is now the following, where as before we must assume 
the coefficients a,b, ... ,v to be functions of q and ~: 

'Y/; = a'Y/I + b'Y/2 + e'Y/s, 'Y/i = h'Y/3 + m'Y/4 + n'Y/6' 

'Y/~ = e'Y/I + J'Y/2 + g'Y/s' 'Y/; = P'Y/3 + ""'4 + t'Y/6' (46) 

'Y/s = U'Y/s, 'Y/~ = V'Y/6' 

(Note: t, u, v are not the earlier t, u, v.) We require for nonde
generacy that af - be=lO and hr - mp=lO. 

The 'Y/: are to satisfy Eqs. (17) and (18) (primed), as did 
the 'Y/i' We see thatthe primed Eqs. (18) are satisfied automa
tically by virtue of the old Eqs. (18). 

We remark parenthetically that we can express Eq. (46) 
in Neugebauer's matrix notation (II). We write column vec
tor I-forms as follows: 

(47) 

(48) 

with 
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if/ = Mt/J, (/=N(J'. (49) 

Then 

M~[~ 
b 

l C 1 f !g 

° U 

(50) 

and 

N~[~ 
m 

! n 1 r 1; 
° 

(51) 

The solution for the coefficients is rather complicated, 
but a few details will be provided here to show the procedure. 
We first note that we expect [from (17)'] 

2d'Y/~ = 71; A 71~· 

Equation (46) now gives 

2du A 715 + 2u d71s = uV71s A 716· 

(52) 

(53) 

But du = uq dq + u; d~, where dq and d~ are supplied from 
Eqs. (41) and (27) and subscripts indicate derivatives, so that 

4du A 715 = u;J -1(~2 - 1)716 A 71s 

+ Uq~ -I [q(q + ~ )713 - (1 + q~ )714 

+(1-q2)7161 A 71s 

= 2uv71s A 716 - 2u71s A 716' (54) 

where we have used Eqs. (17) and (18). Equating coefficients, 
we see that uq = 0, so that u is a function of ~ only, and 
(' =d/d~) 

~ -1(~2 _ l)u' = 2u(1 - v). 

In a similar manner, v = v(~ ) and 

~(~2 _ l)v' = 2v(1 - u). 

It may be shown from the other equations that 

uv = 1. 

These three equations result in two cases: 

u=v=l 

or 
{-2 (--2 

u=~, v=~ . 

(55) 

(56) 

(57) 

(58) 

(59) 

Equation (58) is the choice used in I, equivalent to choosing 
S' = Sand R ' = R. Equation (59) is that used in II, equiva
lent to choosing 

S' ± kR ' = A [S ± k ~R + 21] -I ± B, (60) 

where A and B are parameters. 

The 711 1\ 713 coefficient from the d1/; equation and the 
1/2 A 1/3 coefficient from the d1/; equation are, respectively, 

a(h - p) = - ~ -Iq(q + ~)aq + a, (61) 

f(p-h)= -~-Iq(q+~lfq -f (62) 

Elimination of h - p yields (af)q = 0, so that 

af=A (~). (63) 

Similar considerations give 
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TABLE I. Solutions for BT's, Case I. b = e = m = p = O. 

E 

J 

H 

K 

a c 

0 

sf3 0 

- qf3 J1. 

-Sq sv 

be =B(;), 

hr = C(;), 

mp=D(;). 

f g 

0 

sf3 I 0 

- q-If3 I q IV 

_-Sq-I Sq III 

h 

s -1f3 - I 

- qf3 - I 

-s Iq 

(64) 

(65) 

(66) 

Further combinations show that A = Ao u, B = Bo u, 
C = Cov, and D = Dov, where Ao, ... ,Do are constants. Other 
combinations show that if p =/= 0, then we must have r = O. 
Furthermore, m =/= 0 implies h = 0, e =/= 0 implies / =/= 0, and 
b =/=0 implies a = O. The nondegeneracy conditions [follow
ing Eq. (46)] playa key role here. Continuing in this vein 
yields four cases: 

1. b = e = m = p = 0, afhr=/=O; 

II. b = e = h = r = 0, a/mp =/= 0; 
III. a = / = m = p = 0, behr=/=O; 

IV. a =/= h = r= 0, bemp=/=O. 

(67) 

The remaining work is just algebra. It is facilitated by 
noting that in cases I and II, for example, we get two separate 
equations for aq , enabling an algebraic relation among the 
variables to be found. Equations (63 )-( 66) are very helpful. In 
each case the relation promised above, Eq. (57), is found to 
hold. We find eventually that each of the cases above pro
duces four cases, so that we have 16 final solutions. 

6. SOLUTIONS FOR COEFFICIENTS IN EQ. (46) 

The solutions in the four cases given in Eq. (67) are 
listed in Tables I-IV, each table giving the four subcases. We 
denote each of the 16 solutions by a different English capital 
letter, listed in the left-hand column in each table. Those 
coefficients, from Eq. (46), which are nonzero are given 
across the top of each table, and their expressions, for each 

TABLE II. Solutions for BT's, Case II. b = e = h = r = O. 

a c f g m 

A -1 -1 -1 

M Sq -Sq Sq-I - Sq-I S -Iq-I 

L qf3 - Sq q- If3- 1 -S-q-I q-If3 

N - sf3 s' - S-f3- 1 s' - S -1f3 
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n r u 

0 0 

0 S-If3 0 s' s 
S IV _ q -1f3 S -lq -IJ1. 

S '11 S -I - I - q S 'q-I v 

case, are given in the body of the table. We abbreviate certain 
expressions as follows If3 = - qo Eq. (44)]: 

!l = 1 + Sq, v = q + S, f3 = !lV-I. (68) 

Certain of these transformations may be easily identi
fied. E is the identity. J and K are the two Neugebauer trans
formations, II and 12, respectively, from Ref. II. H is the 
Harrison transformation (from I). A is the Neugebauer
Kramer transformation 12 

/,=Sj-I, OJ'= -k-lljJ, ljJ'= -kOJ, (69) 

denoted I by Cosgrove in III; change the sign of k for B. 
(Cosgrove's I * = I - I and Neugebauer's S.) Cis a simple sign 
change: 

OJ' = - OJ, 1> '= - 1>. (70) 

(Various sign conventions may make differences in the state
ment of some of these transformations.) It will be seen later 
that the other BT's are combinations of these basic ones. 

The matrices M and N, as defined by Eqs. (50) and (51), 
clearly may be constructed for any of these transformations. 

7. GROUP STRUCTURE OF THE SET OF BACKLUND 
TRANSFORMATIONS 

The set of 16 Backlund transformations, given above, 
forms a group, with group composition defined as successive 
transformation. Several obvious subgroups exist. (Some of 
this material was given by Neugebauer and Cosgrove in II 
and III; the current treatment presents a more unified, if 
brief, view.) 

The method of successive transformation, to form the 
group composition, needs to be carefully defined. We first 
require that the parameter /, occurring in; [Eq. (26)], keep 
the same value from transformation to transformation. This 
group structure is to be distinguished from the group struc-

n p u v 

-1 

S Iq - S-Iq " , !- - "2 
~ ~ 

qf3 -I S- -I - q 

_ S -1f3- 1 f- -"2 s' S-~ 
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TABLE III. Solutions for BT's, Case III. a = f = m = p = o. 

b 

B -I 

U (;q-I 

T q- 1/3- I 

V - (;/3-1 

c 

r -I 
-"q 

r -I 
-"q 

e 

-\ 

(;q 

q/3 

- (;/3 

g 

- (;q 

- (;q 

(;2 

h 

-\ 

(; -Iq 

q/3 -I 

- (; , 1/3-1 

ture discussed in III, Eq. (4.13) and following, in which all of 
the group elements are the same type of transformation, but 
with differing parameters. Second, we point out that, after 
one transformation, with given Sand q, has been performed, 
there is no reason to expect sand q for the second transfor
mation to be the same; in general, they will be different. (For 
example, S may be replaced by S -1.) How do we determine 
these new quantities, which we denote by S ' and q'? We out
line a method as follows. 

From Eqs. (27), (41), (47), and (48), we see that we can 
write 

dS=j¢+su, 

dq = w¢ +zu, 

wherej, s, w, and z are row vectors: 

j=iS(S2-1)[O 01], 

s= is -1(S2 - 1)[0 0 1], 

w=Hqjl -v !S(1_q2)], 

Z=!S-I[qv -jl !(1_q2], 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

where jl and v are defined in Eq. (68). We then note that 

dS' = J'¢' + s'u' = J'M¢ + s'Nu (77a) 

and 

dq' = w'¢' + z'u' = w'M¢ + z'Nu, (77b) 

where we have used Eq. (49) and where primes onj, etc., 
mean replacement of S by s ' and q by q'. If we assume 
S' = F(S,q) and q' = G (S,q), substitute into Eq. (77), and 
equate coefficients of ¢ and (7, we get the row vector equa
tions: 

J'M = Fsj + Fqw, 

s'N = Fss + Fq z, 

TABLE IV. Solutions for BT's, Case IV. a = f = h = r = O. 

b c e g 

C 0 0 

x (;/3 I 0 (;/3 0 

w -q 1/3 I q-I y - q/3 f.1 

Y - (;q'- I (;q-lf.1 - (;q (;y 
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(78a) 

(78b) 

m 

n r 

-\ 

~ ·--1 -I 
S q 

w'M = Gsj + Gqw, 

z'N = Gss + Gq z. 

f- -] 

" 

u v 

(;' (; -2 

(;2 (; - 2 

(79a) 

(79b) 

When solved for F and G, these equations give S' and q', 
which are to be used in the second transformations of any 
group composition. The matrices M and N of Eq. (49), used 
above, are those associated with the first transformation. 

Equations (78) are easy to solve. We note from Eqs. (50), 
(51), (73), and (74) that the left-hand sides ofEq. (78) have 
only a third component. This implies, since wand z have 
nonzero first and second components, that Fq = O. The re
maining equations give (;' = F) 

F(F2 - l)u = ;(;2 - I)Fp 

F-I(F2-1)v=;-I(;2-1)F_, , 
(80a) 

(80b) 

where we have used u = M33 and v = N 33 . It is easily seen 
that if u = v = 1, then F = ;; if u = ; 2 and v = ; - 2, then 
F=;-l. 

Equations (79) are 

[G(1 +FG) - (F+ G) !F(I- G 2)]M 

= H'(S2 - I)GdO 0 1] 

+Gq[q(l+qS) -(q+S) !S(I-q2)] 

and 

F-l[G(F+G) -(1 +FG) !(1-G 2)]N 

=!S-I(S2-1)GdO 0 1] 

+S-I[q(q+S) -(I+qS) !(I_q2)]. 

(81) 

(82) 

We solve them by choosing one of the 16 transformations, 
finding M and N and substituting for them, and solving the 
separate equations for G. All equations are found to be self 
consistent. We summarize the results in Table V. 

n p u v 

0 0 

0 (; - 1/3 - I 0 

(; -Iq -1(.1 - q/3-1 ;- Iy 

;-'q-I y _; --I q ;- '(.1 
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TABLE V. Transformation of q and;- for various BT's. 

Transformation ;-' q' 

E ;- q 
J ;- - 1 q 
H ;- q-I 

K ;- 1 q -I 

A ;- ~fJ 

M ~' ~fJ 

L ;- ~fJ -I 

N ;- - 1 ~fJ-1 

B ;- ~fJ -I 

u ;- - 1 ~fJ -I 

T ;- ~fJ 

V ;- - 1 ~fJ 

C ;- q-I 

X ;- - 1 q-I 

W ;- q 
y ;- -I q 

Weare now in a position to explore the composition of 
successive BT's, If we wish to explore the effect of BT P 
followed by BT Q, we first construct the matrices M p, M Q' 

Np, and NQ • Ifwe apply Mp to ¢, we get ¢' = Mp¢. Before 
applying M Q , we must recognize that ~ and q will now be 
different; so we look up ~ , and q' in Table V for BT P and 
replace ~ and q in M Q by ~ , and q'. Call the new matrix M Q' 
We then have ¢" = M Q ¢' = M Q M p ¢. Thus the matrix for 
the composition is M Q M p. We repeat for N p and N Q' In 
this way we can demonstrate that we always get one of the 
other sets (M, N), so that composition is closed. 

It is now a simple matter to construct the multiplication 
table, Table VI, for BT's. We see that the four cases I, II, IV, 
and III (the order listed in Table VI) transform separately; 
the subcases in each case transform among themselves. 

Ifwe attempt to analyze the group by means of basic 
generators, we note that E is of order 1; M, N, U, Vare of 

TABLE VII. The 16 BT's in terms of generators. 

E 
MA 
M2 

M'A 

A 
M 
M2A 
M' 

C 
MAC 
M 2C 
M'AC 

AC 
MC 
M 2AC 
M'C 

order 4; all other elements are of order 2. It is convenient to 
choose E, A, C, and M as generators. Then we have 
A 2 = C 2 =E,M 4 =E,AM=M 3A,AM 3 =MA, 
AM2 = M2A, CA = AC, and CM = MC, as the defining 
equations for the group, which may be denoted 13 

G 1 fJ 
9 

= G H 
4 

® Gz I. We identify the other elements in terms 
of the generators: J = MA, K = M 3A, H = M2, N = M 3

, 

L=M 2A, T=M 2AC, U=MC, V=M 3C,B=AC, 
X=MAC, W=M 2C, and Y=M 3AC. We write the 16 
transformations in order, in a square array, in Table VII, in 
terms of the generators. We see that the first column is com
posed of the identity E, the two Neugebauer transformations 
(MA, M 3A ), and the Harrison transformation (M 2). The suc
ceeding columns are simply the first column postmuitiplied 
by A (the Neugebauer-Kramer transformation), C (the sign 
change), and A C ( = B ). Thus it is clear that the basic three 
BT's and their transformations are the only nontrivial BT's 
which can be derived with the given assumptions. 

It is more transparent, however, to write the 16 BT's as 
in Table VIII, 14 which clearly shows the effect of B, A, and 
C = BA on the three basic BT's, J, H, and K. 

We use, in the following discussion, Neugebauer's sym
bols r and a (paper II). These are defined in Eqs. (42) and (43) 
above. 

Neugebauer states that f2 = SfIS; in our notation, this 
is K = BJB. We see this easily from Table VI (JB = U, 
BU = K; or BJ = V, VB = K.) This procedure is consistent 
with Cosgrove's Eqs. (4.8)-(4.12). We consider B acting first; 
then we multiply by J to get JB, but replacing q in J with 
- f3 -I (see Table V, entry for B). S remains the same. If 

TABLE VI. Composition (multiplication) of BT's. The BT listed on the top row is the first transformation, followed by that in the left column. 
(Thus, for example, AJ = N.) 

E 
J 
H 
K 
A 
M 
L 
~'V _ 

C 
X 
W 
Y 
"B-
u 
T 
V 
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E J H 

Ii J H 
J E K 
H K E 
K H J 

-A- - -N- - L -

M L 
L M 

_N_ A 
C - -X-

X C 
W Y 
Y W 

-B - -V-
U T 
T U 
V B 

N 
A 

_ X_ 

T 
V 
B 
U 

K A 

K A 
H M 
J L 
E N 

- M -1- E 

A I J 
NIH 
L K - Y - 1- B -
W I U 
X l' 
C I V -lj--E 
B 
V 
T 

X 
W 
Y 

M 

M 
A 
N 

L 

L 
N 
A 

L M 
K - -H-

H 
J 

K 
E 

N 

N 
L 
M 
A 

- j -I-

E 
K 

_ E __ _ J __ JI_ I _ 
V U 

B 
V 

T 
V 
B 

l' I 

U 
B I - 'X- -
C 
Y 
W 
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c x 

c X 
X C 
W Y 
r w 
B - - V -
U l' 
l' U 
V _ B __ 

E J 
J E 
H K 
K H 
A - IV -
M L 
L M 
N A 

w 

T 
V 
B 

y 

y 

w 
X 
C 

- -U- 1-

B 
V I 

_ U __ _ 1' _ I-

H 
K 
E 
J 

-L-
N 
A 
M 

K 
H I 

J I 

E I 
- -M- 1-

A 
N 
L 

B 

B 
U 
T 

f_ 
C 
X 
w 
y 
A -
M 
L 
N 
"E-
J 
H 
K 

u T 

l' 
V 
B 

U 
B 
V 
T U 
Y - -W 
W Y 

C 

V 

X 
C 
M 
A 
N 

_X __ 

L 
N 
A 

L M -R--ii 
H 
J 
E 

K 
E 
J 

N 
L 
M 
A 

- -J-

E 
K 
H 
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TABLE VIII. The 16 BT's in terms of J, H, K, B, A. 

E B A C E B 
J V N X J BJ 

H T L W H BH 
K U M Y K BK 

q' = - f3 - I, we get 

a' = ~ 'f3' = ~f3' = ~ (1 + q'~ )(q' + ~ )-1 

=~(1-~f3-I)(~-f3-I)-1 

= ~V3 - ~)(~f3 _1)-1 = - ~q-I; 

A BA 
AJ BAJ 

AH BAH 
AK BAK 

(83) 

a' can be shown to be the a which occurs in Cosgrove's Eqs. 
(4.11) and (4.12). Since the third factor, another D, has con
stant entries, there is no further replacement of ~ and q. Ma
trix mUltiplication now gives the proper matrices for K. 

Cosgrove notes, in his Eq. (4.19), that a Harrison trans
formation may be given in terms of 12 and II by 

H (a,y) = I 2((a - y)/r(y - I),y-I)/I(a,y). (84) 

To understand this, we note that the first argument in 12 is 
the expression to be substituted for a in Eq. (4.12) for 12 in 
III. But this a is the a' = - ~q-I given in our Eq. (83) 
above. Thus we see that the proper procedure for proving 
Eq. (84) is: (1) Replace a in Cosgrove's Eq. (4.12) by - ~q-I; 

this gives, in fact, exactly the matrices M and N found for 
K ( = 12 ) in Table I above; (2) now make the change q -- q, 
; -- ; - I in these matrices [this is the change prescribed in 
Table V when there is an initial transformation J ( = II)]; (3) 
perform the M, N matrix multiplications for 121,. One ob
tains exactly H. In fact, we see this from Table VI: H = KJ 
( = JK), or H = DJDJ = JDJD. As noted above, the transfor
mations E, H, J, K form a subgroup. 

8. ERNST-MAXWELL EQUATIONS 

The Ernst-Maxwell equations'S 

I(V2G+S-'VS·AG) = VG·(VG-UHvH), (8Sa) 

f(V 2H + S -'VS· VH) = VH· (VG - UHvH), (85b) 

(85c) 

where G = 1 + if/J + AHH and H is a complex electromag
netic potential, may be written in a manner similar to Eqs. 
(3'), (4'), and (5'): 

d(*dS) = 0, 

d(Sf- 1 *df) +sl- 2n 1\ *n 

+ASI-I(dH 1\ *dH + dH 1\ *dH) = 0, 

diS *!J) - 2Sf- 1 df 1\ *n = 0, 

diS *dH) -Sf-I(df + if}) 1\ *dH= 0, 

where 

n = # + iA (HdH - HdH). 

We define 
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(86a) 

(86b) 

(86c) 

(86d) 

(86e) 

51 =I-In, 

52 =S-1dOJ, 

53 =S-'(dTJ +OJ# +L dH +L dH), 

54 =1- 1 df, 

55 =S-I dS, 

56 =S-I dR, 

57 = S -11/ 2(dK - iOJ dH), 

58 =1-1/2dH, 

59 = ~7 = S -lfl/2(dK + iw dli}, 

51O=t8=f -1!
2 dH, 

where 

L = A (K - iwH) 

and 

dK = Sf-I *dH + iOJ dH 

(87) 

(88) 

(89) 

defines a new potential K. Then we can write a CC ideal for 
the Ernst-Maxwell equations. The exterior derivatives are 

d51 = 51 1\ 54 - 2iA58 1\ 510' d52 = 52 1\ (55 - 54)' 
d53 = 53 1\ 55 - 51 1\ 52 + A (57 1\ 510 - 58 /\ 59), 
d54 = 0, d55 = 0, d56 = - 55 /\ 56' 
d57 = 57 /\ (55 - ! 54) - i52 /\ 58' 

(90) 

d58 = -! 54 /\ 58' d59 = 59 /\ (55 - ! 54) + i52 1\ 510, 

d510 = ! 54 1\ 510' 

while the remaining annulled 2-forms are 

53/\ 51-52/\ 54=0, 
53 /\ 52 - A51 /\ 54 = 0, 

55 /\ 52 - 51 /\ 56 = 0, 

55 /\ 51 - A52 1\ 56 = 0, 

551\53-54/\56=0, 

54 /\ 55 + A53 /\ 56 = 0, 

51 /\ 58 - A57 1\ 52 = 0, 

51 /\ 57 - 58 /\ 52 = 0, 

51 /\510 - A59 1\ 52 = 0, 

51 1\ 59 - 510 1\ 52 = 0, 

53 /\ 58 - 57 /\ 54 = 0, 

53 /\ 57 - A58 /\ 54 = 0, 

53 /\ 510 - 59 /\ 54 = 0, 

53 1\ 59 - A510 /\ 54 = 0, 

55 /\ 58 - A57 1\ 56 = 0, 

55 1\ 57 - 58 1\ 56 = 0, 

55 1\ 510 -A59 /\ 56 = 0, 

55 /\ 59 - 510 /\ 56 = 0, 

57 /\ 510 - 59 /\ 58 = 0, 

57 1\ 59 -A51O /\ 58 = O. 

(91) 

We write a prolongation form in terms of the 5i' for 
variety, instead of the TJi as before: 

K= -dq+(C't)q, (92) 

where K and q are column vectors and C i are matrix func
tions of;. The prolongation equation becomes 

Cid5i - [Ci,C']5i /\ 51 +1;-I(;2_I)C" 

x[(;z+ 1)55+k(~2-1J56] /\ 5, =0. (93) 

We set c 5 = c 6 = Oas before. ExpansionofEq. (93) yields a 
set of differential equations for the C i plus a set of equations 
for their commutation relations. Solution of the differential 
equations yields 
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C 1 = H' - 1(; 2 + l)v + 0, 
C 2 = ~ k; -1(;2 - l)v, 

C 7 = ~ k; -1(;2 - l)a, 

C 8 =g-I(;2+ l)a+y, 

C 3 = ~ k; -1(;2 - l)r, 

C 4=!;-I(;2+ l)r+4>, 

C9=~k;-I(;2_1)P, 

C 10 = H- -1(; 2 + I)P + 8, 
(94) 

where v, e, r, 4>, a, p, y, and 0 are constant matrices. r, 0, and 
v play the same role as their counterparts, defined above 
following Eq. (38). These matrices satisfy 

[v,O] =T, V= [O,T], [T,y] = -~a, ° = [0, 4> ] + [v, r], [ r, a] + [4>, y] = - ~ y, 

[ v, 4> ] = [r, 4> ] = 0, [13, y] = A. (r + iv), 

[v,y] = [a,O] = -!ia, [a,o] =A.(r-iv), 

0= [v,a] + [e,y], [a,p] + [y,o] = -2iye, 

[a, r] = [a, 4> ] = O. (95) 

These equations can be satisfied only by a representa
tion of size 3 X 3 or greater (reminiscent of the 3 X 3 matrices 
required for Ernst-Maxwell in the Ernst-Hauserl6 ap
proach to this problem.) If we make the ansatz that the upper 
left corners of 7, v, and ° are given by the spin matrices as 
before, we find two representations, as follows (subscripts 
indicate the representation label; kl and k2 are constants): 

-1 [~ 
0 n 4>1 = 4>2 = 0, TI = 72 = -1 

0 

v, ~ v, ~ l [! H 8, ~ 8, ~ l [ ~ 1 

1 

H 0 0 

0 0 

a, ~k, [~ 
0 

~l p,~ ~[~ 
0 

~J 0 0 

i o 2kl 0 0 
(96) 

r'~k'p 
0 

~l6'~ ~[~ 
0 II 0 0 

-1 o 2kl 0 0 

a, ~ k, [~ 
0 :l p,~ ~[~ 0 

H 0 0 

0 o 2k2 1 -i 

r,d,[~ 
0 

~16'~ -~[~ 0 

H 0 0 

0 o 2k2 1 

We now define the 1/j, in the same way as before (the 
number in parentheses corresponds to the lower sign): 

1/1(2) = 54 ± i51 + k53 ± ik52' 

(97) 

1/5(6) = 55 ± k56' 1/7(9) = 510 ± k59' 1/8(10) = 58 ± k57' 

The 1/j divide into self-dual1/j (i = 1,2,5,7,8; 
*1/j = k -11/j) and anti-self-dual1/j (i = 3,4,6,9,10; 
*1/j = - k -11/;). We can show that 1/k A 1/1 = 0 if 1/k and 
1/ 1 are either both self-dual or both anti-self-dual. Equations 
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(90) and (97) enable us to derive expressions for the d1/ k • 

Kramer and Neugebauerl7 (denoted by IV) define a set 
of quantities Ajt ... ,Ejt i = 1,2. They are related to the 1/, by 
(remember A. = - 1 in IV) 

1/1 = 4AI dx, 1/6 = 2C2 dy, 

1/2 = 4BI dx, 1/7 = - 2iDI dx, 

1/3 = 4B2 dy, 1/8 = - 2iEI dx, 

1/4 = 4A2 dy, 1/9 = - 2iD2 dy, 

1/5 = 2C I dx, 1/10 = - 2iE2 dy. 

(98) 

Expansion ofEq. (92) (K = 0) for the first representation 
in Eq. (96) yields, for the pseudopotentials u(v) = ql ± iq2' 
W=q3: 

du = - ~(1/1 - 1/2 - 1/3 + 1/4)U -l(;1/2 + ; -11/3)V 

+ ! ik 1- 1,1 (;1/7 + ; - 11/9)W, 

dv = !(771 - 772 -1/3 + 1/4)V - !(;77 1 +; -11/4)U 
+ ! k 1- 1,1 (777 + 779)W, (99) 

dw =! kl [(;778 + t -1 77IO)u - (778 + 771O)vJ. 

Similar equations result for the second representation (with 
analogous pseudopotentials u', v', w'). Comparison with IV 
shows that A. in that paper is our S, and we also have the 
following relations for the quantities ¢, ... in IV: 

¢ =! iak 2- 1 ,fJu', ip = - ibk,,fJv, 

X = -! iak 2-
I ,fJV', X = ibk, ,fJu, 

a=a,fJw', a=b,fJw, 

(100) 

where a and b are arbitrary constants. In general (whether 
A. = ± 1, k = lor i, and whether or not complex conjuga
tion is taken on k if k = i), we have 

(101) 

where c is an arbitrary constant. 
It is convenient to consider five variables made of the 

ratios of these variables (uw- I
, vw-l, uw-l, vw- 1

, ww-'). 
The function ~ makes a sixth variable. Denote the variables 
as a A' A = 1-6. The exterior derivatives of the a A arelinear 
combinations of the 77" the coefficients being functions of the 
a A : 

daA =AA K(aB)77k' 

An arbitrary function, j(a A ), has exterior derivative 

dj = (ajlaaA)daA 
= (ajlaaA)AA k1/k 

= Bk(f)1/k' 

where the B k = AA kalaaA are linear operators. 

(102) 

(103) 

To search for BT's, we assume a linear transformation 
like Eq. (45), as before-except that now, instead of 14 func
tions of two variables, we have 42 functions of six variables! 

1/~ = Ck'(aA)1// (104) 

where the families of self-dual and anti-se1f-dual1/j trans-
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fonn among themselves. The problem is made tractable only 

by the shorthand use of the B k' which operate on the C k '. 

Even then, progress can be made only by making an ansatz, 

typically that several of the Ck ' vanish. For example, one 

may try 7]; = F7]I' or 7]; = F7]1 + G7]5' It appears likely that 
only two or three coefficients, in the expression for any 7]k' 

are nonzero. However, even this approach does not work 
until we make the additional ansatz, made in IV, that 

(105) 

This reduces the number of independent variables from six 
to five. Fortunately, the equations--expressed in terms of 
the operators B k -keep the same fonn. Only the B k change. 

The ansatz which gives results is: In 7]; , include either 
7] 1 or 7]2' but not both; either 7]7 or 7]s, but not both; and 7]5' It 
is clear that we have four possible choices (7] 1 and 7]7' 7] 1 and 
7]s' etc). Setting certain of the coefficients to zero then in
duces other coefficients to be zero. One continues in a similar 
manner. The problem becomes possible to solve, though still 
very complicated. 

Solutions found to date after pursuit of this approach all 
reduce to the single BT reported by Kramer and Neugebauer 
in IV. 

The possible relation of this BT approach to electrovac 
space-times to that of Cosgrove lS is yet to be explored. 

9. FINAL REMARKS 

It is interesting that the Ernst equation admits three 
BT's found by the method in this paper, while the Ernst
Maxwell equations admit only one (at least, known to date)! 
It may be that the extra equations force enough additional 
structure to preclude more than one BT. 

The MWE approach to finding BT's appears to have 
promise. It suggests that it would be desirable to find a ca
nonical set of I-forms for any equation, or set of equations, 
such that a CC ideal offonns can be constructed. It has been 
demonstrated, for example, that CC ideals exist for the sine
Gordon and Korteweg-de Vries equations and that they can 
be used to derive the associated BT'S.IO,19 

It is possible to formulate more complicated problems 
in elegant ways by using differential forms. As an example, 
the vacuum Einstein equations, with only one non null Kill
ing vector, may be cast into an ideal of 1-,2-, and 3-forms 
with most coefficients constant. 8.20 Investigation into an in
verse scattering or BT formulation for this problem, using 
techniques due to Morris, 21 has been done-without definite 
results to date. 20 The formulation of the full vacuum equa-
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tions in differential fonns, due to Israel,22 might be suitable 
for application of these methods. 

The MWE approach also serves to suggest new general
izations. If the equations being studied admit similarity or 
invariant variables J.la' their exterior derivatives can be writ
ten in the fonn 

(106) 

; is such a variable for the Ernst or Ernst-Maxwell equa
tions, as noted above, and it was convenient (even necessary!) 
to include it as a variable in the coefficients in Eqs. (28) and 
(45). But others may exist. Such a generalization is currently 
being tried by the author and is already yielding new BT's to 
the (vacuum) Ernst equation,8 although it is not yet known 
whether these BT's provide new solutions to the equation. 
These results will be reported later as they are completed. 

Note added in proof It now appears that these new BT's 
are combinations of Ehlers transformations and known 
BT's. 
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On apparent horizons and the Schwarzschild surface for a uniform 
fluid sphere in general relativity 

Henning Knutsena) 
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The time history of the marginally trapped surfaces, i.e., the apparent horizons for a spherically 
symmetric nonstatic fluid of uniform density are studied. Generally it is found that apparent 
horizons mayor may not exist dependent upon the choice of arbitrary functions of integration. 
However, it is shown in this paper that if the metric is conformally flat or if the circumference of 
the sphere is an increasing function of a radial coordinate, apparent horizons exist if and only if the 
surface is inside the Schwarzschild surface. Then there exist in fact at least two horizons: The 
absolute Schwarzschild surface and an apparent horizon in the interior of the fluid matter. 

PACS numbers: 04.20.Jb 

I. INTRODUCTION 

Several authors have studied different aspects of non
static spheres of uniform density in general relativity. 
Gupta! has given the general solution for a shear-free, non
singular model. Bonnor and Faulkes2 find that pulsating 
spheres may exist. Bondi3 finds conditions for an inward 
motion to reverse for various assumed relations between 
density and central pressure. Thompson and Whitrow,4 
NariaV and Banerjee6 concentrate on the global motion of 
the sphere, and they find the possibility that a bounce may 
exist. Krishna Rao7 shows that when a singularity at the 
center is removed, the space time is conformally flat. Baner
jee8 has studied the spectrum of radiation emitted from the 
surface of a collapsing or expanding sphere. Cook9 has ob
tained the surprising result that there exist classes of solu
tions for which the sign of the spatial curvature may vary 
with time. In a recent paper, Glass 10 claims that uniform 
spheres always contain trapped surfaces. This last result is in 
fact not correct, and it is the purpose of this paper to investi
gate in some detail the conditions for such apparent horizons 
to exist. 

II. TRAPPED SURFACES AND APPARENT HORIZONS 

Writing the metric in the form 
ds2 = A 2 dt 2 _ B 2dr 2 _ R 2dfl 2, (1 ) 

where dfl 2 = del + sin2 e d¢> 2 

and A and B are functions of time t and the comoving radial 
coordinate r, the total mass-energy contained within the 
sphere r at time t is given by 

m = 41T wR 2-dr, l' aR 
o ar 

where w is the density. 
The function m was first introduced by Misner and 

Sharp, II and m may also be written (cf. Hernandez and 
Misner l2

) 

(2) 

2m = 1 + _1_ (aR )2 __ l_(aR )2. (3) 
R A 2 at B2 ar 

Following Glass, I() we define 
p = - r "il" In R, fJ = n" "il" In R, (4) 

'1 Present address: Institute of Theoretical Astrophysics, University of Oslo, 
Oslo, Norway. 

where /I' = (l/vL)((lIA W: + (liB )b~), 

nl' = (lIv1) ((lIA )b~ - (lIB)b~). 

Hernandez and Misner's equation (3) may then be written 

2m/R = I - 2fJpR 2. (5) 

Glass then claims that a trapped surface exists when both fJ 
and p are positive. From (5) we then obtain 

2m/R < 1. (6) 

But Hernandez and Misner l2 have in fact proved that even 
light rays which are moving out relative to the matter are 
falling in in regions of a collapsing fluid where 

2m/R> 1, (7) 

and all events satisfying the inequality (7) lie inside a 
Schwarzschild surface and signals sent out from these events 
cannot reach external observers. The condition 2m/ R > 1 is 
sufficient, but not necessary, for outgoing light rays to be 
trapped. We may have 2m/R < I close to the the center, but 
a light ray starting from this point cannot overtake one start
ing farther out and will be trapped if the outer one is. We 
therefore think that Glass's condition for a trapped surface 
to exist is wrong and should be replaced by the inequality (7). 
This does not in fact influence the contents of Glass's paper, 
since Glass investigates the condition p = O. The time his
tory of the marginally trapped surface, i.e., the apparent hor
izon, is given by 

2m/R = 1. (8) 

Equation (8) may alternatively be written 

F + IX H - 2x aF = 0, (9) 
ax 

where F = 1/ B, x = ?, and the condition aB / at = ABH for 
zero mass-energy flux and the condition 

aB 1 JR 1 

at B at R 
for shear-free motion have been used. 

H = H (t ) is here an arbitrary function of integration. 

III. UNIFORM DENSITY SOLUTIONS 

Demanding pressure isotropy yields the foIl wing equa
tion first obtained by Wyman l3

; 
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a2 

- (F) + J(X)F2 = 0, 
aX2 

(10) 

where J is an arbitrary function of x. All uniform density 
solutions are obtained by putting (GlassIO) 

J = kx- 512, (11) 

where k is an arbitrary constant. The substitution F = IX r, 
x = e Y allows a special solution of (10): 

1.(~r)2 + l.kr3 _l.r2 + CI(t) = O. (12) 
2 ay 3 8 

Glass solves Eq. (12) fo the case C I = O. But in his discussion 
he claims that all homogeneous density solutions have the 
characteristic which is special for the solution of (12) with 
C I = 0, namely, to contain a trapped surface. This general
ization we cannot accept without proof. Moreover, his solu
tion of (12) is erroneous [Eq. (47) in Glass's paper). The cor
rect solution of(12) with C I = 0 is 

(13) 

wherec2(t) is an arbitrary function of time. From Eq. (13) and 

the relation R = IX IF, we conclude that R is not finite at 
the center. Using Eq. (2), the following relation is obtained: 

2mlR = 017"W)R 2. (14) 

Hence the singularity at the center is always hidden by a 
trapped surface. 

Using (13) in Eq. (9) for the apparent horizon, we obtain 
the following equation: 

q.l+(a+3)q2+(3_a)q+ 1 =0, (15) 

where a = 3/2kH, and q = C2X~~2. The suffix ah denotes ap
parent horizon values. For shear-free motion we may write 

1/F= B = (1/r) R. 

We therefore restrict F to be positive. For positive c2, Eq. (13) 
and the definition of q then yield that only the positive roots 
of Eq. (14) are acceptable. 

The discriminant of the cubic equation (15) is given by 
a 2(1 - a 2/108). When a 2 < 108, Eq. (14) has therefore only 
one real root which is negative. Hence no apparent horizon 
exists when a 2 < 108, and from (14), we conclude that each 
layer of this sphere is inside a trapped surface. 

On the other hand, when a = - ¥, one of the roots of 
(14) is q = 2. Hence there is an apparent horizon. 

It is also easy to see that this apparent horizon may be 
located inside the surface of the matter distribution. At this 
boundary of the sphere, the pressure drops to zero, and the 
interior solution must be matched to the exterior vacuum 
Schwarzschild solution. These two conditions yield the fol
lowing equation: 

H2=2Mx-V2F' -4F (aF) +4x (aF)2. (16) 
b h b ax b b ax b· 

where the suffix b denotes boudary values, and the constant 
M is total mass--energy inside the boundry. 

Writing N = 3M 12k and defining 

Po(z) = Z6 + 6z-' + 15z4 + 2( - Na 2 + 2a1 + 1O)z3 

+ 15z2 + 6z + 1, (17) 
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Eq. (16) may be written 

P6(z) = 0, (18) 

where z = C2.jX;. Choosing the constant N > ~ (~f, it is seen 
that (18) has a root z > 2. Hence the apparent horizon is lo
cated inside the boundary of the matter distribution. 

Using (2) and (13), it is found that for this model we 
further have 

(19) 

where y = c2[.x-. Hence we conclude that the boundary is 
inside the Schwarzschild surface. 

From (17), it is also seen that it is possible to have a 
model where P6(q) > 0 and P6( 1) < O. Hence we have 0 < z < 1. 
Using (19), we conclude that, for this model, the boundary is 
outside the Schwarzschild surface. 

IV. CONFORMALLY FLAT SOLUTIONS 

A conformally flat space is defined as one with a metric 
of the form 

ds2 
= P7]jl.V, 

where P is an arbitrary positive function and 7]jl.V is the Lor
entz-Minkowski metric. A well known theorem then says 
that the Weyl tensor Cjl.Vpu is zero. All the conformally flat 
solutions are then found upon setting J = 0 [see for example 
Eq. (14) of Glass's paper]. From (10), the solution for Fis 
then obtained. When this solution is used in (9), X~~2 is found. 

Equation (16), combined with the relation R = IXF, now 
yields the foilowing relation which is valid when the appar
ent horizon is located inside the matter distribution: 

(RblRahf = 2M IR b . (20) 
If the surface of the sphere is outside the Schwarzschild 

surface, i.e., 2M IRb < 1, Eq. (20) shows immediately that an 
apparent horizon inside the boundary cannot exist. Outside 
the matter configuration, there is vacuum. We thus have 
m = M outside the sphere. Existence of an apparent horizon 
outside the matter distribution would then give 

(21) 

in contradiction to 2M IRb < 1, i.e., the surface of the sphere 
to be outside the Schwarzschild surface. Hence in sharp con
trast with Glass, who claims that all conformally flat solu
tions have an apparent horizon, we conclude that when the 
surface of the sphere is outside the Schwarzschild surface, no 
apparent horizon exists. 

When the surface of the sphere is inside the Schwarzs
child surface, i.e., 2M / Rb > 1, there is of course an apparent 
horizon outside the matter, namely, the absolute Schwarzs
child horizon. 

From Eq. (2) we obtain, since the density w is uniform, 

2mlR =~1TwR 2. 

Hence (2ml R )eenler = O. 

(22) 

(23) 

The continuity of 2ml R thus yields that the following rela
tion is valid somewhere in the interior of the sphere: 

2mlR = 1. (24) 
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Hence when the surface of the sphere is inside the Schwarzs
child surface, there exists at least one interior apparent hori
zon. 

Glass also investigates the exact solution 

(25) 

where hI is an arbitrary function of t and a and {3 are con
stants. For this solution we have 

Rb = (41TW/3M)-1/3 

Rah = (81TW/3)-II2. 

From (26) and (27) we obtain 

(26) 

(27) 

Rb = Rah ¢::?2M /Rb = 1 (28) 
Glass concludes that for a collapsing model, there is an 

interior apparent horizon and that after some finite time the 
boundary will fall through the apparent horizon and an ab
solute Schwarzschild horizon will remain. This interpreta
tion is not correct, and in fact what happens is the following: 
First the boundary of the collapsing sphere is outside the 
Schwarzschild surface and no apparent horizon exists; then 
the boundary passes the Schwarzschild surface; thereafter 
there is an apparent horizon in the interior and an absolute 
Schwarzschild horizon outside the matter configuration. 
Glass also claims that for an exploding model of this kind, an 
apparent horizon will develop. From our previous result, we 
conclude that for an exploding model there exists no hori
zon, and Glass's interpretation is wrong once more. 

v. SOLUTIONS WITH aR/ar> 0 

One usually expects the circumference, as measured by 
an observer riding in a shell of matter, to be an increasing 
function of radial distance, i.e., aR / ar > O. Papapetrou 14 also 
uses this as a condition for a solution to be acceptable when 
he discusses the collapse of a pressureless dust cloud. But 
situations may exist where aR jar> 0 is not fulfilled (cf. 
Misner I5

). From (2) we now obtain, with w = constant, 

i. (2m) = ~ 1TwR aR. (29) 
ar R 3 ar 

We also demand 
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aR >0. (30) 
ar 
If the surface of the matter configuration is outside the 

Schwarzschild surface, from (21), (22), (28), and (29) it fol
lows that 2m/ R < 1 in the interior of the sphere. Hence no 
interior apparent horizon exists. The argument showing the 
nonexistence of an exterior apparent horizon is the same as 
in the case of the conformally flat solutions, and we do not 
repeat it. We conclude that when the surface of the sphere is 
outside the Schwarzschild surface, no apparent horizon ex
ists. 

When the boundary of the sphere is inside the 
Schwarzschild surface, an argument similar to the one used 
for the conformally flat solution gives the result that there 
exists an interior apparent horizon. But in this case, 2m/ R is 
a strictly increasing function, and thus there will exist only 
one apparent horizon in the interior of the sphere. Hence we 
conclude that when the surface of the sphere is inside the 
Schwarzschild surface, there exist two apparent horizons: an 
outer absolute Schwarzschild horizon and an interior appar
ent horizon. 
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The conformal, homothetic, and isometric symmetries of all nontwisting type-N solutions are 
established. All solutions with A allow at most the existence of two Killing vectors. All vacuum 
solutions, except the Robinson metric, permit maximally the existence of two (isometric and 
homothetic) symmetries. The Robinson solutions are the only ones which allow conformal 
symmetries. 

PACS numbers: 04.20.Jb, 04.90. + e 

1. INTRODUCTION 

The aim of this paper is to describe systematically all 
possible symmetries of the nontwisting type-N solutions of 
the Einstein equations with A (also allowing A to be zero). 
This class of solutions, as was demonstrated in Ref. 1, subdi
vides into nine essentially different branches according to 
the scheme of contractions given below. 

NT(A,Z,I)-.NT(O,Z,I) ~ 

NT (A,Z,O)-.NT(O,Z,O) • R 

NT(A,Z, - II-NTIO,z, -I(! 
'\(..1) ~ 

All these solutions have the property of being determined by 
an arbitrary complex function/which, in a chart of coordi
nates {XIl] = {g, t, r, t J, depends on g and t only, i.e., 
/=/(g,t). 

The determination of the symmetries or motions of a 
given Riemannian space can be achieved by solving the Kill
ing equations 

2' KgllV = Kgllv (1.1) 

for some function K = K(X a), where 2' K denotes the Lie der
ivative with respect to the vector field K. The gllv are the 
components of the metric g which, in the null tetrad formal
ism with signature + 2, is given as 

g = 2e l 
® e2 + 2e3 

® e4
, e2 = (er), e3 = e3

, e4 = ~, 
(1.2) 

where eaEA I are the null tetrad vectors. The motion is con
formal if the conformal factor K is a function of the coordi
nates. The motion is homothetic or isometric according to 
whether K is a nonzero constant or zero. Correspondingly, 
one says that a Riemannian space admits a conformal Kill
ing vector (CKV), a homothetic Killing vector (HKV), or a 
Killing vector (KV). 

01 Also at Secci6n de Graduados, Escuela Superior de Ingenieria Mecanica y 
Electrica del I.P.N. Mexico, D.P., Mexico. 

blOn leave of absence of the University of Warsaw, Warsaw, Poland. 

For the class of metrics being studied, the problem of 
searching for symmetries reduces to solving a single con
straint equation depending on the vector field K and the 
structural function/(g,t). For arbitrary general function 
/(g,t ) all these solutions, excepttheR metric, have no symme
tries. The existence of symmetries is related just to the con
straint equation; every function/(g,t) satisfying the con
straint equation allows at least one Killing direction. 

In the next sections, the symmetries for each metric of 
the scheme of non twisting solutions are established. The pat
tern we shall follow consists in giving the cotangent tetrad ea

, 

the form-invariance metric transformations, the compo
nents of the Killing vectors, the conformal factor K, the con
straint equation, the general solution to the constraint equa
tion, and a table of results. 

Complex functions will be designated by means of 
Greek symbols, while real functions will be labeled by Latin 
symbols; exception is made with respect to the structural 
function/(g,t )-complex, f/!(g,t, t )-real, the real conformal 
factor K, the real cosmological constant A, and the real func
tion wIt ) appearing in the transformation ofthe variable t. To 
designate constants we shall use the corresponding symbols 
with a suffix O. 

In the tables the symbols G, K, Crf, and JY stand for the 
maximal group order, the conformal factor, the conformal 
Killing vector, and the homothetic KV, respectively; the 
Killing vectors are given simply by their expressions. For the 
sake of simplicity, the suffix 0 of the constant is dropped; a, 
b, k, I, m, n are used to designate real constants, while p, f..l, v 
for complex ones. The structural functions quoted in the 
tables have been reduced to their simplest form by using the 
transformations of invariance of the metric; they are essen
tially different from one to another. 

2. THE NT(A, Z, €) AND NT(O, Z, €) SOLUTIONS 

The most general family of non twisting N solutions, the 
NT (A, Z, €) solutions, is given in a chart of coordinates [g, t, 
r, t ] by the null tetrad 

e l = e2 
= rdg + (t/J~ - r/)dt, 

e3 = t/J(g, t,t )dt, (2.1) 

e
4 =dr+ [-t/Jsg +!r(/s +l~)+iArt/J] dt, 

where/ = /(g,t ) is an arbitrary complex function depending 
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on 5 and 1 only. Because the curvature is proportional to/m, 
the space is a curved space if 1m does not vanish. The func
tion t/! satisfying the Liouville equation, without any loss of 
generality, can be given in the form 

(2.2) 

where the discrete parameter E takes the values 1,0, - I, 
depending upon whether the source lines of the gravitational 
waves are, respectively, timelike, null, or spacelike. The 
quantities A and Z appearing in the symbol NT (A,Z,E) stand 
for the cosmological constant and the divergence of the con
gruence e3

• 

The non vanishing component of the conformal curva
ture, by choosing a coordinate gauge such that t/! is of the 
form (2.2), amounts to 

e m - (_,,)-11' 
- - I'f' Jt;t;t;. 

The corresponding NT (O,Z,E) vacuum metric is ob
tained from the NT (A,Z,E) solutions by equating A to zero. 

The coordinate transformations, which maintain invar
iant the form of the metric (1.2) with the null tetrad (2.1), are 
given by 

l=t(l'), 5=5(5',1'), t=t(t',t'), r=(s{t~)1/2r', 

t/! = t ;(5 tt ~ )-1/2t/!', 1= St;, t ;(/' - t"a,s '). (2.3) 

For the metric with t/! of the form (2.2), these transformations 
reduce to 

t = l' + to, 5 = a(l)S' - P (t) , 
a(t) + EP(t)S' 

r = la + EPs 12r', aa + EPP = 1, 

t/! = la + EPs'I- 2t/!', 
1= (a + EPs ')-2(/' -/0)' 

10: = ap - aP + [aa - aa + E(j3P - /JP))s' 
+ d/ia - aP)S·2. 

(2.4) 

Searching for motions of the NT (A,Z,E) field, from the 
Killing equations one obtains the components of the K vec
tor 

K' = a(t): = ~Kt + ao' 

Kt; = P(s,t): = Ea(t )5 2 + ib (t)s + a(t), (2.5) 

Kt=(Kt;), 

K r = -(rI2)(f3t; +Pt-K). 

The conformal factor K for NT (A,Z,E) solutions must be 
zero. Thus this class of solutions permits isometries only. 
For the NT (O,Z,E) metric, K is equal to a constant, therefore 
these solutions permit at most the existence of homothetic 
Killing vectors. 

The components of the K vector and the function/(s,t) 
are restricted by the equation 

aJ, + PIt; + (a, -Pt;)/=P,. (2.6) 

The general solution/(s,t ), which allows maximally two 
symmetries, is given by 

I(s,t) = (lIal1 )(5 - S (t W[tP (x) + t/!(s,t)), (2,7) 

where S (t ) is any particular solution of the Ricatti equation 
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t = a-l(a(t)S 2 + ib (t)s + a(t)) (the dot denotes the deriva
tive with respect to t). In order to give the expressions of the 
other functions appearing in (2.7), it is convenient to define 
the auxiliary functions 

p: = Ea(t K2(t) + ih (t )s(t) + a(t), 

p.: = 2Ea(t )s(t) + ib (t), 

P': = 2Ea(t )s(t) + ih (t); 
(2.8) 

the dot over a and b denotes the derivative with respect to t, 
while the dot over Pis merely a symbol. In terms of them, the 
structural functions present in (2.7) are 

n(t)=exp f a-Ip'dt, 

X(S,t) = (5 - sit ))-In + JI, 

JI(t) = f Ea-Ian dt, 

IJI (s,t ) = f [Ean - JIP' + JI 2/n dt 

- X f [2n - 1,8 - ,8.] dt + x 2 f n - 1,8 dt. 

(2.9) 

[For a equal to zero, the function/(s,t ) happens to be 
I=PSP- 2p, ds]· 

Forfunctions/(S,t ) of the form (2.7), the metric has sym
metries (at most two K vectors). Fori (5 ,t ) outside of the men
tioned class, the metric has no symmetries. 

Not entering into details, by using the coordinate free
dom, one obtains a list of particularly interesting structural 
functions, which are shown in Table I together with the cor
responding symmetries. As was stated before the NT (A,Z,E) 
solutions permit only the existence of Killing vectors for 
I(s,t ) of the form given by (2.7) with the function a being a 
constant. Therefore, the isometries of NT (A,Z,E) are the 
same as those of the NT (O,Z,E) solutions. 

3. THE K(A) SOLUTIONS 

The tetrad of these solutions, which generalize the 
Kundt metric2 and reduce to it when A tends to zero, can be 
given as 

e l = (ez)=~-rdt, 
cosh x 

e3 =fJ,-1 tanhxdt, 

dr -
e4 = --+ [(at; + at - 2fJ, tanh x)(1 + I) 

cosh x 
- fJ,r tanh xl dt, 

where x: = fJ,(s + t), fJ,: = (!A )1/2. 

(3.1) 

The nonvanishing component of the conformal curvature is 

ell) = - 2fJ, c~sh3x (asai; - 4fJ,2)/1;' (3.2) 
smhx' . 

The transformations which maintain the metric invar
iant are 
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TABLE I. Symmetries of the NT(A, Z, E) and NT (0, Z, E) solutions. 

I(t, t) Isl;!;;;60 G Homothetic and isometric killing vectors K = const 

<P (t) T 0 

t-'<P(t) JY' = IL 21 

ell'ts' +l' T-R 0 

t -- 1 + 21\' S I + v JY' = I (L - 2R ) 21 

gl t-III 2 T, JY' = I (L + n - 'R ) 21 

A "'Atlnt A(t)R 0 

tint" 2 T, e"' R 0 

t --'tin t" 2 tn R, JY' = IL 21 

e ',E=O 2 T, JY' = I (L + D ) 21 

t - I + \' e "; E=O ,W'= I(L +D) 21 

n( 1 + t ') arctan t, E;;60 2 T,e"'M(+) 0 

nt "(1 +t')arctant, E;;60 2 t" M ( + ), JY' = IL 21 

nil - 5 ') In I + t , E;;60 2 T, e2"'M( -) 0 
I-t 

nt-'(I-t')ln I +t, E;;60 2 t 2" M ( - ), JY' = IL 21 
I-t 

T: = a" L: = ta, + ra" R = i(ta, - ta~), D = as + a~, 
M( ±): = H(l + i) ± E(I - i)ll(I ± na, ± E(l ± ?2)a~ =t=r(t± E?)a,j 

t= J e-wit'ldt', g=g'+iZo, t=t'-iZo, 

r = ewit'l(r' - (l/2,u)w,.sinh x'), 

/(g,t) = a-
2{tP (g - ibo J ~t) + 8~2 (aa - !(2) + /o(g,t)} , 

(3,6) 

(3,3) 

where 

ftM ',t '): = art ')e21"5' + art ')e - 21"5' + iT(t '); 

this function is such that C(I)(Io) = o. 
By integrating the Killing equations one arrives at the 

components of the K vector in the form 

K'=a(t), 

K 5 = ( K 5 ) = ibo, (3.4) 

K r = - ra + (a/2,u) sinh x, 

The conformal factor K must be zero. Therefore, this 
family of solutions permits at most isometries, 

The components ofK and the function/(g,t ) are restrict
ed by the constraint equation 

(a'lL + iboa- t(a2f).5 = 'da/8,u2 + (a + 2i,ubo£l- t)e21"5 

2193 

+ (a - 2i,uboa- tale - 21"5 + iT, 
(3,5) 

The general solution of the equation above is given by 

J. Math. Phys., Vol. 24, No.8, August 1983 

where 

/o(g,t) = art )e21"5 + art )e - 21"5 + iT (t ), 

Only the metric structures with functions/(g,!) of the form 
(3,6) allow motions, 

By using the coordinate freedom, one can establish that 
the maximal order of the group of isometries is 2. Concrete 
results are presented in Table II. 

TABLE II. Symmetries of the K (A ) solutions. 

I(t. t) I,u; - 4p2/,;;60 G Killing vectors K=O 

<P (t - ibt) T+bR 

A(t)t R 

t 2 T,R 

ez'''' 2 T,R +nL 

T: = a,. R: = ira, - a~), L: = ta, - ra, 
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4. THE KUNDT SOLUTIONS 

The tetrad I-forms, which describe the Kundt solu-
tions, can be given as 

e l = (7) =ds- rdt, 

e3 = (s + t) dt, (4.1) 

e4 = dr + (f + f- r) dt. 

The conformal curvature, referred to the tetrad (4.1), is given 
by 

c(I) = - (2/s + t )/w 

The metric invariant transformations are 

t = J e - W(I ')dt " s = s ' + izo, t = t ' - izo, 

r = eW [r' - ~(w I' - e - W + l)(S' + t ')] , 
/= e2w I /' + (S'/4)(2UJ

"
I, + (W , ,)2 + e- 2w - 1) 

(4.2) 

+iT(t')j. (4.3) 

The components of the K vector amount to 

K'=a(t), 

KS = (KS) =/3(S): = (K/2)S + ibo, 

K r = (K12 - air + !(s + t)(ii + a). 

(4.4) 

The conformal factor K is a constant. Hence, the Kundt 
solutions permit at most the existence of homo the tic Killing 
vectors. 

The components of the K vectors and the structural 
function/lS,t) ought to satisfy the equation 

al, + /31, + (2a - K/2)/ + !S (ii' - a) 

=ia-I[1'- (a- 1/2)(KT+ 2boS(t))], (4.5) 

where S (t): = 1(20a - iJ2 - a2). The general solution of this 
equation is given by 

a2
/ = e(KI2)sa-' alt/> (In/3 - ; fa-I dt) - sS(t) + iT(t). 

(4.6) 

For the existence of isometries, i.e., when K is equal to zero, 
the function/(t,t ) happens to be 

a2/(s,t) = t/> (s - ibo fa-I dt) - sS(t) + iT(t). 

After using the transformations (4.3), one arrives at the ca-

TABLE III. Symmetries of the Kundt solutions. 

nonical forms of the function/(s,t ) and the corresponding 
symmetries shown in Table III. 

5. THE ROBINSON SOLUTIONS 

This section is included in the present paper for the sake 
of completeness. Most of the results concerned with isome
tries of the R solutions3 can also be found in Ref. 4. 

The tetrad of the R solutions, the most "degenerate" 
nontwisting N's, can be given as 

el =(7)=dS, e3 =dt, e4 =dr+(f+f)dt, (5.1) 

with conformal curvature 

are 

C (1)_1" 
-JSS ' 

The transformations preserving the form of the metric 

t = aot' + to, 

S=e-ibo[S' +/3(t')], t=eibo[t' +P(t')]' 

r= ao I[r' + R (t') - s'p- tin, (5.2) 

/ = ao- 2[/, + s'P - !(R + PP) + iT(t)] 

(dots denote the derivative with respect to t '). 
The components of the K vector are 

K I = a(t): = lot 2 + mot + no, 

KS = (KS) = a(t)s + 1'(t), a(/): = lot + a o, (5.3) 

K'= (a +a - iJ)r- [(ist + i-t+ 1'S + b(t)]. 

The conformal factor amounts to 

K = a + a = 2(lot + ao), ao = Re ao. (5.4) 

The components of K and the function/(s,t ) ought to 
fulfill the equation 

al, + (as + 1')/s + [2a - (a + a)]/= rs +!b + iP(t). 
(5.5) 

It should be noticed, whichever the function/(S,t), the 
metric determined by (5.1), being independent of r, always 
has the symmetry Jr' This fact, as it should be, is also con
firmed by the (5.5) and (5.3) equations. 

Determining the general solution of (5.5) it is conven
ient to distinguish the cases of a being equal to zero or differ
ent from it. 

Fora#O, 

lIs, t) G 
Homothetic and 
isometric killing vectors K = const 

¢J (s - ibt) T+bR o 

21 

2 T,nL+R o 

2 T, K = I(D - (n/2)L) 21 
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/ = (a2uO')-1 {¢ (;U - f rua- I dt) + su f Tua dt 

+ + f abuudt - f 7ua- l(f Tua dt) dt 

by K (s), where s is now equal to the maximal number of 
independent constants. 

+ i f uuPa dt }, 

where oit) = exp( - faa-I dt). 
Fora =0, 

/ = ¢ (t Haos + 7)1 + aoao~ 1 - (T/ao)s - (ao + ao)-I 

(5.6) 6. CONCLUSIONS 

For completely arbitrary structural functions the 
nontwisting type-N solutions, except the R metric which al
ways possesses one translation, have no symmetries. 

X [!h + (T/ao)7 + iP]. (5.7) 
The nontwisting type-N solutions with nonvanishing 

cosmological constant allow the existence of isometries (at 
most two Killing vectors) if the structural function/(s,t) has 
the form given by formula (2.7) with K equal to zero for the 
NT (A,Z,E) metrics, and by (3.6) for the K (A ) solutions; by the 
use of coordinate gauges one brings the structural function 
/(s,t ) to the form shown in Table I (K = 0) and II, respective
ly. The vacuum NT(O,Z,E) and Kundt solutions with/(s,t) 

An exhaustive list of structural functions/(s,t) and the 
symmetries determined by them are shown in Table IV. The 
symmetry J r , the existence of which does not depend on the 
choice of/(s,t ), will be denoted simply by K. Some Killing 
directions depending on 7, which in its tum obeys an ordi
nary linear differential equation of order s, will be designated 

TABLE IV. Symmetries of the Robinson solutions. 

frs, t) G Conformal, homothetic, and isometric Killing vectors K = 2(/t + a) 

¢(s, t) K o 

2 K, T- nR o 

2 K, 't: = C 2/t 

2 K,K=a(H - (I/n)L + (bln)R); n = 0: K,L - bR 2a 

S21' (S(+))P 
(t 2 _n)'+I' S(-) , 

2/(t + a) 2 K, C(j = C + aH - n T + bR 

v p = a( 11- - I) + ibl1-, v = ,JIi, S ( ± ) = t ± ,JIi 

s-2m/0 + ib) 3 K, T,K=a(H+(I-m)L +bR) 2a 

t -2S-2 2 K,L o 

S -2 4 K, T, C(j = IC + a(2L + H) 2(lt + a) 

tl' exp vS 2 o 

expvs 3 K,M(I1-=O), T o 

iA (t ) In s; A (t) In S 2 K, R + 2K f A dt; K, R o 

(t2-n)- lln s 3 K,R, C(j = C- nT-In(t2 - n)K 2/t 

3 K, R,K(n) =a((2/n)L -(2/n -I)t- I +"K +H) 2a 

Ins 4 K, R, T, K(n = 2) 2a 

t 21n S 3 K,R,L o 

2a 6 K,K(4),K=H 
K (4): = Ta, + "Ta! - (T~ + ~a, )a" ; = 2¢T 

S2 (S(+));bIY 
(t 2 _n)2 S(-) , K,K(4), C(j =/(C-nT+bR)+aH 2(/t + a) 7 

S2 exp 2ikt 7 K,K(4), T-kR,K=aH 2a 

7 K, K (4), L - kR, K = aH 2a 

s2t 4 exp 2ikt I 7 K, K(4), C(j = I(C - kR) + aH 2(/t + a) 

K: = a" T: = a" D: = sa, + ~<%' L: = ta, - rar> H: = D + 2rK, C: = t 2T + tD - 2S~K. 
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given correspondingly by formulas (2.7) and (4.6) permit 
maximally the existence of two Killing vectors or one ho
mothetic and one Killing vector; see also Tables I and III, 
respectively. As is well known the type-N Robinson solu
tions permit the existence of six Killing vectors for some 
specific structural functionsj(S-,t ). The maximal group order 
for the conformal Killing vectors is seven, which is in agree
ment with the results by Collinson and French.5 The struc
tural functions, which allow symmetries of the R metric, are 
given by formulas (5.6) and (5.7); a list of representative 
structural functions with their symmetries are shown in Ta
ble IV. 
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The FKG inequality is applied to a lattice of states of the Ising model which are related to 
subgroups of the group of spin variables. The resulting correlation inequalities are exactly the 
GKS inequalities. 
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Both Griffiths' second inequality (also named the sec
ond GKS inequality)I-3 and the FKG inequality4 have the 
following feature in common: Given a certain classical mea
sure space X, they ascertain that for an explicitly determined 
set JI of normalized measures the functions of a certain cone 
Yare positively correlated: 

(1) 

Both inequalities apply to the classical Ising model, where 
X = I - 1, + 1] s , S a finite point set. The FKG inequality 
exploits an order structure, whereas the GKS inequalities 
are most naturally expressed and proved in terms of the 
group structure of the Ising model. 5-7 

The origin of the group structure is to regard 
I - 1, + 1] = Z2 as a multiplicative group and each config
uration S:S--Z2 as an element of the group 

G=zf 
with the product 

(ss')(i) = s(i)s'(i). (2) 

The coordinate functions U i , 

Ui (s) = s(i), (3) 

together with their products 

(4) 

constitute the dual group G of characters. This character 
group is by the association U A ++A naturally isomorphic to 
the group of subsets of S, with the symmetric difference 

A DB=AuB\AnB (5) 

as the group product. 
We recall that each function/on G has a unique expan

sion in characters and that/is positive definite if and only if 
the coefficients of this expansion are nonnegative. 

LetJlo be the counting measure on G. The second GKS 
inequality identifies the sets used in (1) as 

JI = I Jlu:Jlu(/) = Jlo(ev/)/Jlo(e V
), 

V is positive definite J, (6a) 

Y = set of positive definite functions. (6b) 

The FKG inequality deals with functions on a distribu
tive lattice L. The original proof was quite involved with 
lattice-theoretic notations, but we will be content with the 

alWork supported by a Max Kade Foundation FeUowship Grant. On leave 
of absence from the Institute fUr Theoretische Physik der Universitit 
Wien, Boltzmanng. 5, A-I09O Wien, Austria. 

well-known theoremS that every finite distributive lattice is 
isomorphic to a sublattice of a Boolean lattice P (S). This is 
the set of subsets of S, the lattice functions 1\ and V are 
identified as "intersection" and "union," and the relation ..;; 
as "contained in." (A sublattice is a subset which contains 
with A and B also A I\B and A V B.) 

For the FKG inequality, JI is identified as the set of 
normalized measures on L satisfying the multiplicative FKG 
condition 

JI = I Jl :Jl(A )Jl(B ) ";;Jl(A 1\ B )Jl(A VB), Jl(L) = I J, 
(7a) 

and Y is the set of nondecreasing functions, 

Y = I/:A..;;B=>/(A )<f(B)J. (7b) 

The FKG inequality has not only been put to good use 
in statistical mechanics9 and quantum field theory,1O it has 
also received quite a lot of attention from the side of math
ematics. It has been generalized and extended in various di
rections, and new proofs have been invented. 11-15 The sim
plest proof so far can be found in a book by Glimm and 
Jaffe 16 for the special case of pair interactions, and in Ref. 17 
for the general case. 

In the original application of the FKG inequality to the 
Ising model, L is identified with the lattice of configurations, 
ordered by the product order 

s";;s'¢:}'tf i:s(i)..;;s'(i). (8) 

JI contains then also the important equilibrium states for 
ferromagnetic pair interactions, but the only functions 
which are common to Y FKG and Y GKS are the U i . In this 
application there is thus only a small overlap between the 
two types of inequalities. 

We will now identify another lattice of states, so that the 
FKO inequality, applied to this lattice, yields exactly the 
OKS inequalities. 

then 

Let Vbe positive definite 

V= L JAUA, JA;;oO, 
ACS 

/ AU A = cosh J A (1 + U A tanh J A ). 

With AA = tanh JA , we have 

(9) 

eV
= (IIcoshJA ) IT [(1-A A )+AA(l+uAl]· 

A AEP(S) 

(10) 
Lemma: 

eV IJlo(e V
) = L AH L U, (Ill 

HCG UEH 
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where H denotes subgroups of G, O<;;AH ';; 1, ~AH = 1. 
Proof The A A in (10) are positive but smaller than 1. 

Expanding the product in (10) yields a sum of terms 
n A (1 + UA) with positive coefficients. By induction 

AE."'CP(S) 
on the number offactors one sees that this yields asum IHu: 
{ l,u A J is itself a subgroup of G, and 

{ 

2 L U if U A E H 

(l+uA )L u = H 

H L U if U A fill. 
HlXTAH 

HUO" A H is again a group since ~ = 1. One can even calcu
late the coefficients: 

IT (1 + uA ) = 2INVIH", I L u, (12) 
A H.o' 

AE.ifCP(S) 

with H.", = the subgroup of G generated by (U A ,A E .sf J . 

Since fLo(~ H u) = 1, the normalization of e v makes 
IAH = 1. 0 

Definition: fL Hand fL.'" are defined by 

fL H (f) = flo (L uf) and J.L.4 = fL H", . ( 13) 
erE H 

( J.L.4 can be regarded as the ground state for V = ~ A E .if U A .) 

Observe that the fL H are positive-definite measures. In fact, 
we have the following: 

Conjecture: ThefLH are presumably the extreme points 
of the convex set of normalized positive and positive-definite 
measures. 

We remark that positive definiteness plays an impor
tant role in the derivation of Griffiths' inequalities.6 A better 
knowledge of the set of positive and positive-definite func
tions (or measures) on groups might thus lead to additional 
insight into the structure of ferromagnetic states. In the Ising 
model the group is just a product of 1.:2 factors. For other 
groups, the indicator functions of subgroups are also ex
treme points of the set in question, but certainly not the only 
ones. 

The subgroups of G form a lattice under the order given 
by inclusion: 

H<;;KqH~K, 

H!\K=HnK, (14) 

H V K = the group generated by Hand K. 

This lattice is not distributive, so we cannot immediately 
apply the FKG inequality. We therefore imbed this lattice in 
P(P(S)) or, rather, we associate each H with all the .sf such 
that H = H",. According to (10) and (12), we have 

eV = (IT COShJA ) I IT (I-A B ) 
A .'''EP(P(S))B~A 

x II (U A )lIB", 1ft",· (15) 
A E '" 

Lemma: The coefficients 

A.o" = IT (I-A B ) II (UA)/IH",I ( 16) 
B~ d A E.cV 

satisfy the multiplicative FKG condition. 
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Proof The factors (1 - A B) and U A give the same con
tributions to A.o" 11.>1 A.", v ,$ as to A,o/A,%} . It remains to show 
that 

(17) 

Let C(5 C.sf 1\ f!i) be a minimal generating set for H.", II dJ , 
that is, H,c = H", II ,:4 , but no proper subset of 'fJ generates 
H"" II Ji . Then 

IH 1= 21t'l. (18) 
,'" II ,f(! 

'?J can be enlarged to minimal generating sets 'fJ u!iJ for H", 
and 'fJu1f for fl,} . Note that !iJ()1f = 0, 

IH", 1= 2161 + If/I, IHc.4 1= 21tl + I" I. (19) 

Now 'fJ u!iJ u i5' is a generating set for H.o/ v ,O/! , but not neces
sarily minimal. Thus 

III 1
<:21'61+lv'i+161 

.r:lVjJ ~ • (20) 

Formulas (18)-(20) yield (17), and this completes the proof. 0 
Since normalization factors play no role in the FKG 

condition, we have now a measurelLv on the latticeP(P (S)), 
defined by 

ILv(·nf) = ,.1,'0'/ I A"" 
P(P(S)) 

(21) 

satisfying the multiplicative FKG condition. 
Next we have to associate with each observable in the 

Ising model a function on P (P (S )). Since 

{
I, 

fL.'" (u", ) = 0, 
U A E H"" 
U A ~H,,,,, 

we map U A to aA with 

aA (.sf) = 1 if and only if UA E H", 

= 0 otherwise. 

Then we hve 

f..lv(uA) = ILV(aA)' 

(22) 

The mapping of the U A can be extended to a linear transfor
mation of the set offunctions, but it is not an algebraic homo
morphism. A difference arises when u.cVOdJ = U AU B E H", , 
but U A ,U B ~ H",. The opposite case is impossible, since H,,, 
is a group. Therefore, 

(23) 

This inequality alone is in fact the second GKS inequa
lity for the state f..l A . Together with the FKG inequality for 
P (P (S)) it yields the second G KS inequality for all fL v with 
positive-definite V: 

f..l v(uA uB) = IL V (a."'O,:4 ):>IL v(aA aB ):>IL v(aA)1L v(a B) 

=f..lv(UA)f..lV(UB), (24) 

Since the a A are increasing functions, 

UA(.sf) = lQuA Ell,,,,~'rJ &J~.sf:UA EH,; 

~ 'rJ f!jJ ~ .sf :a A ( f!jJ) = 1. 

The set of increasing functions on P (P (S )) which are also im
ages under <P, the extension of U A ---+a A , is, of course, precise
ly the image of positive-definite functions. Let 
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then 

This is increasing if all the C A are ;;;.0. But assume C H < 0; 
then, for ~ = {l,B}, 

(<1>/)(~) = C0 - CH , 

but this is smaller than (<1>/) ({ I}) = C0' so <1>/is not increas
ing. 
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The proof of the triviality of tP 4 theory in d> 4 dimensions is generalized. We show that the 
triviality of scalar field theories holds for a wide class of potentials. 

PACS numbers: 11.1O.Ef, 05.50. + q 

I. INTRODUCTION 

Recently, Aizenman' and Frohlich2 rigorously proved 
the triviality of scalar tP 4 theory in d> 4 dimensions. Their 
proofs are essentially based on the observation that the prop· 
agation of scalar particles with full quantum corrections 
("dressed" particles) can be represented by a weighted sum 
of random walks and that the interaction of two particles 
(the connected four·point functions) are bounded by the in
tersection probability of two random walks, which ap
proaches zero in the continuum limit in d> 4 dimensions. 

It is, of course, of most interest to see how these results 
can be extended to d = 4 dimensions, and the above cited 
authors are now making progress along this line. Here, we 
wish to investigate a different extension: the generalization 
of the form of the potential. Our main interest here is to see 
how far the original proof of triviality works when we try to 
use potentials other than rp 4 potentials. We expect that these 
trials may reveal some features of the mechanisms of trivia
lity of scalar field theories. 

In the following, for definiteness, we will follow the 
methods of Frohlich. We will derive the same form of ine
quality which Frohlich found for tP 4 theory in a wider class of 
potentials. 

II. FORMULATION 

In the following, we always work on the d> 4 dimen
sional simple hypercubic lattice. On each sitej, we put a field 
variable tPjER.. The standard Euclidean lattice quantum sca
lar field theory is defined by the probability measure 

(1 ) 

where {3 ( > 0) is a constant (related to the field strength renor
malization constant), the sum is over pairs of nearest neigh
bor sites i andj, and dp(tP j ) is a single-site measure ofthe form 

dp(rp) = exp( - V(rp 2))drp, (2) 

where V(tP 2) isa real analytic even function oftP (the potential 
term). Further constraints on the form of V will be imposed 
later. Z is a constant which normalizes the measure 

f df1 = 1. 

The correlation functions are given by 

(3) 

The continuum limit is approached in the following way: 
(1) Write the coordinates that enter Eq. (3) in physical 

units. For example, replace i by Xj I a. 
(2) Fix the coordinates written in physical units (e.g., 

Xj)' 

(3)Leta~. 

The renormalization procedure is obtained by letting 
the parameters which enter Eq. (1) change as we change a, so 
that certain correlation functions satisfy some input condi
tions (renormalization conditions). Triviality is a statement 
that, by imposing physically acceptable renormalization 
conditions on two-point functions (so that it can describe a 
propagation of a nonnegative mass squared particle when 
analytically continued into Minkowski space), all other COn
nected n-point functions vanish in the continuum limit. 

Now we can summarize the renormalization conditions 
which Frohlich imposed (we write the dependence on lattice 
spacing a explicitly in the following): 

O<~=~(a)< 1, (4) 

where; (a) = {3 (a)a2 - d. 

0< (rpotPx)a <c/;(a)(lxl +a)2-d (for all x), (5) 

where X is the position oflattice site written in physical units, 
and c is a constant that depends only on space-time dimen
siond. 

(6) 

where N is a finite constant independent of x and a. 
The meaning of Eqs. (4) and (5) is the following. There 

exists a theorem of infrared bounds3 in the form 4 

0< (rpotP)<M 2 +cl{3(1jl + 1)2-d, 

where M is a constant that depends on (3 and on the form of 
V. Thus the renormalization condition that we imposed 
through Eq. (4) is that; (a) should not blow up as a~ so the 
two-point function should not disappear, and Eq. (5) means 
that M 2 = 0, which means there should be no spontaneous 
magnetization: we need not redefine the measure to obtain a 
unique vacuum. 

The last condition, Eq. (6), means that the two-point 
function should not blow up with increasing Ixi. Ifwe adopt 
the usual renormalization condition which we use in pertur
bation theory, we may impose a stronger condition that the 
two-point function should decrease with increasing Ixl. 

The essential step of the proof of the triviality of rp 4 

theory due to Frohlich is the proof of the following inequa
lity: 

0>U4
(X"X2,X3,X4 » -{3(a)2 L L (rpxp{l,tPz)a 

p z:z',z" 
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where Lp is a sum over possible ways of pairing XI'X2'X3'X4 ' 

Ln"z" is a sum where z runs over the whole range of lattice 
sites, and z',z" are nearest neighbors of z. The connected 
four-point function u4 is defined by 

U4(XI,X2,X3,X4) = (¢x/Px,¢x,¢x.)a 

- I (¢xp<,,¢xPI2)a (¢Xp<'I¢xPI4)a' 
p 

The term E (a) in Eq, (7) takes care of corrections which 
emerge when we consider the case where z coincides with x;, 
It approaches zero as ad - 2 under the renormalization con
ditions. 

It is now a direct consequence of Eqs. (4)-(7) that 

(8) 

for fixed X; 's, separated from each other. Equation (~) [and 
similar results for arbitrary n()3)-point functions] implies 
triviality of scalar field theories. 

The theorem of infrared bounds is known to hold for a 
wide range of potentials V(x). It holds if V(x) is continuous 
for [0,00) and if V(x) increases sufficiently fast as x increases 
[V(x)/x----+oo (x--.oo) is enough]. The first inequality 
(Lebowitz inequality5) in Eq. (7) is also known to hold for 
some range of potential forms 6

.7: 

(9) 

or 

V'(x)O, V"(x)O for x)O. (10) 

On the other hand, the second inequality ofEq. (7) (Frohlich 
inequality) has, so far, been proved only for the case of ¢ 4 

theories: 

(11 ) 

We will, in the following, extend these previous results 
and see that Eq. (7) holds for the case 

V'(x) - m, V"(x)O for X)O, (12) 

where m is an arbitrary finite constant. Therefore the trivia
lity of scalar field theory holds whenever the potential satis
fies Eq. (12). The main tool we use is correlation inequalities 
(particularly the GKS inequality8) and the random walk re
presentations. 7 

Ill. PROOF OF THE INEQUALITY 

The Lebowitz inequality for the potentials satisfying 
Eq. (12) is a trivial extension of Ref. 7. There, the random 
walk representation for correlation functions is employed. 
The random walk representation expresses correlation func
tions through weighted sums of partition functions for local
ly biased potentials. Its explicit form is given by 

(13) 

where Fis an arbitrary function offield variables, and w:i - j 
is a random walk from site i to sitej, which is an ordered set 
of sites: 
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where ix and ix + I are nearest neighbor sites. I wi is defined 
by 

Iwl = I n(i,w), 
; 

where n(i,w) is the number of times that a site i appears in the 
left-hand side ofEq. (14). t is a short-hand notation for a set 
of real variables! t; :i lattice sites 1 ' and dv w (t ) is defined by 

dvw(t) = II dVn(i,w) (t;), 
; 

dv x _ {t5(X)dX ifn = 0 
n( ) - xn-I/(n _ 1)!e(x)dx ifn = 1,2,3, ... 

Z, is a partition function for biased potential 

Z, = f exp(p I ¢;¢j) I;I (exp( - V(¢ 7 + 2t;))d¢;). 

(.) is an expectation value with respect to the biased measure 

(14) 

We will use the random walk representation for the 
two-point function and the connected four-point function. If 
we put F = ¢j in Eq. (13) we obtain 

( ) ~ Iwl f Z, ¢;¢j = wt---
j
P dvw(t) Z· (15) 

Ifwe put F = ¢j¢k ¢" we obtain the random walk represen
tation for the four-point function. Combining it with Eq. 
(15), we obtain 

u
4
(iJ,k,/) = w'f/ IWI

-
1 f dVw(t) 

X (¢k¢')' - (¢k¢'» Z,IZ 
+ (terms withj and k interchanged) 

+ (j -I interchanged). (16), 

From these definitions, 

J(¢k¢,),1Jt; = -2(V'(¢~+2t;)¢k¢')' 

- (V'(¢~+2t;»'(¢k¢')') 
since (m), = m, where m is the constant which appeared in 
Eq. (12). The GKS inequality can be applied here in the form 

(¢k¢J!(¢;),)(¢k¢'), (f(¢;), 

forf(x)withf( -x) =f(x)O and dfldx)Oforx)O. Under 
the condition (12),j(x) = V'(X2 + 2t;) + m has the desired 
properties, and therefore 

J(¢k¢' ),IJt; <0, 
and 

From Eq. (16), u4 <0. Thus the Lebowitz inequality is 
proved. 

(17) 

Next we consider the proof of the Frohlich inequality. 
First, we prove that for tl = ! t 1;)0 J and t2 = ! t 2;)0 J, 

(18) 
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We prove this by noting that 

(
ZZ'/+'2) 11 11 d d In = ds] dsz--
Z,/Z'2 0 0 dS I dsz 

X (In Z (t liS I + (ZiS2))' 

Writing tj = t I j S I + t 2jS2' and performing the differentiation 
with respect to SI and S2' 

where the nonappearance of a factor V" comes from 
t Ii t 2j = O. We use the G KS inequality, this time in the form 

(f(¢J; )f(¢Jj ), > (f(¢J;), (f(¢Jj ), 

forf(x)withf( -x) =f(x»Oanddfldx>Oforx>O. Under 
the condition (12),f(x) = V'(X2 + 2t;) + m has the desired 
properties and 

(V'(¢J 7 + 2t;)V'(¢J J + 2tj ), 

>(V'(¢J; + 2t;), (V'(¢J J + 2tj ),. 

Therefore In(ZZ" + ,/Z,/ Z'2 »0, and ZZ,/ + '2 >Z,/ Z'2 if 
t Ii t 2; = O. The condition t I; t 2; = 0 means that the two ran
dom walks w I and w2 do not intersect. This is essential for 
the proof of Eq. (18) because when we write Eq. (17) in the 
random walk representation, 

f (Z, +, Z,) 
(¢J;¢Jj )" - (¢Ji¢Jj ) = ~ /3 1wl dVw (t2) T--i 

W.I -) 11 

= w~/IWI f dVw (t2) 

X (ZZ'/+'2 - Z"Z'2 )<0, 

the direction of the inequality is reversed when we include 
the terms where the two random walks intersect. This means 
that the contribution from the terms where wI and w2 do not 
meet (we may call it "vacuum bubble effects") tends to in
crease the value of u4

, so that we get a lower bound estimate 
by dropping these terms and taking into account only those 
terms where wI and w2 intersect ("real particle effects"). 
This is a crucial step in applying the notion of the intersec
tion probability of two random walks. 

The remainder ofthe proof goes in a form similar to that 
in Ref. 2. With the expressions of Eqs. (15) and (16), 

u
4 

= WI~-j W2?:-_J/3l
wl

l + Iw21- 2 f dVW1 (t l)dvw2 (tZ ) 

(
Z,/ +'2 Z(2) Z". . 

X ---- -+U-k)+(j-/) 
Z" Z Z 

> L2: /3IWII+IWZI-zfdvwdtddVwz(tz) 

wl/\w27'0 

'/+'2 ','2 (. k) (" /) (z Z Z ) 
X ----- +]- +]-

Z Z2 
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f ZZ 
(3 lwll + Iw21- 2 dv (t )dv (t) _,_, _,_, 

wi I wZ 2 Z 2 

wl/\w27'0 

+(j'-k)+(j-/) 

wll\w23z 

Z,Z" 
X ; 2 - + (j - k ) + (j - 1 ), 

where we used Eq. (18) and the positivity of partition func
tions. We make use of the decomposition of random walks 
described in Ref. 2. The result is 

U
4
>-/3

2 I I I I I 
z:z',z" wl':i-z wl":z' ~j w2':k -z w2":z" _ I 

/3IWI'I-lfdV,Ct')/3lwI"I-,lfd (t") Z';+'i' 
wi I V"'I" I Z 

J J 
z, " 

x/3lw2
'1-1 dVwd t ;) (3lw2

"1-1 dvwr(t;) ';'2 
+ (j - k) + (j -I) + E (a). 

The random walk representation for the two-point function 
gives 

f 
z. 

X W2'~- z (3lw2'1 - I dvw2' (t; ) (¢;z" ¢J,) ;2 
+ (j - k) + (j - I) + E (a). 

Using Eqs. (17) and (IS), we obtain 

u
4
> - /3 2 I (¢Jz' ¢;) (¢J;¢;J (¢Jz" ¢;,) (¢;k ifJJ 

z:z'.z" 

+ (j - k) + (j -I) + E(a) 

which proves the Frohlich inequality (7). 

IV. CONCLUSIONS 

We have seen that within the framework of Frohlich, 
triviality can be proved for the scalar field theory with poten
tial VsatisfyingEq. (12). The first inequality ofEq. (12), 

V'(x» -m, 

permits essentially any form of potential, since m can be as 
large as we wish. Typically, this leads to the consequence 
that for the potential of polynomial type 

V(x) = bx + cx2 + ... + dx", ( 19) 

(V(¢J 2) = b¢J 2 + c¢; 4 + ... + d¢J 2"), 

b can be either positive or negative (if we had adopted the 
constraint Eq. (10), V '(x )~b >0 for x>O and negative b could 
not have been allowed). On the other hand, the second ine
quality ofEq. (12) 

V"(x»O, 

is a stronger constraint. In the case of the potentials of the 
form Eq. (19), this implies, especially, 
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V" (x) = c + 0 (x);;;.O for x near zero, 

and the potentials with negative c are excluded. 
At present, the author does not know whether this con

straint is of any physical meaning. It is, however, interesting 
to see that in the approach of Aizenman, 1 there arise restric
tions of similar kind. In this approach, Aizenman approxi
mates the scalar field theory by Ising models, the method 
which is known9 to break down, for example, in the case of ¢ 6 

theories with negative ¢ 4 coefficients. 

ACKNOWLEDGMENTS 

The author would like to thank K. Higashijima and K. 
Hattori for discussions, Professor J. Frohlich and Professor 
B. Simon for instructive correspondence, and Professor T. 

2203 J. Math. Phys., Vol. 24, No.8, August 1983 

Eguchi and K. Hikasa for careful reading of the manuscript. 

1M. Aizenman, Phys. Rev. Lett. 47, I (1981); Commun. Math. Phys. 86, I 
(1982). 

2J. Frohlich, Nucl. Phys. B 200 [FS4], 297 (1982). 
'J. Frohlich, B. Simon, and T. Spencer, Commun. Math. Phys. 50, 79 
(1976). 

4A. Sokal, Ann. Inst. Henri Poincare (to be published). 
'J. L. Lebowitz, Commun. Math. Phys. 28, 313 (1972). 
6R. S. Ellis, J. L. Monroe, and C. M. Newman, Commun. Math. Phys. 46, 
167 (1976). 

7D. Brydges, J. Frohlich, and T. Spencer, Commun. Math. Phys. 83, 123 
(1982). 

"R. B. Griffiths, J. Math. Phys. 8, 478, 484 (1967); D. G. Kelly and S. 
Sherman, J. Math. Phys. 9, 466 (1968); J. Ginibre, Commun. Math. Phys. 
16,310 (1970). 

9B. Simon and R. B. Griffiths, Commun. Math. Phys. 33, 45 (1973). 

Tetsuya Hattori 2203 



                                                                                                                                    

A two-parameter matrix Riccati equation pair for a class of nonlinear sigma 
models based on a symmetric space 

M. A. Snyder8
) 

Department of Physics, Wellesley College, Wellesley, Massachusetts 02181 

(Received 1 February 1983; accepted for publication 22 April 1983) 

It is shown that t~e infinitesimal action of a group on one of its associated symmetric spaces is, in 
the case of a classIcal off-diagonal symmetric space, in the form of a matrix Riccati equation. A 
two-parameter Riccati equation is then found for the nonlinear sigma model based on a 
symmetric space G I H. 
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I. INTRODUCTION 

Two-dimensional nonlinear sigma models l have at
tracted a great deal of attention in recent years, primarily 
because of the strong analogies2 they possess with more real
istic four-dimensional Yang-Mills gauge theories. A promi
nent role in the investigation of nonlinear sigma models has 
been played by the inverse scattering method,3,4 despite the 
fact that the asymptotic conditions of the inverse scattering 
method for the nonlinear sigma models do not permit ones 
(at least naively) to use the inverse scattering method in the 
same way that it is used4 in the case of other two-dimensional 
theories that are described by nonlinear evolution equations 
(the KdV equation, () sine-Gordon equation, 7 and so on). The 
inverse scattering method is useful, however, in deriving the 
fact that nonlinear sigma models have, like the other two
dimensional theories mentioned above,S an infinite number 
of conservation laws.5.9 •

10 As for some (all? II) of the two
dimensional nonlinear evolution equations that possess an 
inverse scattering formalism, these conservation laws come 
in two varieties-local and nonlocal.9

•
10 The infinite set of 

nonlocal conservation laws is most conveniently derived5.12 

from the linear isospectral equation of the inverse scattering 
method, whereas the infinite set oflocal conservation laws is 
most conveniently derived 13-15 from a pair of nonlinear 
equations (a so-called "Riccati" equation pair) closely asso
ciated with the linear isospectral equation. This pair of Ric
cati equations is constructed so that their integrability condi
tion is equivalent to the equations of motion of the nonlinear 
sigma model. 

In the literature, the Riccati equations for the nonlinear 
sigma models have usually appeared 13-15 as a sort of deus ex 
machina, with little motivation. One of the purposes of this 
paper is to give a geometrical interpretation for the Riccati 
equations, namely, that the Riccati equations represent the 
infinitesimal nonlinear action of a group G on one of its asso
ciated symmetric spaces 16 G I H. In so doing we signific:mtly 
generalize the results of Scheler, 14 who found such Riccati 
equations for a certain class of symmetric spaces, to the case 
of an arbitrary classical off-diagonal symmetric space (this 
will be defined in Sec. III). This class of symmetric spaces 
contains the class studied by Scheler. 

Having found this Riccati pair, we proceed to note that 

'I Submitted in partial fulfillment of the requirements for the Ph.D. at Yale 
University. 

it possesses a two-parameter form which, as long as the pa
rameters are functionally independent, has as its integrabi
lity condition the equations of motion of the nonlinear sigma 
model. By choosing a particular relation between the two 
parameters, the Riccati pair reduces to that used by 
Scheler. 14 Since Scheler finds his parameter-dependent Ric
cati pair by making a Pohlmeyer9 transformation on the 
nonlinear sigma model fields, our two-parameter Riccati 
pair can be seen as a generalization (at least at the level of the 
Riccati equation) of the Pohlmeyer transformation. One 
may then, having in hand a parameter-dependent Riccati 
pair, derive a fa Scheler l4 an infinity of local conservation 
laws for nonlinear sigma models based on this class of sym
metric spaces. 

The paper is organized as follows. In Sec. II we briefly 
review the "Cartan" formulation of the nonlinear sigma 
model. In Sec. III we define the notion of a classical off
diagonal symmetric space, and show that the infinitesimal 
action of a group G on such a symmetric space G I H is repre
sented by a Riccati pair. In Sec. IV we show that a two
parameter Riccati pair can be derived, and give its relation to 
the previously known 14 Riccati pair. In Sec. V we summarize 
some of the consequences of the discovery of this Riccati 
pair, the detailed study of which will be pursued in a separate 
paper. 17 

II. CARTAN FORMULATION OF THE NONLINEAR 
SIGMA MODEL 

The nonlinear sigma model based on a symmetric space 
G I H is defined through the Lagrangian density 

Y' = pr DJlgDJlg, gEG, (1) 

where 

DJlg = JJlg - C1"g, 

DJlg-I = JJlg- I + g-ICJl ' 

C
1
, EJY = Lie algebra of He G , 

with equation of motion 

DJlDJlg - DJlg g-I DJlg . 

(2) 

(3) 

This Lagrangian density possesses manifest global invar
iance under the group G, and local invariance under the 
group H. Following Scheler's work 14 (to which the reader is 
referred for amplification and notation), we decompose 
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al,g g~ I as follows: 

al'g g~ I = CI' + VI' ' 

where 

v" =DI,g g~ IE:Y mod JY , [1 = Lie Algebra of G, 

(4) 

CI, =al'g g~ I_V" &W' . (5) 

The decomposition (4) thus mirrors the canonical Cartan 
decomposition of a symmetric space l6 

:Y = JY Ell :Y mod JY , 

where 

[1 = Lie Algebra of G , 

JY = Lie Algebra of H . 

(6) 

(7) 

Using the fact that the coset space is a symmetric space, and 
changing to the light-cone coordinates (x,t ), 

XO = x + t, 
(8) 

Xl =X - t, 

we find that the equations of motion (3) can be expressed as l4 

axc, -a,c, = [C"C,] + [Vx,v,] , 
ax V, = [Cx,v,] , 

a, Vx = [C,,vx] . (9) 

We will call this form of the equations of motion the Cartan 
formulation of the equations of motion. 

III. GEOMETRY AND THE MATRIX RICCATI EQUATION 
PAIR 

The linear isospectral equation of the inverse scattering 
method has the form II 

4P= ilP, (10) 

where we are using the notation of differential forms (see 
Ref. 18), a differential I-form A being denoted by an under
line:~. Here 4 is the exterior differential, !J is a I-form ele
ment of the Lie algebra of some group G: 

!J(ti) =ilx (ti)4x +il,(ti)4t, il",(ti)E:Y. (11) 

P is either a column vector (in the case of Ablowitz, Kaup, 
Newell, and Segur4 (AKNS)-type systems) or a matrix (in the 
cases of the nonlinear sigma model), andti is a real parameter 
(the isospectral parameter). We shall restrict our consider
ations to the latter case. The whole point of the inverse scat
tering method is to find an equation like (10), such that the 
integrability condition which follows from the Poincare 
lemma 4 2 = 0, 

4!} (ti ) - !J (A ) I\!J (A ) = 0 , (12) 

is equivalent to the nonlinear equation to be solved. 
We shall give (10) the geometric interpretation that it 

expresses the infinitesimal linear action of a group G on it
self. It is well known, however, that a group can act on itself 
in many different ways. In particular, the group G can act on 
one of its coset spaces G / H, where H is a closed subgroup of 
G. In general, this action will be nonlinear. We shall be inter
ested only in the case where G / H has the further property of 
being a symmetric space. We shall show that this infinitesi-
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mal nonlinear action is represented by a Riccati equation. 
In order to show this, we must look at the ways symmet

ric spaces are parametrized. It is shown in the text of Gil
more l9 that except for the series of symmetric spaces 

SL(n;R)/SO(n) , SU*(2n)/USp(2n) , (13) 

all of the classical symmetric spaces G / H (i.e., those in which 
both Hand G are classical-as opposed to exceptional
groups) can be obtained as exponentials of an off-diagonal 
matrix 

m n 

Mm,n =: [0 BJ 
±Bt 0 

(14) 

where the upper (lower) sign is taken for spaces of noncom
pact (compact) type, respectively. We shall call all such sym
metric spaces classical off-diagonal symmetric spaces. All of 
what follows is valid only for such symmetric spaces. 

Upon taking the exponential of(14), we find that 

[ 
W+ 

expM = t~ 
±X± 

X±] 
Y± 

EG/H, ( 15) 

where 

{
sinh(B tB )1/2 

X± =B(BtB)~1I2 
sin(BtB)1I2 

W ± = [lI .. m ± X ± xt± ] 1/2, 

Y± = [In ±xt±x± ]112. 

upper, 

lower, 

(16) 

We thus may take the m X n matrix X ± to parametrize such 
a classical off-diagonal symmetric space (we shall henceforth 
suppress the ± subscripts except in cases where an ambigu
ity may arise). The group G acts on the symmetric space G / H 
by left translation 

[A B] , goEG, go= CD: x-+x (17) 

via 

X] [ W' 
Y = ±x,t 

X'][HI 
Y' 0 

(18) 

EG EG/H EG/H 

The points in the symmetric space transform in a complicat
ed nonlinear way if the space is parametrized by X. However, 
if the space is parametrized instead by the projective variable 
Z 

Z=Xy~1 ( 19) 

(note thatZ is related in a 1-1 way toX), then it can be easily 
seen that under the left translation (17) Z transforms via a 
fractional linear (Mobius, homographic) transformation: 

go:Z-+Z'=(AZ+B)(CZ+D)~I. (20) 

Thus the action of the group G on the classical off-diagonal 
symmetric space G / H is nonlinear. 

Let us now take the transformation (17) to be infinitesi
mal, that is, the group element go is infinitesimally close to 
the identity 

go = 1 + (; ~. (21) 
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It then follows that the transformation (20) with (21) has the 
form 

Z-+Z + 8Z, 8Z =/3 + aZ - ZE - ZyZ. (22) 

Consequently the nonlinear counterpart to (10) is the Riccati 
pair 

4Z = 1]12 + I] liZ - ZI]22 - ZI]2IZ , (23) 

where 

[} = [I] II I] 12], [} x.,Ef:1 . (24) 
- 1]21 1]22 

This nonlinear counterpart to the linear isospectral equation 
of the inverse scattering method is a matrix Riccati pair [this 
result could also have been found directly from (10) by writ
ing P = RS, where REG / H and SEN, and then re-expressing 
everything in terms of Z]. The Riccati pair can thus be inter
preted as expressing the infinitesimal action of the group G 
on the classical off-diagonal symmetric space G / H. 

We can now make contact with the nonlinear sigma 
model based on such a symmetric space by defining a matrix 
N to be 

N - [ 0 Zo] Ef:1 mod JY. (25) - ±zt 
Furthermore, if we let in (10), 

[}x., = Cx., + Vx., , 

where 

(26) 

(27) 

(28) 

and Cx , and Vx , are the nonlinear sigma model fields (5), 
then the integr~bility condition (12) of (10) is equivalent to 
the equation of motion (9) for the nonlinear sigma model. 
Since a classical symmetric space always has compact il, i.e., 
I] r I = - I] I P I] i2 = - 1]22> it follows that the Riccati 
pair (23) becomes 

axN= Vx + [Cx,N] -NVxN, (29) 

a,N= V, + [C"N] -NV,N. (30) 

The reader may easily check, using the Poincare lemma and 
the definition of a symmetric space (see Ref. 14 or Ref. 18), 
that the integrability condition for the Riccati pair (29), (30) 
is satisfied if the equations of motion (9) for the nonlinear 
sigma model are satisfied. Thus, just as in AKNS-type sys
tems, the Riccati pair has as its integrability equation the 
nonlinear equation to be solved. The only difference between 
AKNS-type systems and the nonlinear sigma model is that 
in the latter the Riccati pair are matrix equations, whereas in 
the former they are not. 

As in AKNS-type systems, the Riccati pair (29), (30) 
impliesB that a conserved current can be constructed. If we 
consider the quantity 

.[-tr[NI] ] , 

then one may show with a little algebra that 

4,[ = tr[N(41] - I] AI])] , 
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(31) 

(32) 

which vanishes if the equation of motion (12) is satisfied. 
Thus, the current .[ is a closed I-form-a conserved cur
rent-for the nonlinear sigma model if the equation of mo
tion (12) is satisfied. 

IV. A TWO-PARAMETER RICCATI EQUATION PAIR 
FOR THE NONLINEAR SIGMA MODEL 

We saw in the last section that the Riccati pair (29), (30) 
had as its integrability condition that the equations of mo
tion for the nonlinear sigma model be satisfied, and that in 
this case a conserved current (31) could be constructed. 
However, no parameters were involved in this Riccati pair. 
In order to construct an infinity of conserved currents, we 
must have a parameter-dependent Riccati pair. Consider the 
two-parameter Riccati pair 

axN=evx + [Cx,N] -ENVxN, 
a,N=E-IV, + [C"N] -e-INV,N, 

(33) 

(34) 

where e and E are independent real parameters. One may 
show after a little algebra that the integrability condition for 
the Riccati pair (33), (34) isjust the equations of motion (9). 
We now make contact with the work of Scheler by noting 
that if we choose 

e = - E = y-I , (35) 

we arrive at the Riccati pair of Scheler [Eqs. (43) and (44) of 
Ref. 14]. Since Scheler arrived at his parameter-dependent 
Riccati pair by making a Pohlmeyer9 transformation, we see 
that if the Pohlmeyer transformation is considered as a 
transformation of a parameter-independent Riccati pair to a 
parameter-dependent Riccati pair, then the transformation 
from (29), (30) to (33), (34) is a more general transformation, 
of which the Pohlmeyer transformation is simply the "diag
onal" part (35) of(33), (34) (note that this interpretation can 
be made only at the "Riccati pair" level, and not at the "Lie 
algebra" level). 

One may then show that the following conservation law 
follows from (33), (34): 

- E-Iax [tr(NV,)] + ea, [tr(NVx)] = O. (36) 

This is identical to Scheler's result [Ref. 14, Eq. (45)] in the 
"diagonal" case (35). One can then, by an analysis identical 
to Scheler's, derive an infinity of local conservation laws. 17 

V. CONCLUSIONS AND FURTHER REMARKS 

In this work we have given a clear geometric interpreta
tion to the Riccati equations that in previous work have aris
en ex nihilo. We have, in addition, found a two-parameter 
Riccati pair, which does not seem to have been noticed pre
viously. Further analysis of this pair of equations may lead to 
a better understanding of the local and nonlocal conserva
tion laws in nonlinear sigma models. In the continuation of 
this work (Ref. 17), we will give a more detailed exposition of 
the results in this paper, and show how the ideas advanced 
here may be used to find the nonlocal conservation laws as 
well as the local ones, via a procedure identical to that used 
by Sasaki and Bullough II for the sine-Gordon equation. We 
will also consider the natural extension of these methods to 
the case of supersymmetric nonlinear sigma models. 
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The "substratum" of the electromagnetic field is defined as a two-dimensional duality isovector, 
satisfying the homogeneous wave equation. The components of the substratum are two Lorentz 
scalar fields that carry the two degrees of freedom of the field. It is then shown that the free 
Maxwell field becomes effectively quantized by the canonical quantization of the substratum. The 
equal-time canonical commutator thus obtained is precisely the same commutator one gets while 
quantizing the electromagnetic field within the Coulomb gauge. The whole approach is 
manifestly relativistic. 

PACS numhers: 11.15. - q, 03.70. + k, 11.30.Cp 

1. INTRODUCTION 

There has been some work performed in recent years on 
the subject of electromagnetism in terms of its two degrees of 
freedom. 1 Through that work, it becomes clear that the 
problem set by the isolation and quantization of the true 
dynamical variables of the Maxwell field, in a completely 
gauge-independent way, raises a nontrivial and important 
question. 

In a previous paper2 we have been able to identify the 
true degrees of freedom of the radiation field in a gauge
independent manner while presenting a formalism which 
handles the Coulomb gauge in a manifestly Lorentz covar
iant fashion. In the present paper we wish to examine this 
matter further: we study the canonical quantization of pure 
radiation within the covariant formalism of the Coulomb 
gauge presented in Paper I. 

The electromagnetic field has just two degrees of free
dom. Radiation fields, however, are usually described by in
troducing, either, the six-component anti symmetric intensi
ty tensor F"v(x), or else, the four-component potential vector 
A" (x). The use of redundant variables (i.e., the introduction 
of more dynamical variables than there are actually indepen
dent degrees of freedom) leads to well-known difficulties in 
the canonical quantization of the field. The essential diffi
culty already appears at the classical level of the theory. Its 
main features occur in classical electrodynamics, as well as 
in general relativity3 and also in Yang-Mills theories.4 In all 
these field-theoretic formalisms the lack of a covariant 
guage-independent identification of the true degrees offree
dom of the system at hand brings into the picture the very 
same kind of troubles for having a canonical description of 
the field. 

In quantum electrodynamics, the major trouble one has 
to face, in this respect, stems from the quite familiar fact that 
the gauge constraints one has to impose, as well as the field 
equations which must be satisfied, are not always consistent 
with the canonical commutation relations one postulates at 
the very beginning. Let us briefly recall this issue. For in
stance, if one starts the formalism by introducing a relativis
tic Lagrangian density, one gets the following expression for 
the equal-time canonical commutator5

: 

(1.1) 

Plainly, these commutation relations are inconsistent with 
the first of Maxwell's equations for the field without charges, 
which reads 

( 1.2) 

On the other hand, one may give up the relativistic appear
ance of the theory from the beginning, and start with the 
Hamiltonian formalism. Therefore, one uses the Fourier am
plitudes of the field as canonical variables, and thus one 
quantizes directly the field's harmonic oscillators6 (i.e., one 
may use the normal modes as canonical variables because of 
Jean's theorem7

). In this manner one gets, instead ofEq. 
(1.1), the well-known commutator 

[Aj(t,x), Edt,x')] = i8h(x - x'), (1.3) 

where now 8h (x) is the transverse delta function,8 which 
satisfies 

( 1.4) 

The commutator (1.3) is thus consistent with Eq. (1.2), and, 
furthermore, it is also consistent with the Coulomb gauge 
condition; namely, 

(1.5) 

Hence, the appearance of the transverse delta function re
moves the inconsistency, while we impose the radiation 
gauge. This formalism, however, is not manifestly Lorentz 
covariant, although the theory itself remains relativistic. (Of 
course, because of the lack of manifest covariance, in order 
to stay within this formalism each time we perform a Lor
entz transformation, we have to suitably regauge the poten
tials.) 

When sources are present, the second method of quanti
zation sketched above is based on the fact that the longitudi
nal and scalar fields can be replaced by the instantaneous 
interaction between all charges, while using the Coulomb 
gauge. Clearly, for the free field this means that the radiation 
gauge brings the longitudinal and scalar fields out of the 
picture, without further ado. Thus, from the point of view of 
quantum theory, this method is by far the simplest. In the 
usual approach, however, it has the already mentioned dis
advantage of spoiling the space-time symmetric appearance 
of the theory. 
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In the case of the free electromagnetic field (which is 
indeed the only case we shall consider in this paper) this lack 
in a manifestly relativistic appearance is, perhaps, a mere 
defect in elegance. Nevertheless, quantum electrodynamics 
is handicapped by certain ambiguities, and it has been well 
known, for a long time indeed, that a powerful guidance as to 
how these ambiguities should be removed is obtained from 
the demand of relativistic covariance of the formalism. 9 For 
this purpose, then, it is desirable to try a covariant approach 
ab initio and to carry it as far as possible. This is done, for 
instance, in the Gupta-Bleuler formalism,1O although at the 
cost of a cogent physical interpretation. Furthermore, we 
should also recall that for the computation of some compli
cated radiative corrections a symmetric handling of all four 
space-time components of the potential A I'(x) affords the 
simplest mathematical treatment. 

On these grounds, a closer investigation would be desir
able as to the physical possibilities of the covariant radiation 
gauge formalism for handling quantum electrodynamics. II 
At this stage, we shall tentatively concentrate our attention 
on the free field canonical quantization within the relativis
tic approach to the Coulomb gauge presented in our pre
vious work. 

2. CANONICAL COVARIANT QUANTIZATION 

For the sake of quantizing the true degrees of freedom 
of the electromagnetic field, we shall follow the same ap
proach used by Carmeli, 12 mutatis mutandi. Namely, we 
shall apply the method of gauge-free quantization to the ra
diation field, adapting it to the peculiar symmetry of our own 
approach [i.e., we are using the Lorentz group, instead of 
SU(2) as used by Carmeli]. 

The local polarization basis we have introduced in Sec. 
7 of Paper 1, has its support on the (k-space) light cone. 13 In 
what follows, we need an extension of the complete tetrad 
! v 1', k 1', E ~ (k; v); A = 1,2] all over momentum space-time. 
This can be easily achieved. Indeed, we assume Eqs. (I. 7.1), 
(I. 7.2), and (I. 7.3), to hold everywhere, with vl'v I' = 1, where 
now k 2 = kl' k I' and kl'V I' can be anything. The complete
ness relation for this tetrad then reads 

k 2V I'vv + k I'k v _ k,\ v,\ (v I'k v + k I'VV) 

k 2 _ (kpvp)2 

- DABE~(k; v)E~(k; v) = YJI'V (2.1) 

[which, in effect, becomes Eq. (1.7.4) on the light cone]. It is 
immediate that when k 2 - (kl'V 1')2 = 0, one has k I' = AV 1'; 
and therefore, while writing 

k I' = AV I' + Ea I' , (2.2) 

wherea"vl' =0, al'al' = -1,aI'E~(k;v)=O,A = 1,2, 
and E2 <A 2, one easily shows, from Eq. (2.1), that 

lim DABE~(k;v)E~(k;v)= -YJl'v-vl'vv+al'av . (2.3) 
k"-_'\d' 

So the aforementioned complete tetrad is all right every
where in momentum space-time. 

Let us also briefly examine the behavior of this tetrad 
under the inversion k I' --> - k 1'. Clearly, vI' E ~ ( - k; v) = 0 
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and - kl'v 1'( - k; v) = O. Hence 

E~( - k; v) = UABE~(k; v), 

i.e., 

YJl'vE~( - k; v)E~(k; v) = - UAB , 

while 

E~(k; v) = uAl/E~( - k; v). 

But then we get 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Now, if we consider v I' = (1,0), the completeness relation, 
Eq. (2.1), gives us 

(2.8) 

where 

E~ (k; 1,0) = 0, E~ (k; 1,0) = E~ (k) . (2.9) 

Thus, in the v-frame, we may consider a right-handed triad, 
i.e., £1 XE2 = k, with k J = Iklk J, everywhere in k-space. 
Therefore, without loss of generality, we may adopt the con
vention 

E1( - k; v) = E1(k; v), Ei( - k; v) = - Ei(k; v). 
(2.10) 

with respect to any Galilean working frame. That is, we set 

U AB = [~ _~], (2.11) 

quite generally. 
After these preliminaries, let us define the substratum 

(say) of the free Maxwell field as the Fourier transform of its 
true degrees of freedom, i.e., 

(2.12) 

wherepA (k) denotes the true dynamical variables (cf. Paper 
I). Thus, we have two (independent) scalar solutions of the 
homogeneous d'Alembert equation, 

D <PA(X) = 0, A = 1,2, (2.13) 

which carry the two degrees offreedom of the electromag
netic field. Next, we also introduce the auxiliary field 

vl'k~(x; v) = 0, 

VI'K~(x; v) = 0, 

(2.14) 

(2.15) 

(2.16) 

K::I'(x - y; v) =K~(y -x; v) = UABK~(x - y; v), 
(2.17) 

where K::I' is the complex conjugate of K ~ , and 

YJI'V J d 4z K~(x - z; v)K~(z - y; v) = - DAB D(4)(X - y). 

(2.18) 
Then we get a one-to-one correspondence: 
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A j,(x; v) = {JAB J d 4y K ~ (X - Y; V)<PB(Y) , (2.19) 

rbA(x) = - Tt,,, J d4yK'~(X - Y; v)A ;'(y; v), (2.20) 

as it should be. 
Because of our convention, Eqs. (2.4) and (2.11), the 

reality condition for the electromagnetic field requires 

(2.21) 

Hence, for the substratum of the field we have the following 
complex conjugation rule: 

(2,22) 

namely, <p,(x) is real, while <P2(X) is pure imaginary. (Of 
course, one could equally well introduce a real substratum; 
for that matter, one changes from the "linear" polarization 
complex vectors E ~ (k; v), which are real, to a set of "circu
lar" polarization complex vectors. However, we left this 
matter as it is.) 

For the Lagrangian density of the substratum we take, 
as usual, 

i.e., 

,Y = ~ TtI"'aAB(V,,<PA HV,,<PB)' (2.24) 

Clearly, the current is J I"(x) = 0, as it must be, while 

1TA(x)=aAB~A(x) (2.25) 

is the canonical momentum. The Hamiltonian density of the 
substratum is given by 

(2.26) 

Hence, for the Lagrangian and the Hamiltonian of the sub
stratum, we have 

(2.27) 

and 

(2.28) 

respectively. 
We shall prove that, if we substitutefrom Eq. (2.20) into 

Eq. (2.27), while adopting the v-frame as our working refer
ence system, we obtain that L corresponds plainly to the 
Lagrangian of the Maxwell field. By the same token, the 
Hamiltonian H of the substratum corresponds precisely to 
the Hamiltonian of the radiation field in the v-frame. The 
physical meaning of these identifications is immediate. 

To this end, let us consider 

{JAB f d 3x K~(x - y; v)K~(x - z; v) 

= foo dko /koity - 'xl foo dk h e - ik bl', - 'xl 
- 00 21T - 00 21T 

f d 3 k ~ I" (k k' ) v (k' k. ) - ik'ly - zl X -- U AB E A 0', V E B 0', v e . 
(21T) 

(2.29) 

Therefore, if we take v I" = (1,0), according to Eqs. (2.8) and 
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(2.9), we get 

{JAB f d3XK~(x-y;I,0)k~(x-z;I,0) 
= 8(tx - ty){j(tx - tz){jj;(y - z){j j8;; , 

where 

(2.30) 

(2.31) 

is the transverse delta function [cf. Eqs. (1.3) and (1.4)]. On 
the other hand, if we impose the very weak and quite natural 
boundary condition 

~ da'L (y)A ;,( y; v)e ikY = 0 , (2.32) 
Jrool 

where the four-vector dal" (y) denotes the three-dimensional 
element of hyper surface at space-time infinity, then, clearly, 

V,.<PA(X) = -Ttv}. f d4yK~(x-y,v)A}'I"(Y;v). 
(2.33) 

Hence we have, with respect to the v-frame, 

aAB f d 3
x(VI"<PAHVv<PB) 

= J J d 4y d 4z A r.1"(y;I,O)A ;'v(z;I,O)aAB 

X J d3XK~(x-y;I,0)K~(x-z;I,0) 
= f f d 3yd 3zA II" (tx ,y)A [v(tx,z)8 j;( y - z), (2.34) 

where we have written A [(t,x) for A [(t,x; 1,0). Now, let gl"V 
= diag ( +, ±, ±, ±). From Eqs. (2.31) and (2.34). we get 

(omitting tJ 

gl"VaAB f d 3x(VI"<PAHVv<p) 

= J J d 3y8 jk I A [(y)A [(y) ± 81mA [, (y)A f.m (y)j 

± J J d 3y d 3z 81mA [,(y)A [m(z)V- 2VjVk{j(y - z), 

(2.35) 
sInce 

J J d 3y d 3Z Aj(y)Ak (z)V- 2V jVk{j(y - z) = 0 (2.36) 

because of the Coulomb gauge constraint. By the same to
ken, 

J J d 3yd 3z{jlmA J.;(y)A [m(z)V- 2VjVk{j(y - z) 

= f d 3y {jjk{jlm A [dy)A Im (y) . (2.37) 

Finally, recalling the definitions 

Ej = - A [, Bj = EjklA [k , (2.38) 

we get the desired identifications; namely, 

~ gl"v{jAB f d 3x(VI"<PAHVv<PB) = + f d 3x(E2 ± B2), 

(2.39) 
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for the Hamiltonian ( + ) or the Lagrangian ( - ) of the Max
well field, according as g t'v denotes /) t'V or 7]t'v, respectively. 

These results show the consistency of the quantization 
procedure we adopt for the wave equations (2.13). Without 
further ado, we introduce the canonical equal-time commu
tator: 

(2.40) 

i.e., 

(2.41) 

In this manner, the quantization of the Maxwellian tensor 
variables is ensured automatically without assuming for 
them, separately, equal-time commutation relations. For in
stance, if we use Eq. (2.30), then Eq. (2.41) becomes precisely 
the well-known commutator, belonging in the Coulomb 
gauge [cf. Eq. (1.3)], afforded by the usual noncovariatlt ap
proach. 

3. CONCLUDING REMARKS 

We have shown that the problem of solving Maxwell's 
field equations, without sources, can always be reduced to 
the problem of solving the homogeneous d' Alembert equa
tion for two scalar fields. An elementary device for generat
ing a Maxwellian field from any scalar wave function has 
been well known, for a long time indeed. 14 However, while 
using that device, it is not suggested that any arbitrary radi
ation field can be thus obtained. Rather, this well-known 
method offers a way of generating a certain special set of 
Maxwellian solutions. The method presented in our work 
[i.e., Eqs. (2.19) and (2.20)], on the contrary, is completely 
general. 

A natural way of isolating the dynamical variables of 
the free electromagnetic field has been established, in a com
pletely gauge-invariant manner, while handling the formal
ism in a manifestly relativistic fashion. The canonical proce
dure, as applied to the isolated dynamical variables, has 
shown that all the physical contents of a free electromagnetic 
field are already included in the two-component substratum 
(tPl(X), tP2(X)), This object behaves as a two-dimensional iso
vector under duality rotations, and as a set of two scalar 
fields under Lorentz transformation. 

Consequently, the substratum represents the true de
grees of freedom of the electromagnetic radiation field, and, 
therefore, the Maxwell field becomes effectively quantized 
by the canonical procedure of quantum field theory, as ap
plied to the Lagrangian formalism of the substratum. No 
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specific commutation relations have to be assumed for the 
different tensor variables characterizing a Maxwell field, 
since they come into the fore by applying the radiation gauge 
geometric tools to the fundamental equal-time commutator 
of the substratum. In this manner, a basis for the description 
of free photons is obtained, which seems much more consis
tent with all other elementary particles, since we drop the 
unphysical variables while retaining the relativistic invar
iance at every step of the formalism. 

Finally, we wish to remark that, no matter how simple 
this formalism may look when applied to the free Maxwell 
field, one is the more tempted to hope a similar (i.e., projec
tive) procedure could be applicable for isolating and quantiz
ing the true degrees of freedom of a nonabelian Yang-Mills 
field. A closer investigation would be also desirable on this 
intriguing question. 
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Let Y denote the Fock space for a free massless fermion field in two space-time dimensions. If Q 

and Qs denote the charge and chiral charge operators, then Y = Gl Yn,.n" where Y",.n, is the 

joint eigenspace of Q and Qs with corresponding eigenvalues n I a~d"~2' The smeared time-zero 
free fermion currents formally given by JJ1- (f) = S:~x)rJ1- tP(x):f(x) dx Lu = 0, l;fEY"(R)] are in fact 
self-adjoint densely defined operators on Y and their exponentials generate a C • algebra which 
leaves each subspace Yn,.n, invariant. If a periodic box cutoff for the fermions is introduced, 
Uhlenbrock has shown that this C· algebra acts irreducibly in each "sector" Yn,.n,. We prove this 
same result without any cutoffs and determine the properties of the representations in each sector. 
The importance of this result for the problem of constructing fermion fields from "observables" in 
two-dimensional models, such as those of Thirring and Schwinger, is discussed. 

PACS numbers: 11.40.Dw, l1.1D.Mn, 11.10.Qr 

1. INTRODUCTION 

The main reason that soluble fermion models exist in 
1 + 1 dimensions is that the fermion currents can be defined 
as "fields" acting on the representation space for the fer
mions and their algebraic properties may be exploited to 
yield the solution. Similarly, the success of the "bosons into 
fermions" programme l

-
3 lies in the fact that the bosons in 

question are just the currents and the ft:rmions are essential
ly determined algebraically by their commutation relations 
with them. The most complete account of the latter argu
ment appears in Ref. 2. There is a gap, however, in these 
discussions which occurs first at the level of the free fermion 
field. 

In 1 + 1 dimensions, the free fermion currents are de
finable as the Wick-ordered products 

JJ1-(f) = f: 00 : ¢(x)rJ1-tP(x) :f(x)dx, fEY(R), fJ- = 0,1 

(1.1) 

of the free fermion fields. Under the action of these operators 
JJ1- (f), the fermion Fock space .'Y should decompose into a 
direct sum of invariant subspaces. When the fermion mass is 
zero it is a folk theorem that this decomposition has the form 
.'Y = Gl:T" n" the labeling by integers n, n/ (charge and 

, ' 

chiral n~harge quantum numbers). Moreover, on :T n.,,' the 
action of the currents is believed to be irreducible. 

Dell-Antonio, Frischman, and Zwanziger2 show how 
to reconstruct fermion fields from a representation of "cur
rents" having the form hypothesized above. These fermion 
fields have different dynamics depending on the precise form 
of imposed commutation relations with the currents. For 
example one can obtain free fermions or ones satisfying the 
equation of motion of the massless Thirring model. This con
struction was also applied to the Schwinger model. 3 How
ever, the decomposition of the free fermion Fock space :T 

into these invariant subspaces :Tn.,," irreducible under the 
action of the currents, has not been shown to exist. The only 
positive result in this direction is that ofUhlenbrock4 which 
shows that this decomposition occurs when a box cutoff is 
imposed on the fermions, except that the representations of 
the currents in the .'Y ",,,' are all equivalent. This latter fact 
indicates that removing the cutoff will be difficult since we 
expect inequivalent representations in its absence. Neverthe
less, Lundberg's analysisS of the "vacuum sector" (i.e., the 
cyclic subspace generated from the fermion vacuum by the 
currents) suggested to us that a variant of Uhlenbrock's 
proof may work. 

Our aim then is to prove that, for free massless fer
mions, the above decomposition into subspaces irreducible 
under the action of the currents is valid and, moreover, to 
show that the representations which occur are "displaced 
Fock representations" (cf. Ref. 6) being all inequivalent. 

The difficult part of the proof is the irreducibility and 
this occupies Secs. 5-7 of the paper. After setting up the 
problem in Secs. 2 and 3, the rest of the argument is dealt 
with quite easily in Sec. 4. As we have indicated here and will 
further discuss in Sec. 8, this then supports the analysis of 
Refs, 2 and 3 for the massless Thirring and Schwinger mod
els . 

One can clearly ask similar questions for the case of 
massive fermions. We will indicate which results carryover 
easily to the massive case, although there, only the ordinary 
charge operator is defined and so at best we could only ex
pect a decomposition of:T into charge eigenspaces. The 
question of irreducibility again appears to be the most diffi
cult. 

Notation: We write yO, rl for the Dirac matrices in two 
dimensions with r = yOrl. The choice 
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will be made when necessary. Note that 

Ylt = gl'Vyv, gl'v = (~ _~). 

2. CAR ALGEBRA 

Our methods depend on some previous work7 and we 
need to discuss the results of the paper (henceforth referred 
to as CHOB). So let JY be a complex Hilbert space and 
..a1(JY) be the CAR algebra over JY generated by 

I a(g),a*(g) IgEJY} , 
where 

a(h )a * (g) + a*(g)a(h ) = (h,g)I, 

a(h )a(g) + a(g)a(h ) = O. 

We can represent this algebra in the usual way by its action 
on the antisymmetric Fock space Y ?' over JY, and we will 
use the same symbols a(g), a*(g) to denote the CAR genera
tors in this representation. If Pis an orthogonal projection on 
JY, then a new representation, 1Tp of ..a1(JY) acting on Y ?', 

is defined by 

1Tp(a(h)) = a*( Ph) + a((1 - P)h), 

where the bar denotes a complex conjugation in JY. 
If U is a unitary operator on JY, then U defines an auto

morphism of ..a1(JY)bya(h )~(Uh). We say Uisimplemen
table in 1T p if there is an operator r (U) on Y ?' such that 

r(U)1Tp(a(h ))r(U)-1 = 1Tp(a(Uh )). 

The case of interest to us is whenJY = L 2(R,(;2) andP = P_ 
is the spectral projection of the free Dirac Hamiltonian cor
responding to the interval ( - 00, - m] with m = fermion 
mass. In this case P _ is given by its action on the Fourier 
transform space by multiplication by the function 

P_(k)=~(1 +~r-~yD), 
2 w(k) w(k) 

where yD, yl are the two-dimensional Dirac matrices, r = yDyl,andwk = (k 2 + m 2
)1/2. Form = o this reduces to 

{
I k;;.O, 

P _(k) = HI - e(k )Ys), e(k) = _ 1 k<O. 

We let 1 - P _ = P + and write t,b(g) = 1Tp _ (a(g)), interpret
ing t,b(g) as the fermion field operator. The space Y w in this 
case is then identified with the space Y of the Introduction. 
The automorphisms of interest in this case are defined by 
multiplication operators on L 2(R,(?) as follows. For each 
.t;. EJ"(R),,u = 0,1 (i.e., real-valued Schwartz functions), we 
define 

(Utfg)(x) = exp\it [!o(x) + r!l(x)] }g(x), tER. 

Then t-+U if is a uniformly continuous one-parameter group 
onL 2(R,e2

). The corresponding automorphisms of the CAR 
algebra over L 2(R,e2) are implementable (see Ref. 5 or 
CHOB). We may fix the phase of the implementing unitary 
r (Utf) by requiring 

(f1,r(Uif )f1 );;'0, (2.1) 

wheref1 is the vacuum vector (l1f1 II = 1) in Y. On the other 
hand, from Ref. 8 we know that there exists a possibly differ-
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ent choice such that t-+r (U if) is a strongly continuous one 
parameter group on Y. Using this second choice, the rela
tion 

r(Utf)t,b(g)r(Utf)-1 = t,b(Utfg) 

is the "integrated" form of the commutation relations 

[J°(/o),t,b(g)] = t,b(/o g), 

[J I(/I),t,b(g)) = t,b(r!1 g), 

(2.2) 

(2.3) 

(2.4) 

where J °(/0) and J 1 (/d are the generators of the one-param
eter groups t-+r (Ut}) with! = (/0,0) and! = (0'/1)' respec
tively. We will see laterthatJ (/) = JO(/o) + J I(/I)isidentifi
able with the current (1.1) defined as a Wick-ordered 
product. We now develop the results of CHOB relevant to 
this discussion. 

Associated with these currents J O and J I are two 
"charge operators" which we define as follows. Let 
(Uo(fJ )g)(x) = eillg(x) and (U5 (fJ )g)(x) = eiY'lIg(x) for 
gEL 2(R,e2

), OER. Then O-+Uo(fJ) and O-+Us(O) are imple
mentable groups of unit aries in 1Tp _ (Ref. 5, CHOB), when 
m = 0 and we fix the phase of r (Uo(O)) and r (U5(O)) as in 
(2.1). Then we identify the generators of o-+r (Uo(O)) and 
o-+r (U5(fJ )), say Q and Q5' as the charge and chiral charge 
operators. When m =1= 0, only Uo(O ) is implemented and hence 
only Q is defined. 

We intend to show that on the joint eigenspaces of Q 
and Q5 the set of operators I r (UflVlt EJ"(R),,u = 0,1 J acts 
irreducibly. To do this, we need another way of constructing 
these eigenspaces. We introduce another pair of operators on 
L 2(R,e2) following Ref. 9 and CHOB. Let 

(U ± g)(x) = exp(iy ± 7](x))g(x), 

where y ± = ~(1 ± r) and 7](x) = (2 tan -I x + 1T). The oper
ators U ± are implemented in 1Tp _ (see CHOB) indepen
dently of the value of the fermion mass m and in the case 
m = 0, the vectors 

(2.5) 

are eigenvectors of Q and Q5 with eigenvalues n 1 - n2 and 
n l + n2, respectively. It follows from CHOB that Q and Q5 
commute with r (Uf ) for all!!, EJ"(R) so that the eigenspaces 
of Q and Q5 reduce I r (Uf ) l!;, EJ"(R),,u = 0,1 J. 

The physical interpretation of the integers n I' n2 can be 
obtained from a knowledge of the explicit form of Q and Q5' 
Some discussion of this may be found in Ref. 9 (although our 
notation is different). We remark only that the number of 
fermion or antifermion states occupied with probability one 
in f1 nt ,n2 is given by 

n 1 > 0, n 1 "left going" antifermion states, 

n I < 0, - n 1 "left going" fermion states, 

n2 < 0, - n2 "right going" antifermion states, 

n2 > 0, n2 "right going" fermion states. 

Here "left" or "right" refers to the support of the appropri
ate functions being on the negative or positive half of the 
momentum axis (see Sec. 5 for details). 
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3. THE C* ALGEBRA FOR THE CURRENTS 

We have seen that for eachf = (fo'/d, withf"EY(R) 
there is a unitary operator Uf on L 2(R,C2). Now I Ufl 
f"EY(R)j form an abelian group and ur .. r(Uf ) is a multi
plier representation of this group. Lundberg has determined 
the multiplier explicitIy8: 

r(uf)r(Ur)r(Uf)-1 = exp[iB(J,/,)]r(Ur), (3.1) 

where 

B (J,/,) = - 2 1m trIP -j(f)P +j(f/)P _), 

withj(f) denoting the operator 

(j(f)g)(x) = (fo(x) + rfl(x))g(x), gEL 2(R,C2) (3.2) 

and tr being the trace of the nuclear operator 
P -j(f)P +j(/,)P _. A straightforward calculation yields 

tr(P -j(f)P +j(f/)P _) 

= _1_ f dk dl 2};(I- k )c"v(k,l if~(l - k), (3.3) 
41T ".v 

where 

and 

fIx) = _1_ f dkl(k )eikx 

.j21i 

C (k,l) = (c"v(k,l)) 

= (1 - (kl + m 2
)/(i)k(i)/ 

k /(i)k - l/(i)/ 

k /(i)k - l/(i)/ ) 
1 - (kl- m 2)1(i)k(i)/ . 

When m = 0, all of this simplifies considerably: 

trIP -j(f)P +j(f/)P _) = _1_ fdq .2'"};(q)c,,v(q)I~(q),(3.4) 
21T 

where 

and 

B (J,/,) = ~ f dq q [Ib (q)hq)* + 10(q)*I; (q)] (3.5) 

[usingl,,(q)* =1,,( -q)]. 
We may associate with I Ufif" EY(R)) a C * algebra de

fined as follows. Firstly regard B as a nondegenerate sym
plectic form on 

M = I f= (fo'/I)lf"EY(R), ,u = 0,1). 

Then we can form C * (M,B ), the C * algebra of the CCR over 
(M,B ).10 When m = 0, B is the imaginary part of the inner 
product on M given by 

J,/,-tr(P -j(f)P +j(f/)P-) 

because we can define a complex structure L on M by 

Lf,,(k) = - iE(k )fl_,,(k), (3.6) 

so that 

B (J,Lf) = 2 trIP -j(f)P +j(f)P _) = IIfll~. (3.7) 

Write Df for the element of C *(M,B) given by 
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D (f') = {O f i=!', 
f I f=/" 

and these elements satisfy 

D~r = exp (il2)B(J,/,)Df +r . (3.8) 

Notice that in the massless case by virtue of(3.7), the Fock 
representation of C *(M,B ) has generating functional 

exp[ - !B(J,Lf)] 

= exp [ - 4~ f dq Iql(lfo(qW + Ifl(qW)]. (3.9) 

Finally we write if for the completion of M in the norm 
defined by (3.7). Combining the above with the previous sec
tion, we obtain the following Proposition. 

Proposition 3.1: There is a choice of phase for the r (Uf ) 

such that the map Drr (Uf ) is a representation of C *(M,B ) 
with A-r (u:v ) strongly continuous in AER. 

4. REPRESENTATIONS OF C*(M,B) 

We assume throughout this section that m = 0. We saw 
in Proposition 3. 1 thattheC * algebraC *(M,B )isrepresented 
in the fermion Fock space Y over L 2(R,C2

). Our aim in this 
section is to decompose this representation. Recall the defin
ition (2.5) of the vectors a",.", EY. 

Lemma 4.1: (a",."" r(Uf)il) = ° for all n l , n2EZ (not 
both zero) and allfEM. 

Proof Since Q and Q5 are self-adjoint and a" " and 
" , 

r (Uf)a are eigenvectors of Q and Q5 with distinct eigenval-
ues when n I and n2 are not both zero, the result follows. 

Now let Y",.", denote the subspace of Y generated by 
the action of the r(Uf ) on a""", asfranges over M. From 
Lemma 4.1 we deduce that the Y""", are all mutually ortho
gonal subspaces of Y. On Y",.", we have a cyclic represen
tation of C * (M,B ) with generating functional 

¢l",.",(f) = (a",.""F(Uf)a",.,,) 
= (a,F(U-)-"'F(U+)-'" 

XF(Uf)r(U+),,'r(U -),,'J1) 

= an,.n, (f) (a,F (Uf)a ), (4.1) 

where a""n, (f) is a complex number of modulus one. [This 
follows from the fact that r (Uf) and 

r(U -) - n'F(U +) - "'r(Uf)F(U +)n'r(U -)'" 

implement the same automorphism of the CAR algebra.] 
Letting ¢lo.o (f) = (a,F (Uf)a ), we can determine this gen
erating functional ¢lo,o in a number of ways, one of which we 
will outline in the next section. We record the answer here 
for the ensuing discussion: 

¢lo.o(f) = exp( - 4~ f dq IqlUfo(qW + Ifl(qW). 

(4.2) 

We immediately recognize this as the generating functional 
for the Fock representation of C *(M,B ). [The fact that, on 
070 •0 the representationf-r (Uf ) is Fock, was established 
by Lundberg.5

] We can write, for eachfEM, an,.",(f) 
= exp i(D(f)) with D (f)ER. 
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From the linearity of/-J(/) and the relation 

(fln"n2,J(f)fln"n) = ~ D(;l/)IA~O' 
it follows that D is a linear functional on M. From (4.1) and 
(4.2) we conclude that the generating functionals rPn"n2 have 
the form expected for "displaced Fock" representations. 

In order to show that Y = Ell Y n"n2 it is sufficient to 
nln2 

show that the joint eigenspaces of Q and Qs coincide with the 
space Y n"n2' 

Lemma 4.2: The joint eigenspace of Q and Qs corre
sponding to the eigenvalues n I - n2 and n! + n2, respective
ly, coincides with Y n ,.n

2 
provided Yo,o coincides with the 

subspace of Y annihilated by Q and Qs' 
Proof Notice that 

F(Ur )fln"n2 = un"n2(f)-!F(U+t'r(U-(2F(Uf)fl. 

Thus F (U + )n'r (U - (2 maps the 0,0 eigenspace of Q, Qs 
(assumed to beYo,o) into the n! - n2, n! + n2 eigenspace (cf. 
CHOB). Conversely, the inverse of this operator maps the 
n! - n2, n! + n2 eigenspace of Q, Qs into Yo,o (CHOB), 
proving the result. 

Thus in order to establish the decomposition 

Y = Ell Y n"n2' we need only prove the following proposi-
n l ·n2 

tion, 
Proposition 4.3: The subspace of Y consisting of vectors 

v with Qv = Qsv = 0, coincides with Yo,o. 
The next three sections are devoted to the proof of this 

result. There is one final proposition which we have to estab
lish before stating our main theorem, 

Proposition 4,4: The representation of C * (M,B ) occur
ring in the above decomposition are all mutually inequiva
lent. 

Proof It is sufficient to show that the representation in 
Y n"n2 is inequivalent to that in Yo,o' Moreover we will deal, 
for simplicity, with the case n l' n 2 both positive, Then a typi
cal state in the n! - n2' n! + n2 eigenspace of Q and Qs, say 
(2.5), has the form 

E = t/J(g!)*···t/J(gn, )*t/J(h!)*"'t/J(hn2 )*fl, 

where we havegj , hjEL 2(R,e2
), pairwise orthogonal and of 

no~ one with P _g; = go P +hj = hj and the support of gj 
and hj (the Fourier transform) being in the left and right half
axis, respectively. Then 

(E,J(f)E) =~; - (g;,j(f)g) +~,(h"j(f)h,), 

With our choice of Dirac matrices, we can write 

g;(k) = ~ g;(k) C(~ ), iz,(k) = ~ hr(k) ( _ ~(k) , 
wheregj(k), hr(k )Ee so that 

(gi,j(f)gJ 

= 2 f g;(k )*Cfo(k - I) + E(k - 1 )ft(k - I ))g;(/)d1 dk, 

(h"j(/)h, ) 

= 2 fh,(k )*(.fo(k -I) - E(k -l)~(k -l))h,(l)dl dk. 
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Rewriting these expressions, we get 

(g;,j(/)g;) 

= 2 J dk (.fo(k) + E(k )J;(k)) I dl g;(k + l)*gi(l), 

(h"j(f)h, ) 

= 2 f dk (fo(k) - E(k )fl(k)) I dl h,(k + l)*h,(l). 

Since we are regarding/-(E,J(f)E) as a linear functional 
on M, we know thatthe representation in Y n"n, of C * (M,B ) 
will be equivalent to that in Y 0,0 if and only if the functions 

u:k - Th (~; -I g;(k + l)*g;(l) di 

+~, f h,(k + l)*h,(l) dl) , 

v:k - E(k) (~; - fg;(k + /)*g;(l) dl 
Ikl 

-~, I h,(k + I )*h,(l) dl) 

lie in M. Now near k = ° u and v are approximately 
(n! + n2)11k I and (n! - n2)11k I, respectively, and conse
quently cannot have finite M-norm. It follows then that all 
the representations of C * (M,B ) occurring in the decomposi
tion of Yare inequivalent. 

Combining the previous propositions, we obtain the fol
lowing theorem. 

Theorem 4.5: The Fermion Fock space Y decomposes 
as a direct sum Ell Y n,.n

2 
of subspaces invariant under the 

n l ·n2 

representationDrF(UJ)ofC*(M,B ).Yn "n
2 

isthesubspace 
of Yon which Q and Qs take the values n I - n2 and n I + n2' 
respectively. Moreover the representation of C *(M,B) on 
Y n"n2 is of displaced Fock type, hence irreducible, and is not 
equivalent to any of the other representations occurring in 
the decomposition. 

Remark 4,5: In Ref. 2 Dell-Antonio, Frischman, and 
Zwanziger described the reconstruction of fermion fields 
from representations of the current operators. They based 
their reconstruction on the assumption that one has a Hil
bert space carrying a representation of the currents precisely 
of the form described in Theorem 4.5, Given such a represen
tation one can find "fermion fields" acting on the same space 
and having the vacuum expectation values of free fermion 
fields (and satisfying the Dirac equation). Thus Theorem 4.5 
shows that in the case offree massless fermions, the currents 
do indeed have the representation on the fermion Fock space 
required by their analysis. 

Remark 4.6: As we noted in the Introduction, the diffi
cult part of the proof of Theorem 4.5 is Proposition 4.3, 
which is the only result remaining to establish, The next 
three sections are devoted to the proof. 

5. THE CURRENTS AS WICK-ORDERED PRODUCTS 

We introduce the usual notation for the fermion fields 
as operator-valued distributions: 
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¢(x) = _l_foc dk eikX[a+(k) _1 ( 1 ) 
{iii - 00 v'2 e(k) 

+ a_I - k)* ~ (_ :(k)] , 

(5.1) 

¢(x) = ¢(x)*yD. 

The Wick-ordered product (1.1) is now expressible as 

_1_foo dk foo dlla +-(k + l)*a+(l)[(O( - k )O(k + I) 
{iii - 00 - 00 

+ 0 (k)O (I ))(!o(k) + hk)) 

+ (0 ( - k)O ( -I) + 0 (k)O ( - k -I)) 

X (!o(k) - !I(k I)] 

- a_I -I)*a_( - k -/)[(O( - k )O( -I) 

+ O(k )O( - k -/))(!o(k) + hk)) 

+ (O( - k)O(k + I) + O(k)O(I))(!o(k) -hk))] 

+ a+(k + I)*a_( -1)*[O(k + I)O( -I)(!o( - k) 

+ h - k)) + O(I)O( - k -/)(!o(k) - !I(k))] 

+ a_I - k -l)a+(/)[O(l)O( - k -/)(!o( - k) 

+ h - k)) + fJ(k + I)fJ( -l)(!o(k) - hk))] J, (5.2) 

wh~reJ;, I,Jl = 0,1) is offast decrease and satisfies!!, ( - k)* 
=f!,(k). We assign the following meaning to (5.2). We de

fine it by its formal action on the domain !iJ consisting of 
vectors in the fermion Fock space with a finite number of 
particles present and fast decrease in momentum space. Di
rect calculation verifies that !iJ is invariant and that (5.2) 
satisfies the same commutation relations with the fermion 
fields as does the operator J (f) = Jo(fo) + JI(fd defined in 
Sec. 2 provided!!, is the Fourier transform off!'. By our 
choice of phase factor in the definition of r (Ur ), it follows 
that on the vacuum state, (5.2) coincides with J (f)n [cf. Eq. 
(3.25) of Ref. 8]. Thus J (f) coincides in !iJ with the operator 
] (f) defined by (5.2). One may then verify the bound 

11](f)Grll«rllj(f)11 + IlfIIM)IIGrll, 

where Gr is an r-particle state in !iJ. Induction on n gives 

1I](ftGrll<Cn IIGrll, 

where 

~ = 2
n 

- I yf [1 + (rllj(f)11 + IlfIIM)/2k] 
n! n k= I 

so that for small t, ~lt nil] (ftG r Il/n! converges, verifying 
that the states in !iJ are analytic vectors for] (f). It follows 
that] (f) is essentially self-adjoint on !iJ and that J (f) is its 
unique self-adjoint extension. Now introduce annihilation 
and creation operators for the Bose field J (f) as 
b (f) = ~(J (f) - iJ (Lf)) and b (f)*, with L given by (3.6). 

It is important to note that the smearing function in the 
expression for b (f) contains a step function which restricts 
the support to the negative half-axis (in momentum space) 
while b (f)'" is restricted to the positive half-axis. There is a 
simplification which we can make at this point by observing 
that (5.2) splits into two terms depending, respectively, on 
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fo ±fl' Thus we define subspaces M + and M _ on which 
fn = fl andfo = - fl' respectively. It follows that the clo
sure M is the direct sum of M + and M _ 

By setting if + = fn = fl' we see that 

J(f+) = b (f+) + b (f+)"', f+EM + (5.3) 

andf + ---+J (f +) is a boson field with test functions from M + 

and (5.3) is its decomposition into creation and annihilation 
parts. Similar remarks apply to M _, and iff_EM _ we have 
[J(f+), J(f_)] = O. Notice also that 

[b (f+),b (g +)"'] 

= ~f~oc dkkO(k)f*+(k)g+(k), f+,g+EM+ (5.4) 

and 

(5.5) 

In fact from (5.3), (5.4), and (5.5) one can calculate the gener
ating functional (n, exp J (f+)n > explicitly and obtain (4.2) 
(forf+EM +). By restrictingB toM + andM _ separately, we 
obtain nondegenerate symplectic forms on each of these 
spaces and hence representations in.'7 of C "'(M +,B) and 
C *(M _,B). We will see in the next section that in order to 
prove Proposition 4.3 it is sufficient to consider separately 
the representations of C "'(M + ,B) and C "'(M _ ,B) in .'70,0' 

We record from the above discussion the following essential 
result. 

Proposition 5.1: The cyclic representation ofC *(M +,B) 
generated from the fermion vacuum state n by 
(r(U(f+))lf+EM + j is equivalent to the Fock representa
tion with vacuum state n, and generating functional 

po.o(f+)=exp[ - 2~ roooc dkkO(k)lf+(kW]. 

A similar result holds for C "'(M _ ,B ). 

6. THE FERMION, ANTI FERMION PAIR SPACE 

Acting on n we know that C "'(M,B ) generates a sub
space of the joint eigenspace of Q and Q5 corresponding to 
the eigenvalue zero. In order to show that it generates all of 
this eigenspace we need a convenient representation of those 
states v in .'7 with Qv = Q5V = O. It is clear from the expres
sions in the previous section for ¢ and ¢ that we can take 
L 2(JR,q for the one-particle fermion or antifermion space as 
the spinors have only one independent component. More
over, as we are interested in the zero eigenspace of both Q 
and Q5' any state annihilated by these two operators must 
contain equal numbers of particles and antiparticles either 
all moving to the right or all moving to the left. Because of 
our conventions for the creation and annihilation operators 
in Sec. 5, we may identify a state with n particles and n anti
particles both moving to the right as an element of R I~ 
® R I~) , where 

In) 

R I~ = L 2(JR ± )@ ... @L 2(JR ± ), 

where @ denotes antisymmetrization and JR ± 

= {qEJR Iq~O j. Here the first n variables are the momentum 
variables for particle states and the second n are those for 
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antiparticle states. The space of all such states is 

R 1 = f R (~ ® R (~, R (~ = C. 
n~O 

There is a similar space R2 for particles and antiparticles 
moving to the left and the zero eigenspace of Q, Q5 is the sum 
R 1 + R2 with R InR2 = R (~ = C, the vacuum subspace. If 
FER (~ ®R (~ and p = (Pn""'PI)' q = (qn, ... ,qd then Fis 
totally antisymmetric in the Pi'S and qi'S separately with 
norm 

(6.1) 

The C· algebra for the currents, C ·(M +.B), generates a 
subspace of R 1 by acting on the vacuum state while 
C ·(M -,B ) generates a subspace of R 2' It is sufficient there
fore to prove that C ·(M +.B) generates a dense subspace of 
R 1 in order to prove Proposition 4.3, the argument for 
C ·(M _.B ) and R2 being essentially the same. 

We record for convenience the action of the boson cre
ation operators b (f)·,fEM +, on R. IfF = (Fn ) with Fn ER (~ 

I 

where the notation F: (i + ) means that the Fourier transform 
has support in R ± in the ith fermion and antifermion mo
mentum variable, Xi' Yj means that the coordinatesx;'Yj are 
missing and 

()+)V(x) = _1_Jdk)+(k )eikx. 
J21i 

For convenience we will writel(x) = ()+) v (x). 
Now from (6.3) we can deduce an expression for the 

states in R 1 which is obtained from the vacuum by the action 
of polynomials in the boson creation operators. 

Lemma 6.1: Let Fmn denote the component in R I~ 
® R (~ of a vector obtained by the application of a product of 
m boson operators to the vacuum: b (fIl·,···,b (fm)·,J;EM +. 

Then 

F '::.n(x,y) 

= -;.. (21T)(n - 2m)/2 I I ( - 1) p +q IT (l/xs, + Ys.J 
(n!) partitions p,q s ~ 1 

r, 

X IT (J;~'I(XS.J - J;~'I( - Ys.)). n<,m, 
t=1 t t 

(6.4) 

where 

(a) l:partitions means partitions of minto n blocks, so 
m ='1 +'2 + ... +'n with'i > 0; 

(b) l:p,q ( - 1) p + q means sum over all permutations p(q) 
of the n arguments xi(Yj) with sign - 1 for odd permuta
tions; 

(c) Xs ,Ys denotes the coordinates assigned to the block 
p • 

S, l~sJ is the label of the 's function in the block s. 
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®R (~ ,then 

(b (f)·F)n(p,q) 

= J:", dk)+(k) it! [8(Pi -klFn(Pn""'Pi -k"",PI,q) 

- 8 ( - qi - k lFn (p,qn ,···,qi + k,···,qIl] 
1 n n .' ~ 

- (nW i~I/~1 (- 1)'+18(Pi)8( - qj)f+(Pi - qj) 

XFn _I (Pn,···,jJ;.···,ppqn, .. .,(lj,··.,qIl, (6.2) 

where) + denotes the restriction of) to the positive half-axis. 
[This formula is established directly from the formal action 
of(5.2).] We note an important fact. Since we are dealing 
with the Fockrepresentation ofC ·(M +.B ) we can extend our 
test functions for the b (f). from thosefin M + to those in 
M +. The action of b (f). for fEM + is still given by (6.2). By 
Fourier transforming 

F V(x,y) = -- F (p,q)e'P'X + lq'Y dp dq, 1 J .. 
n (21Tf12 n 

we obtain the action of b (f). in this representation as 

P,oof This is a tedious induction argument. For m = 0, 
take 

F:a = 1, F::" = 0, n > O. 

From (6.3) we obtain 

F ~ (x,y) = i(f(x) - I( - y))lJ21i(x + Y), 

which is (6.4) in this case. We sketch the induction step omit
ting details. We represent partitions by Young diagrams 
where each of the m boxes in a diagram corresponds to one of 
the functions! (all i distinct, i = I,oo.,m) and each row corre
sponds to a pair of coordinates (Xk ,ytl with all X k ,Yt distinct 
and k not necessarily equal to I. Equation (6.3) describes the 
effect of the inclusion of one more functionfm. The first term 
in that equation contains those contributions for which a 
partition with n rows and m - 1 boxes is changed to one 
with n rows and m boxes withfm being assigned to one of the 
existing rows so that there is no change in the number of 
pairs of coordinates. The row containingfm must therefore 
have at least two boxes. The second term contains contribu
tions in which a partition with (n - 1) rows [and hence 
(n - I) coordinate pairs] is changed to one with n rows (and 
so one more pair) withfm assigned to a new row with only a 
single box. If therefore (6.4) is correct for (m - 1), (6.3) cor
rectly generates all the terms required to make (6.4) correct 
for (m). 

In order to compare the fermion-antifermion pair states 
with the boson states, we exploit the fact that we are dealing 
always with functions having support in one half of the mo
mentum space axis. This allows us to use a Cayley transform 
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to realize the test functions as elements of Hardy spaces. As 
before, we detail the argument for R I only. 

Definition 6.2: We write H 2± for the Hilbert space of 
functions h: T -C, which are the boundary values (on the 
unit circle T) off unctions holomorphic inside (outside) the 
unit disc D with the norm 

In terms of the Fourier transform, h (t ) = };;: = '" an eint 

and hEll +(H _) if an = 0, n < 0 (an = 0, n>O) and };Ian 12 
< 00. 

Lemma 6.3: If) ± EL 2(R ± ) with 

I ± (x) = ~ J eikx
) ± (k) dk, 

then the maps S ± defined by 

are isometries of L 2(R ± ) onto H 2± . In particular, if) ± 

EL Z(R ± ), then the continuation ofl ± to the upper (lower) 
half-plane is holomorphic, and hence S ± I ± are holomor
phic in the interior (exterior) of the unit disc. 

Proof This is fairly standard; see, for example, Devin
atz.11 

We now regard S ± as acting on R I~ and "lift" them in 
the obvious way to R I' SO we have an isometry SI of R 1 onto a 
new Hilbert space, which for convenience we denote SIR I' 
where 

SIR I = (B sln)R In) = ffi Sln)(R I~ ®R I".! ) 
n=O n=D 

with 

Sln)(R I~ ®R I".!) = (~S+R I~ ) ® (~S_R I~ ). 

The elements of Sln)R In) are functions Fn oft = (tn , ... ,t l ), 

S = (sn"",SI)' which are totally antisymmetric in t and s se
parately and are the boundary values offunctions regular in 
the interiorofn7 D and n7(C\D), respectively. The norm is 
given by 

IIFn liZ = (n!)2 J dt dslFn (t,sW· (6.5) 

For each n, an orthonormal basis is the set of trigono
metric polynomials 

tP{ml{m'l (t,s) 

= ~ AsY(iI _e_imh)ASY( iI _e_ -im;sl), (6.6) 
(n!) = I ..[fii 1 = I ..[fii 

where [ml = (mn,···,m l ), [m'l =(m~, ...• m;)areunordered 
sequences of nonnegative integers with no two integers equal 
and Asy denotes antisymmetry in the arguments. Ifwe write 

/lj = {;j, eiSI = 171' then the basis vectors (6.6) can be written as 
the product of two determinants: 
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tr l ~:1 
-mj -mi 

(217") - n/Z (217") - n/2 
171 17n 

n! 
(; ~" 

n! 
;~n -m' -m' 

171 " 17n " 

(6.7) 

and we note the ordering conventions O<m I < m z < ... < m n• 
O<m; <m; <···<m~. 

Lemma 6.4: Let N(n.lml.lm'l) be the number of basis 
states (6.6). which are trigonometric polynomials of order 
Iml = };7=jm j • Im'l = };7= 1m; in the fermion and antifer
mion variables. respectively, withO<m l <mz< .. ·<mn• 
O<m; < ... <m~. and let 

00 '" 

Hn(t)= I I N(n.lml.lm'l)tlml+lm'l. 
Iml = 11I2)nln - I) Im'l = (I/2)nln - I) 

Then 

Hn(t) = Inln-I) i I Z. 

r=I(I-lr) 

(6.8) 

(6.9) 

Proof Each determinant in (6.7) can be labeled by a 
partition (or Young diagram) with n rows of boxes and 
O<m l <mz < ... <mn orO<m; <m; < ... <m~ boxes in each 
row. The lowest-degree polynomial corresponds to the dia
gram with [0.1.2, .... (n - 1)] boxes in the successive rows and 
will be of degree ~n(n - 1). All other diagrams are obtained 
by adding an equal number of boxes to the last r rows with 
1 <r<n. The generating function for adding a box to each of 
the last r rows is 1 + I n + I 2n + ... = 1/( 1 - I n). Hence the 
generating function for all possible determinants will be 

H~(I) =t nln - I )/2(1 +t+1 2+ ... )(1 +1 2 +1 4 + ... ) 
... (1 + I" + 1 2

" + ... ) 
= t nln - 1)/2 iI __ 1_. 

r=II-lr 

Because (6.7) is a product of two determinants. we have 

Hn(I)=(H~(tW=tnln-l) iI 1 2' 

r=I(I-t r) 

which is (6.9). 

7. BOSONS AND HARDY SPACES 

There is one point in the discussion in Sec. 5 which we 
did not make explicit there and that is that M + equipped 
with the complex structure (3.6) is isomorphic. as a complex 
Hilbert space. to L 2(R+.dv). where dv(k ) = kfJ (k )dk. Since 
we know that. on the cyclic subspace of R I generated from 
the vacuum by [b (f +)* If + EM + I we are dealing with the 
Fock representation of C *(M +.R ), we can identify this sub
space of R I with the usual symmetric Fock space over £' B 

= L z(R+.dv): 

Y B = C + £'B ffi£'B@£'B (B£'B®£'B®£'B (B .... 

The annihilation and creation operators act in Y B in the 
In) 

standard fashion. For F= (Fn)EF'B' FnEdYB®"'~B' we 

have 
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(b (f)F)n (kl,···,kn) 

=,In+T f dki(k )*kO(k )Fn+ dk,k1,···,kn), 

* _ 1 n ~ ~ 
(b(f) F)n(kl,···,kn) - - I !(kj)Fn -\ (k, ... »kj, ... ,kn) 

Iii j~1 
with the commutation relations 

[b (f),b (g)*] = f dk 0 (k )ki(k )*g(k ), 

[cf. (5.4)],f, gEM +. Once again there is a Cayley transform 
which will map ~ B over into a Hardy space. 

Definition 7.1: The Hardy space H 2(T,f-l) is the Hilbert 
space of functions defined on T via the Fourier transform 

00 

h (t) = I ane
in

" 
n= 1 

from sequences (an) with II(an)1I 2 = 21T l::~ I nlan 12< 00. 

The functions satisfy 

121T dh * Ilhll2=i dt-(t)h(t)<oo, 
o dt 

and are the boundary values offunctions analytic in the inte
rior of the unit disc. 

Lemma 7.1: The mapSB:L 2 (R+,v)-+H2(T,f-l) given by 

where 

is an isometry. 
Proof This is a straightforward variation of Lemma 6.3. 

We note in particular that using the fact that! + is the Four
ier transform of a function with support on the positive half
axis, we know it~has an analytic extension to the upper half
plane so that S J + is analytic on the interior of the unit disc. 
UsingSB , we can now identify Y B with the Fock space over 
H 2(T,f-l). 

We now return to Lemma 6.1 where we have an expres
sion for the states in R I constructed by applying the boson 
creation operators to the fermion vacuum. Using S, we can 
reprt;.sent these states in the Hardy space picture. Suppose 
that!+EL 2(R+,dv) so that 

(Snf+)(t) = f anein
'. 

I 

Consider the one-particle boson state in r, given by 

FII(x,y) = I(x) -I( - y) , 
x+y 

where 

Then 
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Saf+(t) - Snf+( - s) (1 + eit )(1 + eiS) 

2i( 1 - ei(t +<I) (1 + eit )( 1 + e - is) 
SFtt(t,s) 

l:l'an(ein, _ e- inS) 

2i(eit _ e - is) 

Observe that if S nf + is a trigonometric polynomial, then so, 
too, is SFIl . Now n-particle boson states are built up from 
additional factors of the form xl,yl-+I'(x l) -1'( - YI) and 
these map under S into factors of the form l::~ I bn (e in

' 

- e - ins), where 

00 

Snf'+ (t) = I bnein
'. 

n=1 

We recall the notation r}j) + for the restriction of the 
Fourier transform of~EM + to the positive half-axis and re
cord the preceding discussion as the following lemma. 

Lemma 7.2: Boson states in R \ of the form given by 
(6.4), in which the}est functions!I, ... ,fm in AI + have the 
property that S B (~) + is also a trigonometric polynomial, 
map under S into elements of SR l' which are also trigonome
tric polynomials. 

In the Fock sp~ce over H2(T,p,), the n-particle space is 
given by functions Fn, symmetric in their arguments, for 
which 

< 00. 

An orthonormal basis for this space is provided by the tri
gonometric polynomials tPm, ..... mn' where 

tPm, ..... mJtl' ... ,tn) = ~ Sy _1_ IT e
im

;J(21Tmj)I12, 
n. N,ml j~1 / 

(7.1) 

where 1m J = I ml, .. ·,mn J is an unordered sequence of non
zero positive integers and N, m I is the normalization con
stant, and Sy denotes symmetrization. 

Lemma 7.3: If N B (p) is the number of independent tri
gonometric polynomials of order p of the form (7.1), where 
p = l:7~ I m i and G (t) = l:1';;,j ~ I NB ( p)t Iml, then 

G(t) = IT (_1_,) - 1. (7.2) 
,~I 1 - t 

Proof NB(p) is the number of partitions ofp excluding 
p = 0 and (7.2) is the well-known formula for the generating 
function. 

Let us return now to Lemmas 7.2 and 6.1 Let ~ = (eit" 
...,eitn) and 1) -1 = (e - is', ... ,e - iSn). Consider the state in R I, 
F ;'n' obtained by applying m boson operators to the vacuum 
and considering the component containing n <,m fermion, 
anti fermion pairs. 

When the test functions ~ are such that S B r}j) + is a 
trigonometric polynomial, S (nIF;'n is a polynomial in ti' 
1/i- 1 (i = 1, ... ,n). Moreover, in the case where the product of 
the numerator factors}; is a homogeneous polynomial of 
degree p, because there are n first-degree factors in ti and 
1)i- 1 in the denominator, s(nIF;'n will be a homogeneous 
polynomial of degree p - n. An m-boson state is always a 
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direct sum of states containing n pairs with n<,m, say, 
m 

tPm = I EB (s(nIF ~n)(~,1J-I). 
n=1 

By taking linear combinations of tPm for different choices of 
]; we can construct a linearly independent set of polynomial 
states f/lmn with a maximum number of pairs equal to n with 
1 <;n <,m. Noting that states with different values of m must 
also be linearly independent, we can let N (m,n, p) be the 
number of independent polynomial states so obtained with 
m bosons, a maximum of n pairs, and polynomial degree of 
the n-pair state p. 

Now let NB(m, p) denote the number of m boson states 
of degreep. By definition NB(p) = !.~ = I NB(m,p), where 
NB(p) is defined in Lemma 7.3. Note that the summation 
over m must terminate at p because each single boson state is 
of degree;> 1. From their definition, we have 

m 

NB(m,p) = I N(m,n,p - n), (7.3) 
n=1 

where the summand in (7.3) is zero if n;>p. Note that the 
entry p - n appears because an n-pair state of degree p' arises 
from a m-boson state of degree p' + n, as explained above. 

We now have the inequality 
p- .t(n-II 

I N(m,n,p)<,Np(n,p), (7.4) 
m=n 

where Np(n, p) is the coefficient of t P in (6.9) (i.e., the 
numbers of independent n-pair states of total polynomial 
degree pl. The inequality follows because N (m,n, p) counts 
the number of independent states of degree p with n pairs and 
m bosons, and the total number of such states, when 
summed over m, is certainly less than Np(n,p). Then for 
0< t < 1 we have 

00 00 00 

G(t) = I NB(p)t P = I I NB(m,p)t P 

p=1 p=lm=1 
00 00 p - n(n - I) 

= I I I N(m,n,p-n)t P 

n=lp=n2 m=n 
00 00 

<, I I Np(n,p - n)t P 

n = I P = n2 

00 00 

= I I Np(n,p)t P +
n 

n = I P = n(n - II 

00 n 1 
= I tn' II 2 from (6.9) 

n=1 r=!{I-tl 

= G(t) 

from Euler's identity in the theory of partitions. Hence 
p- n(n - I) 

L N(m,n,p - n) = Np(n,p - n), 
m=n 

and this means that there are sufficient polynomial pair 
states produced by the boson operators to approximate any 
pair state. This completes the proof of Proposition 4.3. 

8. APPLICATION TO SOLVABLE MODELS 

There are a number of alternative approaches to the 
"bosons into fermions" programme which we have not 
touched on. A discussion of these is contained in Ring-
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wood. 12 He remarks that the various other methods of re
constructing fermions from bosons (for example, Ref. 13) do 
not in fact yield fermion fields satisfying the CAR's. These 
approaches all depend on expressing the fermion field essen
tially as an exponential of a boson field. The difficulty with 
this has been pointed out by Ruijsenaars 14 and our calcula
tions confirm his findihg that this only makes sense when 
interpreted in terms of quadratic forms and not as operators. 
Naturally, statements about vacuum expectation values of 
quadratic forms do not immediately imply anything about 
algebraic properties of associated operators (which need not 
even exist). 

On the other hand, the approach of Ref. 2 apparently 
yields fermion fields with the correct anticommutation rela
tions. In view of Refs. 12 and 14, it is certainly worth check
ing, at least for the free massless fermion field, how the re
constructed fermions relate to the original ones (so that one 
has an operator equivalence and not just an equivalence of 
vacuum expectation values). We intend to investigate this 
point, as well as the corresponding argument for the mass
less Thirring model elsewhere, using the results of this paper. 
In our analysis of the Schwinger model,3 we employed some 
of the results of Ref. 2 for the free massless fermion field. 
This paper justifies in part that application of Ref. 2. How
ever, Ref. 3 remains incomplete since it would be much more 
satisfactory to have a method of defining the fermion solu
tions of the Schwinger model equations of motion directly 
rather than in an ad hoc way. 

A second factor which motivated this analysis was our 
interest in (QEDb (i.e., massive fermions). The only results 
we are aware of here involve the charge zero vector l5 or deal 
with various cutoff versions of the model. 16.17 Ideally, one 
would like a working version of(QEDb in which a represen
tation of the local U( 1) gauge group would be defined in the 
Hilbert space of the model. Presumably this would give some 
qualitative understanding of the effect of local gauge invar
iance in quantum field theory. Such an analysis would re
quire an understanding of the charge sectors for (QEDb, as 
well as a treatment of the electromagnetic potential in gen
eral gauges and therefore goes well beyond. 15-17 

As to how the results of this paper apply, we believe that 
an understanding of the massive free fermion currents will be 
a first step in analyzing these aspects of (QEDb. The main 
result of the previous analysis for massless fermions is that in 
the zero charge sector (Q = Q5 = 0), the currents are free 
massless Bose fields, and that the other sectors would be 
obtained from this one by the action of an automorphism of 
the C * algebra of the currents. In the massive case, Qs does 
not exist and one is left with the charge operator Q alone. It is 
a straightforward matter to compute the two-point function 
for the representation of the massive time-zero currents in 
the Q = 0 sector. However, the time evolution of the cur
rents (being determined by the evolution of the fermions) is 
not an automorphism of the C * algebra generated by the 
time-zero currents. Consequently, one cannot expect a pre
cise analog, in the massive case, of the result presented here. 
However, it does appear that the massive currents for all 
times act cyc1ic1y in the charge-zero sector, although possi
bly not irreducibly. Whether the analysis of this "current 
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algebra" will assist in makng sense of the interaction term 
jll (x)A Il(X) of(QEDb remains to be seen. We intend to report 
on this subsequently. 
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Three-wave interaction in periodic plasmas 
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Three-wave interaction in a possibly strongly inhomogeneous plasma was considered in Paper II. 
These results are now generalized in order to treat also time-dependent periodic systems. The 
coupled mode equations as given in this paper are applicable to a very large class of unperturbed 
systems including those in Paper II and plasmas with self-consistent or in external oscillating field 
and ~l~o ~lasmas with some crystal symmetry in space-time. In the particular case when the 
relativistic Vlasov equation is used to describe the plasma we give symmetric expressions for the 
coupling coefficients such that the Manley-Rowe relations follow if wave-particle interaction is 
neglected. 

PACS numbers: 52.40.Db, 52.25. - b, 03.65. - w 

1. INTRODUCTION 

In Paper II we considered resonant three-wave interac
tion in a possibly strongly inhomogeneous but stationary 
plasma. It is of considerable interest also to treat oscillating 
backgrounds, like plasmas with a self-consistent large ampli
tude electromagnetic wave present or plasmas in some exter
nal oscillating field. The importance of such systems is evi
dent, for example, in connection with laser fusion or radio 
frequency heating of magnetically confined plasmas. 

In II the background was assumed to have one or sever
al directions of homogeneity in space-time with at least one 
such direction timelike. A mathematically natural way to 
generalize this so that also oscillating systems are included is 
to replace the condition of "homogeneity in some direction" 
by "translational invariance with respect to some 4-vector." 
In this Paper III we thus consider plasmas that unperturbed 
are unchanged by the translation in space-time by some ti
melike 4-vector. There may also be other 4-vectors oftrans
lational invariance. This defines a very large class of unper
turbed systems including those in II as well as oscillating 
systems and also plasmas with the symmetry of a perfect 
crystal in some linear subspace of space-time. 

The purpose of this paper is to give a generalization of 
the coupled mode equations in II valid for the large class of 
unperturbed systems discussed above. The coefficients in the 
coupled mode equations are expressed in terms of the 4-cur
rent response operators oJ (l)[tP ] and oJ (2l[tP,tP ], giving the 4-
current due to the perturbation tP in the 4-potential, and in 
terms of the operator oJ 0-) defined by (3.9) (I). So far we 
have not specified a model for the plasma particles, only that 
the electromagnetic field and the 4-current may be expressed 
in terms of a 4-potential field. The coupled mode equations, 
in this form, are given in Sec. 2. 

An essential motivation for deriving the result in Sec. 2 
is the existing general expressions 1-4 for the 4-current re
sponse operators in the particular case when the plasma is 
described by the Vlasov equation. These expressions exhibit 
the mathematical structure behind the Manley-Rowe rela
tions, which for a Vlasov plasma are valid when wave-parti
cle interactions may be neglected. In the case with a station-

ary background this mathematical structure was considered 
in some detail in I. When the particle orbits had certain al
most periodic properties, it was then explicitly seen that the 
symmetries followed if certain pole contributions were ne
glected in close analogy to the well-known homogeneous 
case. It is sufficiently evident that these considerations in 
Sec. 4(1) can be generalized to include the class of back
grounds considered in this part III, and it seems hardly 
worthwhile doing it explicitly. 

The results of this paper have been formulated with as 
few new notations as possible. The possibility of background 
plasmas with "crystal symmetry," however, makes concepts 
(well-known from solid-state physics) like "reciprocallat
tice" and "unit cell" unavoidable. In the particular case of 
one-dimensional crystal symmetry, these things become 
easier than in higher dimensions, and, since the one-dimen
sional case is of considerable physical interest including plas
mas with periodically oscillating fields, the one-dimensional 
case has been given some separate attention in Sec. 2. The 
mathematical details for the higher-dimensional case are 
given in Sec. 4 B. In Sec. 3 we consider a plasma described by 
the relativistic Vlasov equation. The derivations are given in 
Sec. 4. 

The application of the results in this paper as an instru
ment for treating three-wave interactions in a great variety of 
situations as well as an unifying tool is further discussed and 
exemplified in Paper IV. 

2. THE COUPLED MODE EQUATIONS 

The notations in I, II, and Ref. 4 and the set-theoretic 
notations in Sec. 4 A are used. Thus space-time is a four
dimensional real affine space E with the space V of 4-vectors 
as the associated vector space of translations. As in I and II 
we choose an arbitrary event DEE as origin. Then to each 
vector XE V there corresponds an event PEE such that 
P = 0 + x. Often in notation we identify x and P and write 
xEE, etc. The Lorentz metric (called a scalar product in Ref. 
4; cf. Sec 4 A) is given as a symmetric and non degenerate 
bilinear form· on V: a·bER = real numbers for a,bEV. The 
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Lorentz metric has negative index of inertia 1 and positive 
index 3. 

A. The unperturbed plasma 

Definition 1: (a) T is the set of all 4-vectors of transla
tional invariance for the unperturbed system. 

(b) V t is the vector space spanned by T; V h is the vector 
space of all directions of homogenity for the unperturbed 
system: 

V; = vt, Vp = V~nVt· 
(c) Tp = TnVp. 
Assumptions: The unperturbed systems we consider in 

this paper satisfy the following two properties: 
(a) V t contains a timelike vector; 
(b) V h is a nondegenerate subspace of V. 
Lemma 1: V= Vh + Vp + V;, V= Vt + V;, 

V t = Vh + Vp , 

VhnVp = VhnV; = VpnV; = VtnV; = (0). 

V t' V h' Vp, and V; are nondegenerate subs paces of V. 

Remark 1: Assumption (a) gives a timelike structure 
needed in the definition of a useful wave concept. It is also 
easy to see that assumption (a) implies that V t is nondegener
ate subspace of V. This fact and assumption (b) are sufficient 
for Lemma 1 to be valid. Note that degeneracy of V t or V h 

would imply that VtnV; or V hnVp contains nonzero vector 
(let, for example, V h be degenerate: this means by definition 
the existence of a nonzero aE V h such that a· V h = (0); then 
aE V ~ n V h = V h n Vp), and Definition 2 below would then 
not make sense. 

It is easy to show that assumption (b) means that V h 

either contains a timelike vector or only spacelike vectors. 
Thus V h containing light like, but no timelike vectors are 
excluded. 

Remark 2: The vector space V is thus divided in three 
parts V h, Vp , and V;, which reflects the translational invar
iance structure of the background. In I and II the particular 
case dim Vp = ° was considered. In this paper we deal with 
the general case with arbitrary dimension on Vp. As was 
noted in the Introduction, the cases dim Vp ;;;.2 involves 
some terminology from the theory of crystals which is intro
duced in Sec. 4 B. 

Definition 2: (a) Subscripts t, h, p, or i on a vector aE V 
are defined by at + ai = a, a h + ap + ai = a and atEVt , 
aiEV;,ahEVh,andapEVp (see Lemma 1). 

(b) V E = V, + Vi = Vh + Vp + Vi defines VI' Vi' Vh' 
and V p in analogy to (a) above. 

Lemma 2: The set Tp spans Vp and have the transla
tional invariant structure of a perfect crystal; i.e., there exists 
a basis [ V"''''Vn ) of Vp such that 

Tp = [s,v, + ... +snvn ISj integers forj = 1,2, ... ,n). 

Definition 3: (a) For dim Vp = 1 we define the 4-vector 
of periodicity p so that Tp = [spJs = 0, ± 1, ... ) (see Lemma 
2). The vector p is uniquely determined except for sign. If pis 
timelike, we take p to be future-oriented. Also define 

p.. = 21T(P'p)-'p so thatp·p = 21T and 
Tp = [spJs = 0, ± 1, ... J. Define U = [O,p] and 
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u= [O,p]. 
(b) For arbitrary dim Vp;;;' 1 we define the set ofrecipro

cal vectors to Tp as 

Tp = {VEVp Iv.Tp C [21TSls = 0, ± 1, ... lJ. 
A 

A unit cell for Tp is denoted U and a unit cell for Tp is 
denoted U. The details are given in Sec. 4 B. 

B. The current response operators 

We consider the current response operators 8]11) and 
8J (2) giving the 4-current response on a perturbation ¢ of the 
4-potential so that the change in 4-current due to ¢ is to 
second order in ¢ equal to tjJ(I)[¢ ] + 8J(2)[¢,¢ ]. The 
operator 8J (') is linear and 8J (2) bilinear and symmetric. The 
perturbation ¢ is a 4-vector field on space-time, i.e., ¢E~V, 
and, in order to get causal operators, ¢ is assumed to vanish 
towards the past [¢ELo(E, V) in the notation of Ref. 4]. From 
the equations governing the motion of the plasma particles, 
we do not specify these equations in this section, the current 
responses due to ¢ may be calculated, and causality follows 
then from the condition that also tjJ (I)[¢ ](x) and 8J (2l[¢,¢ )(x) 
vanish when the point x in space-time is moved towards the 
past. It will, however, be very convenient to have the re
sponse operators defined also on some perturbations ¢ that 
do not vanish towards the past. 

Definition 4: (a) Let a be a function, a: Vp + V; ~C 
(C = complex numbers) such that a(v + a) = a(v) for 
VE Vp + V; and aETp. Define 

(a) = L, a(xd dXi for dim Vp = 0, 

(a) = L dxp L, a(xp + xd dxi/ L dxp for 

dim Vp ;;;'1. 

In particular, for dim Vp = 1, we obtain 

(a) = /p,pl-,/d dxp { a(xp +xj)dx
i J[o.PJ Jv, 

= r' ds { a(sp +xd dx j • (2.1) Jo JV
1 

(b)P=P(Vp + V;,V+) is a set of functions 
ifJ:Vp + V;~V+ such that ifJ(v + a) = ifJ(v) for VEVp + V; 
and aETp and such that (lb·ifJI) < 00 for a1l4-vectors b. 

(c) Let L = (eO,e l ,e2,e3 ) be a Lorentz frame. 5 Define 
PL = [ I/JEP leo·ifJ=Oj. 

(d)P(K) =P·e iK
'
X = [¢ J¢:E~V+, 

¢ (x) = tP(xp + x;)e iK
'
X 

), where KEVt : 

PL!K) = [¢EP(K)Jeo'¢ = OJ. 
(e) Define the bilinear from ( , ) on P(K) by 

(¢1'¢2) = (¢ r'¢2)' 
Remark 3: It is natural to consider perturbations and 

normal modes of the form ¢ + ¢ *, where¢EP(K). In this way 
we take the translational in variance structure of the unper
turbed system into account. In the particular case of homo
geneous plasma we observe that P (K) is just the plane waves. 
We now want to have the operators 8J(I), 8J(I-), and 8J(2) 
defined on P (K) and P (K) X P (K) respectively. Clearly, we have 
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to extend the domains of definition for these operators. First 
we extend the operator oj (I) to domain Lo(E, V +) 
= Lo(E, V) + iLo(E, V) so that its linear property is pre

served; tjJELo(E, V +) is expressed as tjJ = tjJ I + itjJz with 
tjJI,tjJzELo(E,v) and {jJ(1)[tjJ ] = oj<l)[tjJtJ + iOJ(1)[tjJz].6 We de
fine oJ (I -) onL O(E, V +) and oJ (Z) onLo(E, V +) X Lo(E, V +) in 
an analogous way. However, since the functions in P(K) do 
not vanish towards the past or the future, we have 
P (K)rlLo(E, V +) = P (K)nL o(E, V +) = 10 J. Let e be a future
oriented timelike 4-vector. For tjJEP (K) we define 
tjJs (x) = tjJ (x)e - se·x • Then tjJs ELo(E, V +) for s > ° and 
tjJ s EL O(E, V +) for s < ° and tjJ s -+tjJ when s--..O. 

Definition 5: TaketjJEP (K), tjJj EP (Kj ),j = 1,2 andK,Kj E V, . 
Take tjJs as in the remark above. Define 

oJO-)[tjJ] = lim {jJ(J-)[tjJs], 
s-.o -

{jJ(Z)[tjJI,tjJzl = lim {jJ(Z) [tjJIs,tjJ2S]' 
5-0-0 + 

Lemma3:{jJ°):P (K)--"P (K);Oj<I-):p (K}--"P (K}forKE V,; 
oJ (Z):p (KI) xP (Kz)--"P (KI + Kz) for KI,KzEV,. 

Lemma 4: Let L = {eo,e l,eZ,e3 J be a Lorentz frame5 

and ilL the projection on V taking the spatial part; 
lhv = v + eo·veo. Then ilL o(oJO) + oJ(1-»)isanHermitian 
operator on PL (K). 

Remark 4: The bilinear form ( , ) is positive definite 
on P L (K) but not on P (K). We consider P L (K) to be a Hilbert 
space with this inner product. 

C. The coupled mode equations 

The electromagnetic wave equation for the perturba
tion tjJ of the 4-potential is to second order in tjJ 

V E ·(V E 1\ tjJ ) = - (flo!Eo)1/2({jJm[tjJ] + oJ (zl[tjJ,tjJ ]). 

(2.2) 

Decomposing the linear part in (2.2) as the sum of one essen
tially Hermitian and one anti-Hermitian part (see Lemma 5 
below) yields 

H [tjJ] + ih [tjJ] = - (flo!Eo)I/ZO)(Zl[tjJ,tjJ], (2.3) 

where 

H [tjJ] = V E ·(V E 1\ tjJ ) + 2- 1
( flo! EO) I IZ(O) 0l[tjJ ] 

+ {jJO-l[tjJ]), (2.4) 

h [tjJ] = - i2-I(flolEo)l/z({jJ0l[tjJ] - {jJ(1-l[tjJ ]). (2.5) 

Remark 5: In a Lorentz frame L = (eO,e l ,ez,e3 J denot
ing xEE with x = (Xi) = Xi ei ( = ~~ xiei ; we use the summa
tion convention) and raising and lowering indices means 
eo= -eo,ei =ei,xo = -xo,andxi =xifori= 1,2,3. We 
then have 

·a a VE =e'- =e·-. 
axi 'ax, 

The wave operator 0 is defined: 

a2 

D=VE,VE = --.-. 
ax'axi 
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(2.6) 

The operator on the left-hand side in (2.2) is equal to 0 if we 
use the Lorentz gauge (V E·tjJ = 0) since 

(2.7) 

Lemma 5: Let L be a Lorentz frame. 5 Then ilL 0 Hand 
ilL oh are Hermitian operators on PL (K). 

Lemma 6: Let L = (eO,el ,eZ,e3) be a Lorentz frame5 and 
takeKEV, such thateo'(K + a) =jiO for allaETp • Then for each 
tjJEP (K) there exist a unique XEP L (K) such that 
VEl\tjJ=VEI\X· 

Remark 6: Thus from Lemma 6 it is seen that we may 
choose to consider perturbations only in the subspace P L (K) 
of P (K). This just means that we have choosen a particular 
electromagnetic gauge, namely, a zero scalar potential in 
frame L. It is after we have choosen gauge that Hilbert space 
and Hermitian operators appear in Lemmas 4 and 5. 

Result 1: Let tjJj EP (Kj ) be given such that 
KI + Kz + K) = 0, KjEV, , andH(tjJj} = 0. Also assume that h 
may, to first order, be neglected in comparison with H in 
(2.3) so that tjJj + tjJ j may be regarded as normal modes. 

If the wave equation (2.3) with second order terms in tjJ 
and damping (h is not neglected) have a solution of the form 

3 

I Aj(x, )tjJj(X) + c.c., (2.8) 
j~ I 

where Aj (xt ) is varying slowly in Xt (in comparison with tjJj) 
due to resonant wave interaction and damping, then Aj sa
tisfy the coupled mode equations. 

(~ <X !K·H [X3K] » ·VtA! - <tjJ !·h [tjJJ])A ~ 
aK K~"') 

= 2i( flolEo)I/Z(tjJJ.oj<2)[tjJl,tjJz])A IAz, (2.9) 

and the two equations are obtained by permuting subscripts 
1, 2, and 3. Here a / aK = V t acting on KE V, [in coordinates 
L = (eo,el,eZ,eJ), K = (w/c)eo + k, Vt = - eoca/aw + a/ak 
while V, acting on Xt = cteo + r is V, = - eoc-Ia/at + a/ 
ar). We define XJK(X) = tjJJ(x} exp[i(K - KJ)'X)' Equation (2.9) 
is gauge invariant, i.e., the coefficients are independent of the 
gauge choosen for tjJI' tjJz, and tjJJ, the equation is also written 
in a covariant (coordinate-free) form. The coefficients on the 
left-hand side of (2.9) are real. The 4-vector 
((a/ aKj(X!",·H [X 3K ] »)K ~ "') is proportional to the group 4-
velocity ug3 EVtf'S. 

Remark 7: The relation corresponding to (2.18) (II) does 
not in the general case with time-dependent unperturbed 
state involve the wave energy but rather the wave action 
Aj IAj (x t W, where 

(2.10) 

In the particular case with a time-dependent background we 
have N = W·/w·. Also note that a factor c- I will be insert-

] ] ] 

ed on the left-hand side in (2.15) (II); there we have 
c-Ieo'V h = a/aw and the so-corrected (2.15) (II) is consis
tent with (2.18) (II). 

Remark 8: The ansatz (2.8) is not always sufficiently 
general. The discussion in the introduction in II is, with mi-
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nor modifications, relevant also for the more general situa
tion considered in the present paper. We may, for example, 
have to consider functions Aj depending not only on X t but 
also on Xi . If so, the coupled mode equations (2.9) must be 
replaced with more complicated ones. On the left-hand side 
we must then have some linear operator which take the Xi 
dependence into account. 

Corollary 1: If h = 0 and 
(1,63.01(2)[1,61,1,62]) = (¢2·8J(2)[¢I'¢3]) = (¢1·8p2)[¢2'¢3])' 
then the Manley-Rowe relations are valid, i.e., 

(2.11) 

is independent ofjE[ 1,2,3). 
Remark 9: The assumptions in Corollary 1 mean for a 

Vlasov plasma that wave-particle interactions are neglected. 
Corollary 2: The mode coupling equation (2.9) may, in 

terms of the Lorentz frame mentioned in Result 1, be written 
as 

(~ + Vg3'~ + V 3)A!(t,r) at ar 
i 

= - V(3,1,2}AI(t,r}A2(t,r). 
N3 

We define 

Nj = Eo(:W (xj!·HXjK) t~K' 
J 

Vgj = - Eo(~ (Xj~'HXjK») N j- I
, ak K~Kj 

Vj = Eo(¢ j-h¢j )Nj- I, 

V(3,1,2) = - 2c-I(¢3·8J(2)[¢I>¢2])' 

3. THE COEFFICIENTS IN THE COUPLED MODE 
EQUATIONS IN A VLASOV PLASMA 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

We obtain from Sec. 2 (I) the following formulas for the 
coefficients in (2.9) when the plasma is described by the rela
tivistic Vlasov and Maxwell equations. The particle species 
index (T is for notational convenience omitted in most places 
below. The unperturbed plasma is determined by the distri
bution function/o(xp,xi ,u) (one for each particle species) and 
the 4-potential <Po(x). They satisfy the translational invar
iance property 

lo(xp + a,xi ,u) = lo(xp,xi ,u), 

V E /\ <Po(xp + a,xi ) = V E /\ <Po(xp,xd for aETp (3.1) 

and the Vlasov equation4 

U· V E 10 + qmo- IC-
2(V E /\ <po·u)·V s 10 = O. (3.2) 

Result 2: 
(a) Let¢jEP(Kj ) forj= 0,1, Ko + KI = 0, and KO,K\EV t • 

Then 

(¢o·8J(I)[¢I]) = (¢\.8J(I-)[¢o» 

= 2- lqc( Llo(xp,xi,U)[ 8x(I)·V E(U'¢O) 

+ 8u(I)·¢o + ox(O)·V E(U·¢tl + ou(O).¢\] dU) (3.3) 
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with ox and ou defined in (c) below. 
(b) Let ¢jEP(Kj) forj = 0,1,2, Ko + KI + Kz = 0, and 

Ko,KI,K2EV t • Then 

(1,60.01 (2)[1,6 I ,1,62]) 

± 2- lqc( f lo(xp,xi,u) 
a,f3.y~O Js 

a'fof3 'foY'foO 

X [6- lox(0) ® oX(I) ®ox(2):V E ® V E ® V E(U,<PO) 

+ 2- lox(a) ®ox({3) ®ou(y):V E ® V E ® <Po 

+ 2- lox(a) ®ox({3):V E ® V E(U'¢y) 

+ ox(a) ® out {3 ):V E ® ¢y] dU). (3.4) 

(c) ox(j) = - qmo-IC2[VsDo-I(U'¢j) 

+ D 0- l(u·Do V sD 0- I(U'¢j))u), (3.5a) 

8u(j) = Doox(j). (3.5b) 

We must here specify boundary conditions in order to define 
D 0- I. For this purpose, we replace Kj in ¢j by Kj + ise, where 
e is a timelike future oriented 4-vector and we take s < 0 for 
j = 0 and s > 0 for j = 1,2. Then the resulting functions ¢jS 
vanish towards the future for j = 0 and towards the past for 
j = 1,2. Now D 0- I is determined by the condition that ox(O) 
vanishes towards the future and oX(I) and ox(2) towards the 
past. Calculating D 0- I by integrating along unperturbed or
bits, this means that forj = 0 we shall integrate to the infinite 
future and for j = 1,2 to the infinite past. Afterwards we take 
the limit s-o - forj = 0 and s-o + forj = 1,2 (cf. Defini
tion 5). 

4. SOME MATHEMATICS AND DERIVATIONS FOR 
SECTIONS 2 AND 3 

A. Vector space with a metric tensor 

Let X be a finite-dimensional real vector space with a 
metric tensor or scalar product or inner product or whatever 
one likes to call a symmetric and nondegenerate bilinear 
form· on X: v·wER for v,WEX. The terminology differs 
between the textbooks; in Ref. 7 the above structure on X is 
called metric tensor in Ref. 8, inner product, and in Ref. 9, 
scalar product or metric tensor. In Ref. 7 it is, however, an 
inner product always positive or negative definite. 

A subspace A of X is called nondegenerate if the bilinear 
form on A inherited from X is nondegenerate. In this paper 
we have the four-dimensional vector space V with Lorentz 
metric with the nondegenerate subspacex V h, Vp, V t and ~ . 

Let A and B denote subsets of X and v, w vectors in X. 
We write 

A +B = [a + b laEA,bEB)' 

v +A =A + v = [a + vlaEA j, 
v·A =A·v = [a·vlaEA ), 

A·B = {a.b laEA,bEB), 

[v,w] = {sv+(I-s)wl0.;;;s.;;;lj, 

Al = (vlvEX,v.A = {O)}. 
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The set A is an orthonormal set in X if A is a subset of X and 
la·al = 1 for each aEA anda·b = Ofora,bEA, a#b. Anorth
onormal set is always linearly independent. A basis B for X is 
a linearly independent set that spans X. An orthonormal 
basis is a basis that is an orthonormal set. The following two 
lemmas are needed in the proof of Lemma 1. 

Lemma 7: Each orthonormal set in X is contained in 
some orthonormal basis for X. In particular, there exist, an 
orthonormal basis for X. 

Lemma 8: Let A be a subspace of X. Then A is nonde
generate if and only if A + Al = X and AnAl = (0]. 

The proofs of Lemmas 7 and 8 may be found in Ref. 7 or 
8. 

B. The periodic structure of the background 

We now consider the vector space Vp with the metric 
tensor inherited from the Lorentz metric on V. We assume 
dim Vp = n>2. The subset Tp of Vp (see Definition 1) has 
the following properties: 

(a) Tp spans Vp. 
(b) Tp is a subgroup of Vp if we regard Vp as a group 

under addition. 
(c) Tp contains no accumulation point; now, regarding 

Vp as a topological space with the natural topology, it has as 
a finite-dimensional vector space (Ref. 7, p. 183). 

It is evident that Tp satisfies (a) and (b). Properly (c) 
follows from physical considerations. It is not difficult to 
show that the properties (a), (b), and (c) imply that there exists 
a basis B = (vl, ... ,vn ] for Vp such that 

Tp = (SIV I + ... + SnVn ISI,,,,,sn integers]. (4.7) 

We call a set satisfying (a), (b), and (c) a lattice and a basis 
B = (vI, ... ,vn ] such that (4.7) is a valid basis for the lattice 
Tp. The unit cell U of Tp with respect to B is 

U = [O,v l ] + ... + [O,v n ]. (4.8) 

The reciprocal lattice Tp is defined as 

Tp = {aEVp la.Tp C !21Tsls integerll. (4.9) 

We give Vp an orientation (it is unimportant which) in order 
to have the .-operator defined8 as 

.'. v/\In-II V p ---+ p' (4.10) 

This is an isometry and, consequently, a bijection. The reci
procallattice may be represented in terms of the basis 
B = (vl"",vn J for Tp as 

Tp = (SIV I + ... +snvn ISI"",sn integers], (4.11) 

where 

Vj = 21T{vol U)-I.(VI/\",/\vj_I/\Vj+I/\"·/\Vn), (4.12) 

vol U= l(v l /\ .. ·/\vn,v l /\ .. ·/\vn)II12= Idet(vi ·vj W12. 

(4.13) 

It follows easily from basic properties of the .-operator8 that 

(4.14) 
~ A 

and that B = (vl,,,,,vn ] is a basis for Vp. The proof that Tp 
defined by (4.9) is a lattice and that (4.11) is true is now easy. 

A A A 

The unit cell U for the lattice Tp with respectto the basis B is 
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U = [O,V I ] + ... + [O,V n ]. (4.15) 

We have 

(vol U)·(vol U) 
= (vol U)I (v i /\ ... /\ vn ,v I /\ ... /\ Un> 11/2 

= (vol U)I (.V I 'U2 /\ ... /\ Vn ) I 
21T1 (v 2 /\ ... /\ Vn ,u2/\ ... /\ Vn > I = (21T)" . (4.16) 

If Band B ' are two bases for Tp and U and U' corresponding 
unit cells, it may be shown that vol U = vol U'. 

C. Transforms 

Let G be a function defined on Vp and taking values in 
some vector space. Let G have the same periodic structure as 
the background plasma, i.e., 

G(xp +a)=G(xp) foraETp. (4.17) 

The G may be expressed as a Fourier series 

(4.18) 

where 

R(a) = (vol U)-IL G(xp) exp( - ia.xp) dxp. (4.19) 

We state without proof that the Fourier coefficients R (a) do 
not depend on the choice of unit cell U. Formula (4.19) may 
also be written in terms of the basis B = (vI,,,,,vn ] for Tp as 

R(a) = f ds l· .. f dSn G(SIVI + ... +snvn) 

X exp[ - i(SIVI + ... + Sn Vn ).a]. (4.20) 

We obtain (4.20) from (4.19) by means of the change of varia
blesg:[O,1]xn---+U definedg(sl"",sn) =SIV I + ... +snvn' 
Then 

I ( 
ag ag ag ag ) 1112 dxp= -/\ ... /\-,-/\ ... /\- dsl· .. dsn 
aSI aSn aS I aSn 

= I (v i /\ ... /\ Vn ,v I /\ ... /\ vn) 11/2ds l· .. dsn 
= (vol U)dsl· .. dsn • (4.21) 

We now define the Fourier transform and the - trans
form on functions from V t to some vector space. A function 
¢ defined on Vmaybe regarded as a function on V t depend
ing on a parameter in Vi' we write 
¢ (x) = ¢ (xt + x;) = ¢ (xt;x;). The Fourier transform and its 
inverse are defined 

¢ (K;X;) = f ¢ (xt;x;}e - iK'Xt dxu KEVu (4.22) 
JV

t 

¢(xt;x;) = (21T)-m f ¢(K,x;)eiK'X'dK, (4.23) 
Jv, 

where m = dim V t • The - transform and its inverse are de
fined 

(4.24) 

(4.25) 
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By substituting (4.24) in (4.25), changing variables K + a-rl< 

and then using 

(4.26) 

we see that (4.25) follows from (4.23). We will need some 
simple properties of the - transform: 

(1) ~ (K,x + a;Xi) = ~ (K,xP;Xi) for aETp. (4.27) 
p ~ 

(2) ~ (K + a,xp;Xi) = ~ (K,xP;Xi )e - ia.xp for aETp . 
(4.28) 

(3) Replacement of Vh + Uby Vh + U + v with VEVt 

does not change the value of the integral in (4.25). 
(4) Let rP (x) = A (x t )tP(Xp;Xi), where A is a complex-val

ued function on V t and r/JEl'; then 

(4.29) 

(5) Take A as in (4) above,KIEVt andB(xt ) = A (xt)eiKI·X,. 
Then 

B(K,xp)=A(K-KI,xp). (4.30) 

(6) ~ (K,xp;xd* = (rP *)- (- K*,xp;Xi)' (4.31) 

HereK is an element in V t+ = V t +iV t . 
(7) LetA, B, and Cbe functions A, B:Vt-V+ and C: 

Vt-V+ ® V+, where C(xt ) =A (xt)®B(xt ). Then 

C(K,xp) = (21T)-m r ~ A (K',xp) ®B(K - K',xp) dK'. 
)vh + U 

(8)With A, B, and C as in (7) above, 

C(K,xp) = (21T)-m I r ~dKI 
)vh + U 

aeTp 

x r ~O(K-KI-K2-a)A(KI,xp) 
)vh + U 

(4.32) 

® B (K2,Xp)e - ia.xp dK2. (4.33) 

The properties (1) and (2) follow directly from the defini
tions. 

Proofof(3): The integrands omitted below are the same 
as in (4.25). It follows from (4.28) that 

(4.34) 

With the notations i~ Sec. 4 B is it thus sufficient to prove 
property (3) with VEU = [O,vI] + ... + [O,vn ). Write 
v = SIVI + ... + Sn vn with O";;Sj";; 1. We have from (4.34) 

The equality 

follows now from (4.35) and 

Vh + U+V}\(Vh + U) 

(4.35) 

(4.36) 

= Vh + [vH(I +SI)VI] + ... + [vn,(1 +sn)vn], (4.37) 
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(Vh + U}\(Vh + U + v) 

= Vh + [O,sIVI] + ... + [(O,snvn). (4.38) 

Proof of (4): We expand tP in a Fourier series: 

(4.39) 

A ibx 
= I A(K-a+b)tPa(xde' p 

aeTp 

A (K,xp )tP(Xp;Xi ). (4.40) 

The properties (5) and (6) follows directly from the defini
tions. 

Proofofproperty (7): 

r ~ A (K',xp) ® B (K - K',xp) dK' 
)vh + U 

= I r ~ A (K' + a) 
)vh + U 

a.beTp 

® jj (K - K' + b )ei(a + b )'Xp dK' 

= I r ~ A (K') ® jj (K - K' + a)eia.xp dK' 
a,b ) Vh + U + (a - b) 

= I r A (K') ® jj (K + a - K,)/a.x dK' 
a JVt 

= (21T)m I e(K + a)/a.xp = (21TtC(K,xp)' (4.41) 
a 

Proof of (8): By first performing the K2 integration and 
the summation, we obtain from (4.33) 

C(K,xp) = (21T)-m r ~dKIA(KI,xp) 
)vh + U 

® B (K - K I - a,xp)e - ia.xp, (4.42) 

where a is a function of K - KI determined by the condition 
K -KI - aEVh + U. From (4.42) and (4.28) we obtain (4.32). 

Definition 6: For tP, tPI' tP2EP and K, K l' K2E Vt define 

OJK [tP](xt ) = OJ(1)[rP ](x) exp( - iK'x), 

oJK_ [tP](xt ) = oJo-)[rP] exp( - iK'x), 

oJK1 'K2 [tPI,tP2](Xt ) 

= OJ!2) [rPI.rP2] (x) exp[ - i(KI + K2)'X], 

where 

(4.43) 

(4.44) 

(4.45) 

rP (x) = tP(xt ) exp(iK'x), rPj (x) = tPj (xt ) exp(iKj ·x). (4.46) 

Lemma 3, which is proved in subsection D below, is equiva
lent to 

(4.47) 
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i.e., the right-hand sides of (4.43)-(4.45) are independent of 
X j • We also need the properties 

(1) - -(9) (8J [t/>]) (K,Xp;Xi )=8J,,[t/>,,](xp;xd, (4.48) 

(bJlI-)[t/> ] - (K,Xp ;xi ) = bJ" _ [¢K ](xp ;xd, (4.49) 

where we have used the notation 

¢K (xp ;xi ) = ¢ (K,Xp ;xd. (4.50) 

(10) (8J(2)[t/>,t/> ])- (K,Xp ;Xj) 

= (21T)- m { ~ 8JK',K-K [¢K"¢"-K'] dK'. (4.51) 
JVh + U 

" ( 11) Let a,bETp, then 

bJK1 + a.K, + b [¢K1 + a ,¢,,' + b ] (Xp ;xi ) 

"J [ 7i. ;, ( ) - ita + b )·x == U. K"K
2 

'PKt ,'PK2 ] Xp ;Xi e p. (4.52) 

(12) Let K 1,K2EV,+; then 

(¢T,8JK1 '''2 [¢I,¢zD * = (¢J,8J _ "T. - 4 [¢T,¢T])· (4.53) 

Proofof(9}: Take the inverse - transform on (4.48) and 
(4.49). 

Proof of (10): Denote ¢K (xp ;xd exp(iK'X) = t/>" (x). Then 
the inverse - transform on (4.51) yields 

bJl2)[t/>,t/> ](x) 

= (21T) - 2m { ~ dKeiK'x 

JVh + U 

X { ~ 8JK',K-K' [¢K"¢K-K'] dK' Jvh + U 

= (21T)-2m { ~dK { ~bJ(2)[t/>K,t/>K_",]dK', 
JVh + U JVh + U 

(4.54) 

We have 

( ~ t/>" _ K' dK = ( ~ t/>" dK = ( ~ t/>K dK, 
Jvh+u JVh+U-K' Jvh+u 

(4,55) 

where the last equality follows from property (3) above. Now 
(4.54) follows easily by means of (4.55) and (4.25). 

Proof of (1 1): This is a simple consequence of (4.28). 
Proof of (12): This follows easily from 

(8J(2)[t/>I,t/>2])* = 8J(2)[ t/> T,t/> nand (4.45). 

D. Proofs of the lemmas and the results in Sees. 2 and 3 

Lemma 1 follows easily from Lemma 8 if V, is non de
generate. By assumption (a) in Sec. 2 and Lemma 7 we may 
choose a Lorentz frame L = (eO,e l ,e2,eJ) such that eoEV,. If 
aEV, has the property a·V, = [0], it follows that 
a·eo = a·a = 0 or in coordinates a = ai ei that aO = 0 and 
(a J)2 + (a2)2 + (a3f = 0 and thus a = O. This proves that V, 
is nondegenerte. Lemma 2 is considered in Sec. 4 B. Lemma 
3 is equivalent to (4.47). These are proven exactly like the 
corresponding relations in paper I [see remark 5(1)] with the 
difference that now the translation v may be a 4-vector of 
periodicity. Lemma 4 follows from [see (3.9) (I)] 

(t/>o,8J(l)[t/>J» = (8J(I-l[t/>O],t/>I)' t/>o,t/> IEP (K). (4.56) 

Lemma 5 follows from (4.56) and 
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(t/>O,'VE·(VEI\t/>I) = (VE·(VEI\t/>o),t/>I)' t/>O,t/>IEP(K). 

Here (4.57) is derived by means of the equality 

t/> (\'·(V E'(V E I\t/>d) + V;(t/> ~.V E I\t/>d 

(4.57) 

= t/>1'(V E'(V E I\t/>(\')) + Vi·(t/>I·V E I\t/>~), t/>O,t/>lEP(K}. 
(4.58) 

ProofofLemma 6: We havet/> (x) = ¢(xp;Xj )eiK'X , where 
¢EP. Expand ¢ in Fourier series [see (4.18)] 

Define X by xIx) = 5 (xp ;Xi )eiK'X 
, where 

s(xp;xi ) = I Sa(xd exp(ia·xp), 

Sa (Xi) = [eO'(K + a)]-leo'(K + a) 1\ ¢a (Xi)' 

It is easy to see that (4.61) is equivalent to 

eO'Sa =0 and (K+a)l\sa = (K+a)l\¢a 

The existence and uniqueness of X now follows. 

(4.59) 

(4.60) 

(4.61) 

" aETp. 
(4.62) 

Proof of result 1: The gauge in variance of the coeffi
cients in (2.9) is proved in essentially the same way as in II. 
Also the reality of the coefficients on the left-hand side of 
(2.9) follows as in II. We may thus choose t/>j EP L (Kj ) for some 
arbitrary Lorentz frame L. We use the symbol a (En) to de
note any quantity of order En or smaller, where E is a small 
parameter. We assume that 

Aj = a (E), t/>j = 0(1), LlK = a (E), 

H = 0(1), h = OlE), j = 1,2,3. 

We define H" and h" by [cf. (4.43)-(4.45)] 

HK [¢](x,) = H [t/> ](x) exp( - iK·x), 

h" [¢](x,) = h [t/> ](x) exp( - iK'X), 

(4.63) 

(4.64) 

(4.65) 

where t/>EP (K). We assume that ¢, ¢j are related to t/>, t/>j by 
(4.46). The - transform on (2.8) yields, with the use of(4.29) 
and (4.30), 

3 

¢ (Xp ;xi ) = I [Aj(K - Kj,X p )¢j(xp ;xi ) 
j~ I 

+ (A n- (K + Kj'Xp )¢j(xp ,Xi)], (4.66) 

where t/> (x) denotes the expression (2.8). Now, due to the slow 
variatio£ of Aj , Aj(K - Kj )#0 only for K - Kj - a = OlE) 
with aETp • Let us now consider K in the interval 
K - K3 = Ok). Then 

(¢3,(H" + ih" )¢" ) 
= (¢3,[(K-K3 )·(aH,JaK),,=KJ +ihKJ +0(E2l]¢,,), 

(4.67) 

where we have used (¢3,H" ... ) = 0 [see (4.64), (4.56), (4.57), 
and H [t/>3] = 0]. We obtaid from (4.24) and A (K) #0 only for 
K = OlE) that 

A3(K - K3,X
P

) = A3(K - K3 ) for K - K3 = a (E). (4.68) 

Thus we have 
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¢K (Xp ;X;) = A3(K - K3)rP3(Xp ,xj) for K - K3 = 0 (E). 
(4.69) 

(21T) - m f (rP3,(HK + ihK )¢K) exp [irK - K 3)'Xt ] dXt JK~K3+0(~1 

Substituting (4.69) in (4.67) and integrating over the K inter
val K = K 3 + 0 (E) in V t after multiplying with a factor yield 

= (21T) - m f I (a(rP3,HKrP3)/aK)K = K;( - i)(a exp[i(K - K3 ),Xt ]laxt ) + i(rP3,hK, rP3) 
JK=K3 + O(~I 

X exp[i(K - K3)'Xt ] + 0 (~) exp[i(K - K3)'Xt ] JA3(K - K3) dK 

= - i(a(rP3,HKrP3)/aK)K=K;VtA 3(xt ) + i(rP3,h KJ rP3)A 3(xt ) + O(~). (4.70) 

For obtaining the 0 (E)3 term it is used that the 0 (E)2 operator 
varies slowly as a function of K for K'ZK3 while A3(K - K3) 
varies fast. From (4.48), (4.49), and (4.51) we obtain the
transform of the electromagnetic wave equation (2.3) as 

(HK + ihK)¢K 

and from (4.71) we get 

(21T)-m f (rP3,(HK + ihK)¢K) exp[i(K-K3)'Xt ] dK 
JK=KJ+O(EI 

( )
1/2 1 = _ flo (21T) - m dK 

Eo K~KJ+O(~I 

X f ~ (rP3,DJB~K-K' [¢K"¢K-K']) )Vh + U 

(4.72) 

Si~e ¢K #0 only for K = ± Kj + a + 0 (E) forj = 1,2,3 and 
aETp, it follows that the K' integral in (4.72) gets contribu
tions only for K' in the two intervals K' = - K 1 + a 1 + 0 (E) 
and K' = '" - K2 + a2 + 0 (E), where a 1 and a2 a~ determined 
bya

"
a 2ETp and - KI + a p - K2 + a2EVh + U. Thecontri

butions from the two K' intervals are equal, and the right
hand side of (4.72) may be rewritten 

_ 2(flo)'12(21T) - 2m f dK f ... dK', 
EO JK=KJ+O(EI JK'=-KI+al+O(EI 

(4.73) 

with the same integrand in the K' integral as in (4.72). The 
change of variables K'-rll, + K' in (4.73) and the use of(4.52) 
show that the right-hand side of(4.73) (and thus of (4.72)] 
may be rewritten as 

_ 2(flO) '12 (21T) - 2m f dK f ... dK', 
EO JK=K3+0(~1 JK'=-KI+O(~I 

(4.74) 

where the integrand in the K' integral is the same as in (4.72). 
We have 

¢K' = (A T((K' + KdrPT, ¢K-K' = (A T((K - K' + K2)rPT 

for K = K3 + OlE) and K' = - K, + o (E) (4.75) 

[cf. (4.69)], and, by substituting (4.75) in (4.74) and observing 
that only (A T)(K' + K1) and (A T)(K - K' + K2) vary within the 
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narrow intervals over which we integrate so that 
(rP3,DJ B~K _ K' [rPI>rP2] ) may be taken outside the integrals, we 
finally obtain that (4.74) is equal to 

- 2lj.tol Eo) ,12 (rP3,DJ _ K" _ K, [ rPT ,rPT] )A T(xt)A T(Xt ). 
(4.76) 

Now combining (4.70) and (4.72) and replacing the right
hand side of (4.72) with (4.76) yields 

(a (rP3,HK rP2) laK)K ~ KJ ·VtA ~ - (rP3A, rP3)A ~ 

= 2i(flolEo)1/2(rP~,DJKI'K)rPl,rP2])AI A2. (4.77) 

Here also (4.53) has been used. It is easy to see that (4.77) is 
equivalent to (2.9). 

The statement concerning the group 4-velocity in Re
sult 1 is proved in much the same way as the corresponding 
statement in II. The proof involves relations corresponding 
to and formally identical to (4.16)-(4.20) (II). 

Proof of Result 2: Choose ¢EL orE, V +) such that 
¢ (Ko,Xp ;Xj) = ¢o(x) exp( - iKo'X) and so that (4.78) converge. 
Then we have the equality 

L ¢.DJI21[¢I'¢2] dx = (¢0,DJl21[¢,'¢2])' 

We derive (4.78) by expanding in a Fourier series 

DJ I21 [¢I,¢2](X) exp[ - irK, + K2)'X] 

= L H (a;xj) exp(ia·xp ), 

(4.78) 

(4.79) 

in accordance with (4.18), observing (see Lemma 3) that the 
left-hand side of (4.79) has the periodic structure (4.17). By 
substituting (4.79) in (4.78) and applying (4.22) on the left
hand side and (4.24) on the right-hand side we obtain both 
sides equal to S v dXj ~aE T ~ (Ko - a;Xj )·H (a;xj ) and the 

p 

equality (4.78) is thus obtained. 
An expression for the left-hand side in (4.78) for a Vla

sov plasma is obtained from (2.2) (I). The equality between 
the right-hand side of(2.2) (I) with ¢o replaced by ¢ and the 
right-hand side of (3.4) is now proved in essentially the same 
way as (4.78). We then need results corresponding to Lemma 
3, (4.48), and (4.49) for the operators 10 DxlIl, DU(I), Dx(I -I, and 
DU(I-l in place of DJ(I1 and DJ(I-l. 

'I. Larsson, I, Math, Phys. 23, 176 (1982). 
21. Larsson. I. Math. Phys, 23. 183 (1982). 
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Current responses of first and second order in a collisionless plasma. IV. 
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The purpose of this paper is to illustrate with a few concrete examples how the general formulas 
given in the preceding papers I-III may be used. We consider three different background plasmas: 
a homogeneous static magnetized plasma, a homogeneous magnetized plasma in an oscillating 
electric field, and a semi-infinite homogeneous static magnetized plasma. The coupled mode 
equations governing resonant three-wave interaction are given in each case. 

PACS numbers: 52.40.Db, 52.25. - b, 03.65. - w 

1. INTRODUCTION 

A purpose ofthe companion Papers 1_111'-3 is, for the 
particular cases of first- and second-order responses, to ex
ploit and to simplify the exploitation of the general formulas 
for the current response operators found in Ref. 4. A second
order process of basic importance is a resonant three-wave 
interaction, and it is considered for inhomogeneous and/or 
periodic plasmas in II and III. The formulas in I-III may be 
very useful tools in the study of first- and second-order pro
cesses in general and the resonant three-wave interaction in 
particular. 

Considering inhomogeneous and/or time-dependent 
background plasmas, the linear problem of finding the nor
mal modes becomes in general a difficult task requiring nu
merical methods at an early stage of the investigation. In 
most cases we have to manage without dispersion relations 
in closed forms which are so essential and convenient for the 
study of homogeneous-static plasmas. We wish, however, to 
illustrate the general formulas in I-III without the use of 
(lomputers, and, therefore, we choose to study a couple of the 
few known particular cases of time-dependent or inhomo
geneous Vlasov plasmas, where it is indeed possible to derive 
analytic explicit expressions for the dispersion relations. We 
consider, besides the homogeneous-static case (Sec. 2), a ho
mogeneous magnetized plasma in an electric field Eo sin nt 
(Sec. 3) and a semi-infinite homogeneous magnetized plasma 
(Sec. 4). We consider in Secs. 3 and 4 potential waves since 
then the dispersion relations have nice forms and are also 
much studied.5

-
11 We derive in Secs. 3 and 4 the dispersion 

relations by means of explicit expressions for the eigenfunc
tions and the corresponding eigenvalues of the charge den
sity response operators. This method makes these deriva
tions transparent and is also very convenient when we apply 
Corollary 2 (III) and obtain the coupled mode equations in 
algebraically nice forms. Our results for the coupled mode 
equations are given by (2.13)-(2.17) for a homogeneous and 
static plasma and for the two other systems we summarize at 
the end of Secs. 3 and 4. 

The results in Secs. 2 and 4 are merely an illustration of 
some formulas in I-III and a check of the agreement with 
previous results. In Sec. 3 we generalize Ref. 12 so that we 
now treat a magnetized plasma where k" k2' Eo sin nt and 
Bo have arbitrary directions. 

This paper could easily be extended in some directions. 
The main problem, and the reason we do not include these 
generalizations, is that we get more complicated and less 
studied dispersion relations. Before considering nonlinear 
theory, one should study the linear theory in some detail. It 
must be stressed, however, that there are no qualitatively 
new problems involved. The assumption of potentiality in 
Secs. 3 and 4 may be removed. We can still use essentially the 
same technique, but we use the relations (B 1) and (B2) or (C1) 
and (C2) instead of(3.8) and (3.9) or (4.4) and (4.5), respective
ly. Another interesting unperturbed system for which we 
easily find the eigenfunctions for the charge density response 
operators is the combined Sec. 3-Sec. 4 system obtained if we 
take the unperturbed semi-infinite plasma as in Sec. 4 and 
apply an electric field Eo sin nt parallel to the surface. De
noting this unperturbed system by subscripts OS (since the 
systems in Secs. 3 and 4 are denoted with subscripts 0 and S, 
respectively), we have the relations 

(15 pgk [U]; z;;;'O) = R -1 0 15 pglOR [U; z;;;.O], (1.1) 

(15 p~k [U,U]; z;;;'O) = R - 10 15 p~I[R [U; z;;;.O], R [U; z;;;.O]] 
(1.2) 

corresponding to (3.8)-(3.9) or (4.4)-(4.5). It is not difficult to 
proceed from here in a similar way as in Secs. 3 and 4. 

There are many aspects on the formulas in I-III which 
it would be desirable to illustrate; we have, for example, not 
considered relativistic phenomena at all. We have, however, 
considered both time-dependent and space-dependent un
perturbed states and also the resonant interaction both 
between bulk modes and between surface modes. We have 
used the convenient technique of eigenfunction expansion 
both in the linear and nonlinear theory and treated the oscil
lating and the semibounded plasma in a unified way. In Ap
pendix A we have demonstrated how to take the unrelativis
tic limit of the formulas in I-III. In the Appendices Band C 
the general current response operator formulas for the Vla
sov-Maxwell model of a plasma are used in the derivation of 
the relations (B1), (B2), (C1), and (C2). 

2. THREE·WAVE INTERACTION IN A HOMOGENEOUS 
PLASMA 

It is instructive to check that Corollary 2 (III) yields the 
expected formulas for the coupled mode equations when ap-
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plied to a homogeneous stationary plasma. 13 Let us consider 
the electric field 

3 A L Aj(t, r)Ej exp( - i{JV + ikjor) + C.c., (2.1) 
j=1 

of three resonantly interacting normal modes, i.e., 

liJ l + liJ2 + liJ3 = 0, kl + k2 + k3 = 0, (2.2) 

D'(liJj , kj)oEj = 0, j = 1,2,3. (2.3) 

Here D' denotes the Hermitian part of the dispersion tensor 
D = D' + iD". The anti-Hermitian part iD" vanishes for a 
lossless medium, and for the modes we consider it is assumed 
that iD" may be neglected to first order. The polarization 
vectors Ej of the electric field may be normalized so that 
EJ'oEj = 1. In terms of the linear conductivity (J"~I [K = (liJl 
cleo + k, but here we use K just as a shorthand notation for 
(liJ, k)14 we express the dispersion tensor as 

D(liJ, k)oE = E + C2liJ- 2kX(kXE) + i(EoliJ)-Ia-!}I(E). 
(2.4) 

Take the 4-potentials rPj in Corollary 2 (III) as 

rPj(t, r) = - iCliJj- IEj exp( - iliJjt + ikjor), 

and thus 

(2.5) 

XjK(t, r) = - iCliJj- IEj exp( - iwt + ikor). (2.6) 

Then (0 is composition off unctions or operators) 

ilL 08J 01 [XjK] = (liJlliJj)(J"~I[Ej] exp( - iliJt + ikor), (2.7) 

ilL ot5J O-) [XjK ] = (liJlliJj)(J"~ -1[Ej ] exp( - iliJt + ikor), 
(2.8) 

where i(J"~ -) is the Hermitian conjugate of i(J"~I, i.e., 

a*oi(J"(lI(b) = (i(J"o-l(a))*ob, (2.9) 

We obtain from (2.4)-(2.5) (III), (2.4), (2.7), and (2.8) that 

ilL oH [X3K ] (t, r) = - iliJ2liJ3- IC-ID'(liJ, k)oE3 

X exp( - iliJt + ikor), (2.10) 

ilL oh [rP3](t, r) = - iliJ3c-ID"(liJ3' k3)oE3 

X exp( - iliJ3t + ik3or). (2.11) 

From (2.12) (III) we now obtain 

( i.+Vg3oi.+V3\AT= iliJ3 V(3,1,2)AIA 2' (2.12) 
at ar r W3 

which together with the two equations obtained by even per
mutations of(I,2,3) are the coupled mode equations. Here 
(cf. Ref. 13) 

Jfj = EoliJj(a(EJ'0D'(liJ, kj )oEj )laliJla, = Wj' (2.13) 

Vgj = - EoliJj Wj-l(a(EJ'0D'(liJj , k)oEj)/ak)k=k
J

' (2.14) 

Vj = EoliJj Wj-IEjoD"(liJj , kj)oEj , (2.15) 

V(3,1,2) = (2i/liJ3)ETo(J"K,.K
2 
[E I, E2l. (2.16) 

For electrostatic waves we may write (2.13 )-(2.15) as 

(
aEr) (aErlaliJ) 

Jfj = EoliJj aliJ' Vgj = - aE la k' 
J r J 

Vj = (aEr~aliJ)/ (2.17) 

where the dielectric response function E(liJ, k) = k -2koD(liJ, 
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k)ok, Er = Re E, E; = 1m E, and ( )j means that liJ = liJj and 
k = kj shall be inserted. 

Formulas for the dispersion tensor may, for important 
plasma models, be found in standard textbooks. The second 
order conductivities have, often implicitly, been calculated 
for many different particular cases in papers on three-wave 
interaction. General formulas for (J"~I.K2 of a magnetized mul
ticomponent relativistic or unrelativistic plasma are given in 
Ref. 15 for the Vlasov-Maxwell model. 

30 THREE-WAVE INTERACTION IN THE PRESENCE OF 
AN OSCILLATING ELECTRIC FIELD 

Consider a spatially homogeneous plasma with two 
components, we take the species index (7 = e or i for elec
trons or ions, respectively. A uniform static magnetic field 
Bo = BOe3 and a uniform oscillating electric field 
Eo sin flt = (Eoxe l + Eoz e3)sin flt are present. 14 Define 

~a(t) = - !L[( EOX e l + Eoz e3)sin flt 
m fl 2 _ liJ~ fl 2 

+ - e2 cos flt , liJe EOx ] 
fl fl2 - liJ~ 

(3.1) 

Here, as in many places below, we have omitted the particle 
species index (7 (on q, m, and liJe ). This unperturbed oscillat
ing physical system will sometimes be labeled with a sub
script 0 to distinguish it from the corresponding homogen
eous and stationary system obtained in the absence of the 
external oscillating electric field but with the same magnetic 
field Bo. This latter unperturbed state will be labeled with a 
subscript H. It is easy to check thatra(t) + ~a(t) is an unper
turbed orbit in the 0 system ifr a (t ) is an unperturbed orbit in 
the H system. We have the following relation between the 
unperturbed particle distribution functions: 

f'fJ(t, v) =f~(v - ~~(t)). (3.2) 

We are going to reconsider linear theory in a way which is 
suitable for the application of Corollary 2 (III). We consider 
perturbations of the form a(t )exp( - iliJt + ikor), where 
a(t) = a(t + 21T I fl ) is periodic. We introduce the usual scalar 
product between complex valued functionsa(t) and b (t) with 
period 21Tlfl as 

fl i2rr1fJ 

(a, b > = (a*b> = - a*(t)b (t) dt. 
21T 0 

(3.3) 

Note that this use of the symbol ( > is consistent with Defini
tion 4(a) (111).16 We define Il[ = Il(k)] and e [ = e (k)] so that 

ko(t(t) - ~i(t)) = -Il sin(flt + e). (3.4) 

The equality (3.4) does not uniquely determine Il and e. In 
order to make the comparison with Ref. 12 as simple as pos
sible, we take 

Il = - (A 2 + B2)I/2 sgnA, e = arctan(B IA), (3.5) 

where sgn A = A IIA I and 

A=- --+---qi (kzEoz kxEox ) 
mi fl2 fl2 - liJ~i 

(3.6) 
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B = kyEox (.!!..!...- Wcj _ ~ Wee ). (3.7) 
fl m i fl 2 - W~i me fl 2 - W~e 

We prove in Appendix B that the current response op
erators of the H and the 0 systems are simply related to each 
other. In particular, we obtain for the charge density re
sponses on a perturbation U(t, r) of the scalar potential that 

o p~,I)[ U] = T;- 100 p\,;.I)oTu [U], (3.8) 

o p~,2)[ U,U] = T;- 100 p\,;,2) [ Tu r U], Tu [U]], (3.9) 

where the operator Tu is defined on any function a(t, r, v) by 

Tu [a Ht, r, v) = a(t, r + ;u(t), v + ;~(t )). (3.10) 

The relations (3.8) and (3.9) may alternatively be motivated 
by means of the oscillating reference frame technique. 7,9,17 It 
follows directly from (3.8) and (3.10) that 

Op~·I)[.8~] = -£ok2xu(w+nfl,k).8~, (3.11) 

where 

.8 ~(t, r) = a~(t )exp( - iwt + ik-r), 

a~(t) = exp[ - in(flt + e) - ik-;u(t)] , 

(3.12) 

(3.13) 

n is an integer, and X U(w, k) is the susceptibility of the H 
system, i.e.,18 

o p\,;,I) [ exp( - iwt + ik-r)] (t, r) 

= - tok 2Xu(W, k)exp( - i(j){ + ik-r). 

The functions a~ satisfy 

(3.14) 

(3.15) 

(3.16) 

The factor exp( - ine) in the definition (3.13) is motivated by 
the simple result (3.16). 

It is now easy to derive the dispersion relation. Write 
the potential 

U (t, r) = u(t )exp( - iwt + ik-r) + C.c., (3.17) 

where u(t) has period 21T/fl. We have 

u(t) = I u~a~(t), u~ = (a~, u). (3.18) 

Here and below ~" = ~: ~ _ 00 • The linearized Poisson's 
equation 

.::1 U = - (1/£0)(0 p~I)[ U] + 0 p~I)[ U]). (3.19) 

Substitution of(3.17) and (3.18) in (3.19) yields after the use of 
(3.11) that 

I[(l +x~)u~a~(t)+x~u~a~(t)] =0, (3.20) 

where X ~ = X U(w + nfl, k). Scalar multiplication from the 
left with a7 on (3.20) and then multiplication with 
(1 + X 7) - la7 and summation over I give 

u(t) + I u~X~(1 + X7)-1 (a7, a~ )aHf) = O. (3.21) 
n.l 

Scalar multiplication from the left on (3.21) with a;" and the 
substitution of (3.16) yield 

(3.22) 

where 
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Mm,n = 0m,n + X~ I(1 + X7)-IJ,_ m (P)JI - n (P). (3.23) , 
The condition that (3.22) has a nontrivial solution gives the 
dispersion relation in terms of an infinite determinant6-9 

det(M m.n) = o. (3.24) 

Note, however, that Ref. 9 gives the correct expression for f.1 
only in the particular case when Eox = 0, i.e., when Eo is 
parallel to Bo. 

Let us now consider three normal modes with poten
tials 

where Wj and kj satisfy the dispersion relation 

det(M m,n (Wj' kj )) = 0 

and the resonance conditions 

WI + W2 + W3 = 0, kl + k2 + k3 = O. 

(3.25) 

(3.26) 

(3.27) 

For (w, k) = (wj , kj ) we write aJ.n ,.8 J.n' uJ.n' ej' andf.1j instead 
of a~, .8~, u~, e, andf.1. From (3.9) and (3.13) we obtain 

o p~.2) [ .8 f,n" .8~,n2 ] (t, r) 

= (.8~,nJt ))*exp( - inlel - in2e2 - in3e3) (3.28) 

X C(u,2)(W I + nlfl,k l, W2 + n2fl,k2), n3 = - n l - n2, 

where C (u,2) is the second-order capacitance for the H sys
tem, i.e.,18,19 

o p\,;,2) [exp( - iwlt + ikl-r), exp( - iW2t + ik2-r)](t, r) 

= C(0",2)(Wl' kl' W2, k2) 

X exp( - i(wl + (2)t + i(k l + k2)-r). (3.29) 

By means of the continuity equation for the second-order 
current and charge density [i.e., (3.2) (II)] we obtain c(a,2) in 
terms of the second-order conductivity (1(a.2) for the H sys
tern as 

c(a,2)(K I , K 2 ) = - W3-lk3-(1~:;: [k l, k2]. (3.30) 

Useful expressions for the conductivities may be found in 
Ref. 15. 

It is now straightforward to obtain the coupled mode 
equation by means of Corollary 2 (III). Assume that the po
tential in the plasma may be written 

3 

I Aj(t )uj(t )exp( - iWjt + ikj-r) + C.c., (3.31) 
j~1 

where Aj(t) is slowly varying due to resonant wave-wave 
interaction. We neglect for simplicity wave-particle interac
tions. The functions X 3,K and ¢3 in Corollary 2 (III) are 

X3,K(t, r) = eOu3(t )exp( - iwt + ik-r), (3.32) 

¢3(t, r) = eOu3(t )exp( - iW3t + ik3-r). (3.33) 

Neglecting wave-particle interactions means oJ(t) = oJ(t-) 
and thus h = 0 and the operator H = V E'(V E 1\ . .,) + (Pol 
to)l/2ug). It follows from (3.11), (3.12), and (3.18) that 

(XtK.flX3K)k~k, =k;i(w,k3)' 

where 
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E(liJ, k3) = II [I + X e(liJ + nfl, k3)] IU~,n 12 

+ X i(liJ + nfl, k3)lu~,n 12 J. (3.35) 

From (3.12), (3.18), (3.28), (3.34), and Corollary 2 (III) we 
obtain 

V(3,1,2) = 2I I C 1a,2)(liJ l + nlfl, k p liJ2 + n2fl, k2) 

u "l+n1+n\=0 

3 

X II [U},n; exp( - in/ij) ] (3.36) 
j= I 

and the mode coupling equation 

dA f iV(3,1,2) 
--= AIA2' 

dt €ok ~ (aE(liJ, k3)1 aliJ)", = "', 

(3.37) 

The Manley-Rowe relations [cf. Corollary 1 (III)] follows 
the symmetries 

C 1a.2)(liJj + njfl, kj , liJ, + n,fl, k,) 

= Cla,2)(liJ l + nlfl, k l• liJ2 + n2fl, k2) 

for}# 1 and}, lEI 1,2,3 J, (3.38) 

and the symmetries (3.38) follow from (3.30), Ref. 15, and the 
neglect of wave-particle interactions. The dispersion rela
tion (3.24) has the form of an infinite determinant. A stan
dard simplifying assumption is that X i(liJj + nfl, kj ) = 0 for 
n #0. 7

-
9 We then consider low frequency modes IliJj 1 <.fl. 

Correspondingly, we also take CIi.2)(liJl + nlfl, k l, 
liJ2 + n2fl, k2) = 0 for (n l, n2)#(0,0). With these assumptions 
we can solve (3.22) and obtain 

(3.39) 

where we have taken u~ = 1 (this is just a convenient normalization). From u~ = 1 in (3.39) yields the dispersion relation 

(1!X~) + IJ,(,u)2/(1 + x7) = o. (3.40) 
I 

We now obtain 

(3.41) 

V(3,1,2) = I 2C 1e,2)(liJl + nlfl, k l, liJ2 + n2fl, k2) 
n l + n1 + til =0 

The resonant interaction ofthree waves satisfying the disper
sion relation (3.40) is considered in Ref. 12 for particular case 
when kj is parallel to Eo for} = 1,2,3 and the plasma is 
unmangetized. We recover their results if we take 
kj = kjZe3=kjzz for} = 1,2, 3 and Eox = O. From (3.8) and 
(3.9) in Ref. 15 we obtain 

z.da.2) (z z) = liJ3q3 J a fH 
K,.K,' 2m2 av

z 

dv 
X . 

(liJ l - k lz vz )(liJ2 - k 2z vz )(liJ3 - k 3z vz ) 

(3.43) 

It is now straightforward to compare with Ref. 12. 
Note, however, that in (6) of Ref. 12 some notational ambigu
ities and a printing error have appeared, and thus we should 
make the following replacements in (6) of Ref. 12: 

[Xi(liJ, k)] 3---->Xi(liJ I ' kdxi(liJ2' k 2)Xi(liJ3, k3)' 

I n (,u)-Jn(,uj) and q;---+q;. 
; ; 

In the limit Eo~ we obtain V(3,1,2) = 2~aCla.2) 
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(3.42) 

(liJ p k p liJ 2,k2) and aE/aliJ = a€laliJ from (3.41) and (3.42) or 
(3.35) and (3.36). Then (3.37) is the usual mode coupling 
equation for electrostatic waves in a homogeneous and sta
tionary plasma. 

In conclusion, we have in this section obtained the cou
pled mode equations for the interaction of three potential 
waves (3.31) satisfying the dispersion relation (3.26). The 
coupled mode equations are then (3.37) plus the two equa
tions obtained by even permutations of(I,2,3). The coeffi
cients in these equations are obtained from (3.18), (3.35), and 
(3.36). In the particular case when the three interacting 
waves satisfy the dispersion relation (3.40), we obtain the 
coefficients in (3.37) from (3.41) and (3.42). The Manley
Rowe relations are satisfied in both cases. 

4. THE INTERACTION OF SURFACE WAVES IN A SEMI
BOUNDED PLASMA 

We consider a plasma confined to the region z;;pO. 14 The 
plasma may have several particle components, but we omit 
the particle species index (T. We assume that the particles are 
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specularly reflected at the boundary. 10.1 1.20 A uniform mag
netic field Bo = Roe3 may be present. 14 The unperturbed dis
tribution function/s is 

Is (z, v) = IH (v) for z;;;.O 

Is (z, v) = 0 for z < O. 
(4.1) 

Here/H is a solution of the Vlasov equation for an unbound
ed plasma, i.e., vXBo·(a lav)/H(V) = 0, such that/H(vx' vY ' 

vz) =/H(Vx, v
Y

' - vz). Then/s is a solution of the Vlasov 
equation satisfying the right boundary condition in accor
dance with the specular reflection model. The subscript S is 
used for the semi bounded unperturbed state, and the sub
script H for the corresponding unbounded unperturbed 
state. For any function a(t, r, v) defined on {(t, r, v)} (essen
tially = R 7), we use the notation (a; z;;;'O) for the restriction of 
a to the halfspace { (t, r, v) Iz;;;.O}. The operator R is defined on 
functions which have this half-space as domain by 

R [a; z;;;.O](t, r, v) 

= a(t,x,y, 14 Vx' VY ' (sgnz)vz), (4.2) 

where sgn z = 1 for z;;;,O and sgn z = - 1 for z < O. Thus the 
operator R extends the function (a; z;;;.O) defined on a half
space to a function on the whole space by specular symmetry 
in the argument. The inverse operator R -I is then defined on 
the specularly symmetric functions a(t, r, v), i.e., functions a 
such that a(t, x, y, z, Vx' vY ' vz) = a(t, x,y, - z, vx' VY ' - vz) 
for z#O and then R -I[a] = (a; z;;;'O). The operator R plays 
the same role in this section as the operators T" in Sec. 3. We 
note that (Is; z;;;.O) = R -I [/H]' We introduce the scalar 
product between complex-valued functions a(z) and b (z) as 
[cf. (3.4)] 

(a,b ) = (a*b ) = J: 00 a*(z)b (z) dz. (4.3) 

This is consistent with Definition 4(a) (III). Corresponding to 
(3.8) and (3.9), we have the relations (see Appendix C), 

(8p~I)[U];z;;;'0)=R - lo8pWoR [U;z;;;'O], (4.4) 

(8p~)[ U,U]; z;;;.O) 

=R -lo8p~)[R [U;z;;;.O],R [U;z;;;.O)). (4.5) 

It follows thaes [cf. (3.11)] 

8 p~) [(cos kzz)exp( - iwt + ikxx + ikyY)] (t, r) 

= - Eok 2X(W, k)(cos kzz)exp( - iwt + ikxx + ikyY) 
(4.6) 

for z;;;.O. 

We are going to use the cosine transform 

ac (kz) = i oo 

a(z)cos kzz dz, (4.7) 

2 i oo 

a(z) = - ac(kz)cos kzz dkz, 
1T 0 

(4.8) 

in order to analyze the linearized Poisson equation 

AU+(l/Eo)8pkl)[U] =0. (4.9) 

We look for solutions to (4.9) of the form 

U(t, r) = u(zlexp( - iwt + ikxx + ikyY) + c.c, u(O) = 1, 
(4.10) 
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with u(z) and u'(z) continuous across the boundary z = 0, i.e., 
there is no surface charge. Substitution of (4.10) in (4.9), the 
cosine transformation of the equation obtained, and making 
use of (4.6) yields 

- u'(O) - k 2uc (kz) - k 2X(W, k)uc (kz) = O. (4.11) 

From (4.9) for z.;;;O, i.e., Laplace's equation, we obtain 

u(z) = exp(klz) for z.;;;O, 

U'(O) = kl = (k; + k ;)112. 

We obtain from (4.11) and (4.12) 

kl 
U (k ) - - ---:---

c z - k 2E(W, k) , 

2kl i oo cos(kzz) 
u(z) = - -- 2 dkz, z;;;.O, 

1T 0 k E(W, k) 

(4.12) 

(4.13) 

and the well-known dispersion relation is obtained from 
u(O) = 1 in (4.13)10.11.21 

2kl i oo 

1 0= 1 + - 2 dkz=;(W, kx' ky). (4.14) 
1T 0 k E(W, k) 

Let us now consider three normal modes 

uj(z)exp( - iWjt + ikjxx + ikjyY) + c.c., 

uj(O) = 1, j = 1,2,3, 

where; (wj , kjx , kjy ) = 0 and where 

WI + W2 + W3 = 0, k lx + k2x + k3x = 0, 

(4.15) 

k ly + k2y + k3y = O. (4.16) 

It is now straightforward to obtain the coupled mode equa
tions from Corollary 2 (III). Assume that the potential in the 
plasma may be written 

3 

L Aj(t )uj(z)exp( - iWjt + ikjxx + ikjyY) + C.C., (4.17) 
j= I 

where Aj(t) is slowly varying due to resonant wave-wave 
interaction. The functions XjK and tPj in Corollary 2 (III) 
are l4 

XjK(t, r) = eOuj(z)exp( - iwt + ikxx + ikyY), 

tPj(t, r) = eOuj(z)exp( - iWjt + ikjxx + ikjyY) 

=eou(t, r), 

(4.18) 

(4.19) 

where K = (w/c)eo + kxe l + kye2 is used as a shorthand no
tation for (w, k x' ky). 

We obtain by means of (4.6)-(4.8) and (4.18) that [cf. 
(3.34)-(3.36)] 

(X tK·HX3K) = 2 i oo 

lujc(kzWk 2E(W, k) dkz • (4.20) 
1T 0 

Inserting (4.13) in (4.20) yields 

We obtain from (4.19) and (4.5) that 
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V(3,1,2) = -2c-)(¢3,t5J~ZJ[¢),¢z]) =21'''' U3t5p~ZJ[UI>Uz] dz 

= f"'oo R [u 3 ; z;;'O]b p~)[R [UI; Z;;'O], R [UZ; Z;;'O]] dz. (4.22) 

Since/H (vx, vy, vz) = IH (v"' vy, - vz), we have also €(w, kx' ky, k z) = €(w, kx' ky, - kz ), and thus we obtain from (4.13) that 

R [-. 0] _ kj1 foo exp( - iWjt + ikjor) 
uj'z;;, - - - 2 dkjz · 

7T -00 kj€(wj,kj) 

We substitute (4.23) in (4.22) and obtain, by means of (3.29), 

V(3,2,I) = _ U Zl 31 dz k k k foo f"" 
ff3 -"" -00 

By reversing the order of integration in (4.24) and by use of 
the identity S '" 00 exp [i(klz + k zz + k 3z )z] dz = 27Tb(k Iz 

+ k zz + k 3z ), we obtain 

V(32 I) = - ku k
21

k312 foo dk dk , , -;il __ 00 lz 2z 

X em(wl' kl' Wz, k2) 

k ~ k ~ k ; €(w I' k.)€(wz, k2)€(W3, k3) 
(4.25) 

In (4.25) we define k 3z = - k lz - k 2z ' From Corollary 2 
(III) we may now write the coupled mode equations 

(4.26) 

together with the two equations obtained by even permuta
tions of (1,2,3). The coefficients in (4.26) are given by (4.14) 
and (4.25). It may be of interest that these formulas may be 
used as they stand also for a warm fluid plasma since then we 
still have (4.4)-(4.5) satisfied and we have no surface charge. 
It is, however, not correct to use them when there is surface 
charge present, as, for example, in the cold fluid model. Still 
(4.14) happens to give the correct dispersion relation when 
the cold model €(w, k) is inserted. Inserting the cold model 
quantities in (4.24) yields a divergent integral, but we may 
use (4.25) instead. The result so obtained is, however, not 
exactly correct, and some information concerning how im
portant the neglected terms are is given in Ref. 21, where the 
cold-fluid coupled mode equations are obtained by calculat
ing the corresponding warm-fluid formula before taking the 
cold limit. 

APPENDIX A 

Papers I, II, and III are written for a relativistic plasma. 
It is in many applications possible to choose a Lorentz frame 
L = (eO,e l ,eZ,e3), in which the plasma particles have unrelati
vistically low speeds so that the relativistic mass correction 
may be neglected. Let us choose such a Lorentz frame L, and 
from now on we do not change reference frame. The formu
las for the coupled mode equations in terms of the response 
operators work, of course, also when the plasma particles are 
treated un relativistically; the changes enter in the formulas 
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(4.23) 

(4.24) 

for the response operators, i.e., we must modify Results I 
and 2 (I) and accordingly also Result 3 (I) and Sec. 3 (III). The 
other parts of Paper III and all of II may be kept essentially 
unchanged. We must, however, keep in mind that we now 
work in a specific coordinate system L = (eo,el>eZ,e3 ). The 
scalar product induced from L by lei,ej I = b i . j , 

- eo'eo = el,e l = e2 ·e2 = e3 ,e3 = I is now essentially coordi
nate dependent, unlike the situation in relativistic space
time where the Lorentz metric is an intrinsic coordinate
independent structure. 

We shall now consider the modifications of the re
sponse operator formulas in the unrelativistic limit. We take 
two different approaches to this problem. First, we give new 
unrelativistic interpretations of certain symbols so that most 
formulas may be left formally unchanged. In this way we get 
best possible contact between relativistic and unrelativistic 
theory. It is, however, convenient to have formulas for the 
unrelativistic response operators in more traditional nota
tions, and therefore, secondly, we also give such formulas. 

We concentrate on Results 1 and 2 in I since it is then 
easy to see how the other response operator formulas shall be 
modified in the unrelativistic limit. In this limit we redefine S 
as [see (4.6) (III)] 

(AI) 

Physically we associate with each uES the ordinary velocity v 
by the relation 

u = eo + vic. (A2) 

We note that S is now a three-dimensional affine subspace of 
V. The indefinite scalar product on Vinduces a measure on V 
and on S C Vas described in Ref. 4, Sec. 2C. In particular for 
A CS and a function a(u) defined on A 

L a(u) du = L a(eo + ule) + u2ez + u3e3 ) du ldu2du 3, 

(A3) 

where BCR 3 defined by B = {(u l ,u2,u3 )leo 
+ u1e l + u2

ez + u3e3EA J. The unperturbed distribution 
function/o(x,u) in (2.1)-(2.2) (I) is normalized so that if we 
integrate 10 Over a subset A of phasespace, i.e., A C n L (V) 
XS, we have 
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L lo(x,u) dA = ifo(xOeo + x!e! + X2e2 + x3e3, eo + ute! + u2e2 + u3e3) 

X dXldx2dx3duldu2du3 = number of particles in A at time XO Ie, (A4) 

where 

B = [(Xl, x 2, x3, ul, u2, u3)I(x lel + x2e2 + x3e3, 

eo + ulel + u2e2 + u3e3)EA J. 
We must also redefine V s in the evident way 

3 a 
V s = I ei -i • (A5) 

i~1 au 
Now (2.1) and (2.2) in I may be used as they stand for an 
unrelativistic plasma if we redefine c5x(j) and c5u(j) by replac
ing (2.7) (I) with 

(A6) 

and keeping (2.3) (I) unchanged. The corresponding modifi
cation of (2.4) (I) is 

D0c5u(j) - qmo- le- 2 IIL [V E A (/>o·c5u(j) 

+ c5x(j).V E(V E A (/>o·u)] = qmo- le- 2IIL (V E AtPj·u). 
(A7) 

We now write these response operator formulas for an unre
lativistic plasma in more traditional notations. We normal
ize the distribution fucntion/o(t, r, v) so that/o(t, r, v) drdv is 
the number of particles in drdv. Take tPoEL O(E, V) and tPl' 
tP2ELo(E, V) [see Result 1 (I)], tPj = ~eo + eAj and 
(/>0 = UOeo + eA 0. Then 

f tPo·c5J (J)[tPl] dtdr 

= ~qe f dtdrdv lo(t, r, v) 

x [rl-V(v-Ao - Uo) + vl-Ao 

+ ro-V(v-A I - UIl + Yo-Ad, (AS) 

f tPO·c5J (2)[tPI,tP2] dtdr 

= I qe f dtdrdv lo(t, r, v) 

x [-brorlr2:VVV(v-AO - UO) + !roflV2:VVAO 

+ !rofl:VV(v-A2 - U2 ) + !rovl:VA2], (A9) 

where the summation is over the six permutations of the 
subscripts 0,1,2 and we use a b:c d = a-c bod and abc: d e
f = a-d bee c-f. 

The vector fields rj(t, r, v) and Vj(t, r, v) are defined by 

rj = - -q-i.DO-I(v-Aj - ~), (A 10) 
moe i:Jv 

cDo =!.- + v-V +....!L. (EO + vXBO)-!.-, (All) at mo i:Jv 
Vj = eDorj , (A12) 

where EO and BO are the unperturbed electromagnetic fields 
with 4-potential (/> 0. In place of (A 10) we may use 
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eDovj + (qlmo)BOXvj - (qlmo)rj-V(Eo + vXBO) 

= (qlmo)(Ej + vXBj ). 

APPENDIX B 

(A13) 

The purpose of this appendix is to derive a relation 
between the current response operators in the 0 and the H 
systems defined in Sec. 3. The formulas (3.S) and (3.9) follow 
as a particular case. We will prove that 

ftPo.c5J~)[tPl] dtdr= r~o.c5JW[¢I] dtdr, (Bl) 

f tPo·c5J~)[tPl,tP2] dtdr = f ¢·c5JW[¢I' ¢2] dtdr, (B2) 

wheretPo,tPl,andtP2areasin (AS) and (A9),tPj = ~eo + cAj , 
and 

¢j = Ujeo + cAj' (B3) 

Uj(t, r) = (~t, r + ~(t)) - ~/(t )-Aj(t, r + ~(t )), (B4) 

Aj(t, r) = Aj(t, r + ~(t)). (B5) 

We have omitted the particle species index (T and ~(t) is de
fined by (3.1). In terms ofthe operator T defined by (3.10) and 
the linear operator G 

G [tPj] = (I - e- leo ® ~/(t ))·tPj = tPj - c- I~'(t )·tPjeO' 
(B6) 

we can write ¢j as 

¢j = ToG [tP ] = GoT [tPj]. (B7) 

We now obtain from (Bl) and (B2) that 

c5J~)[tPI] = G lroT- loc5JWoGoT[tPlJ, (BS) 

c5J~)[tPI' tP2] = G IroT - loc5J~)[ GoT [tPI], GoT [tP2]], 
(B9) 

where G Ir is the operator obtained by the transposition of G, 
i.e., 

(BID) 

We prove (Bl) and (B2) by direct application to the H 
and 0 systems of the explicit general formulas (AS)-(A 10) 
and (A12) for the current response operators. We need the 
following relations between the unperturbed Vlasov opera
tors of the H and the 0 systems 

and also the integral equality involving respective unper
turbed distribution function 

flo(t, r, v)a(t, r, v) dtdrdv 

= f IH (t, r, v)T [a ](t, r, v) dtdrdv. (B12) 
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It is easy to see that (B 11) is equivalent to 

[ D H, T] = To(Do - DH ), (B13) 

where the commutator of two operators A and B is written 
[A,B] = AoB - BoA. We have 

DH = C-l(~ + vo~ + .!L vXBo' ~), 
at ar m av 

Do = DH + ...!L.. (sin ilt )Eoo ~ . 
mc av 

By straightforward calculations 

[:t' T] = (Sfo ~ + S"o ~)oT, 

[vo ~ + ! vXBoo ~ , T] 
= - (Sfo ~ + ! SfXBoo ~)oT, 

(BI4) 

(BI5) 

(BI6) 

(BI7) 

and now (BI3) easily follows from (BI4)-(B17), the fact that 
Tand Do-DH commute and 

s"(t) = (qlm)(Eo sin ilt + Sf(t )XBo)' (BI8) 

The equality (BI2) is seen by the change of variables (r, 
v)_(r + S, v + Sf) on the left-hand side of(BI2) and by use of 
(3.2) and (3.10). 

Let us now demonstrate how to make use of the general 
current response operator formulas. A typical quantity con
tained in the formula for ftPo·81~1[¢1] dtdrdv obtained from 
(AS) and (AIO) is 

f dtdrdv fo (t, v) ~ D 0 l(voA l - UdoV(voAo - Uo)· 

(BI9) 

Applying (BI2), (Bll), [T, a lav] = [T, V] = 0, and T[voAj 
- ~] = VOAj - f0 yields (BI9) equal to 

f dtdrdv fH (v) ~ D Ii l(voA l - UI)oV(v°Ao - Uo)· (B20) 

This is easily seen to be a part in the formula for 
f¢o·oJW[¢d dtdrdv obtained from (AS) and (AIO). The re
lations (B 1) and (B2) follow by treating each term in a similar 
way. 

APPENDIXC 

The purpose of this appendix is to derive a relation 
between the S and the H systems defined in Sec. 4. We will 
prove that 

( ¢0·81~I[¢d dtdr = ~ f¢O.J~n¢l]dtdr, (Cl) 
)z>o 2 

{ ¢o·oJ~I[¢1> ¢2] dtdr =...!.- f ¢o·OJ~)[¢l' ¢2] dtdr, 
)z>o 2 

(C2) 

where¢o'¢I' and ¢2 are as in (AS) and (A9), ¢j = ~eo + cAj' 
and 
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~j(t, r) = f0(t, r) + CAj(t, r), 

f0(t, r) = ~(t, x,y, Izl), 
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(C3) 

(C4) 

Aj(t, r) = (Ajx(t,x,y,lzl).Ajy(t, x, y, Izl), 

(sgnz)Ajz(t,x,y,lzl,), (C5) 

where sgn z = 1 for z;;;'O and sgn z = - 1 for z < O. We have 
also used the notation A = (Ax, Ay' Az ) = Axel + Ay e2 
+ A z e3•

14 We note that (4.4) and (4.5) follow from (Cl)-(C4). 
In terms of the operator R defined by (4.2) and the linear 
operator K 

K [¢j] = (I + (sgn z - l)e3 ® e3 )'¢j' 

we can write ¢j as 

¢j = KoR [¢j' z;;;'O]. 

We now obtain from (Cl) and (C2) that 

(C6) 

(C7) 

(81~11[¢d,z;;;.0) = R -loKo81WoKoR [¢I' z;;;.O], (CS) 

(81 ~I [¢ I '¢2] ,z;;;,0) 

= R -loKo81~I[KoR [¢I' z;;;.O],KoR [¢2,z;;;.On (C9) 

We prove (CI) and (C2) by direct application to the H 
and the S systems of the explicit general formulas (AS)-(A 10) 
and (AI2) for the current response operators. We need the 
relation 

D S-
1 =R -loDIi1oR. (CIO) 

The operator D s I may be defined in terms of the unper
turbed orbits in the S system, where a particle is confined to 
the region z;;;'O and bounces elastically at z = O. In terms of 
boundary conditions, this means that, for a function a(t, r, v) 
defined on the half-space z;;;'O, we have b = D s- I [a] dete
mined by the conditions Dsb = a and b (t, x, y, 0, ux' uy, uz ) 

= b(t,x,y,O,ux'uy, - u.),i.e.,R [b]iscontinuousacrossthe 
boundary. It is easy to prove (C 1 0) if we define D s- 1 in terms 
of unperturbed orbits so we omit these details. 

Let a(t, r, v) be defined in the half-space z;;;.O. We have 
the obvious equality 

( fsadtdrdv=~ffHR[a]dtdrdv. (Cll) 
1:'0 2 
Theproofof(Cl) and (C2) by means of(CIO), (Cll), and 

the general formulas (AS)-(AIO) and (AI2) is almost identi
cal to the corresponding proof in Appendix B, and so we 
omit it. Just note that in one passage of the derivation we 
need 

( RO ~)[a]'(Ro~)[b] = (~oR )[a].(~ oR )[b]' 
auz az auz az 

(CI2) 

where a(t, r, v) and b (t, r, v) are defined in the half-spacez;;;.O. 
This result follows from 

a a Ro - = (sgnz) - oR, 
auz auz 

a a Ro - = (sgn z) - oR. 
az az 
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Comparison of the extended boundary condition method and perturbation 
method for scattering from a sinusoidal sea surface8

) 

R. H. Ott and D. J. Fang 
Propagation Studies Department, COMSAT Laboratories, Clarksburg, Maryland 20871 
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Scatt~~ing from a lossy sinusoi~al surface is examined by using two methods: extended boundary 
condl~lOn (EBC) and p~rturb~tlOn. The range of applicability of the perturbation approach is 
estabh~hed by companson WIth EBC. The range of applicability of EBC is established through 
numencal exam~les. A convergence criterion based on the sequence of partial sums of the 
scatter~d energy IS suggested for the application of EBC to lossy surfaces. New analytical 
expressIOns for the perturbation solutions are given. 

PACS numbers: 92.1O.Hm, 41.lO.Hv 

I. INTRODUCTION 

In L band ship-to-satellite communication, it is fre
quently observed that a multipath component from the sea 
can occur and interfere with the direct ray between the ship 
and the satellite. 1,2 The multipath component does not al
ways behave as a simple reflected wave from a plane sea 
surface, but rather as a random wave scattering from a mul
titude of scatterers of small sizes, This scattering component 
causes random signal fades, enhancements, and, if the signal 
is digitally modulated, symbol errors or intersymbol inter
ference. It is known that the sea surface is a mixture of gra
vity and capillary waves, frequently crowned by breaking 
sprays. The sea swell has a stable dominant direction, not 
necessarily influenced by the wind. On the other hand, the 
local and composite wind field modifies the sea surface by 
producing short gravity and capillary waves, The interaction 
of these waves and the swell cause localized small perturba
tions of the sea surface,3 which are believed to be primarily 
responsible for microwave scatterings as observed at L-band 
frequencies. 4

,5 

As a step in modeling the microwave scattering from 
the slightly rough surface, this paper studies the scattering of 
radio waves by lossy sinusoidal surfaces for which the height 
(peak-to-trough) varies from zero to approximately the radio 
wavelength. The surface is assumed to be very lossy (i.e., 
Er = 72 + i52 at 1.6 GHz). Waterman's formulation of the 
extended boundary condition (EBC)6 is used to investigate 
the range of applicability and computational efficiency of the 
method. 

EBC asserts that the field radiated by the induced sur
face currents cancels the incident wave below the surface. In 
the sense that the surface integral cancels the incident wave, 
EBC is similar to a perturbation solution. The range of pa· 
rameters in which the two methods yield comparable results 
is examined here. 

Recently, Chuang and Kong used EBC with several 
choices for the spanning set that represented the surface 
fields. 7 Their paper also contains an extensive literature sur
vey of this important boundary value problem. 

In our study, a spanning set that is complete on the 

alThis paper is based upon work performed at COMSAT Laboratories un
der the sponsorship of Communications Satellite Corporation. 

extended surface, rather than on the water surface, is used 
for the surface field. The convergence of this set is examined 
by noting that the partial sums for the scattered energy in
creases monotonically with the number of terms, are bound
ed above by unity, and must therefore converge. This con
vergence criterion is used because conservation of energy, 
which is only a necessary condition, is not applicable in the 
EBC method when the scatterer is lossy. The reason conser
vation of energy is not applicable is that the solution is only 
valid outside the region formed by crest and trough, and for a 
lossy surface, energy is dissipated between crest and trough. 
Also, checking the accuracy of the solution in satisfying the 
boundary conditions is not an option with EBC, because the 
EBC solution is not valid on the actual water surface. 

Some new analytical results are given for the coeffi
cients in the perturbation solution in terms of Bessel func
tions. The argument of the Bessel functions is the height of 
the surface in wavelengths projected onto the plane perpen
dicular to the direction of the incident wave vector. A three
significant-figure agreement is obtained between the coeffi
cients in the EBC method and those in the perturbation 
method when the height of the surface is less than O.IA, 
where A is the radio wavelength. When the surface height 
reaches O.lA, the corresponding amplitudes of the specular 
component calculated by the two methods differ by about 
30%. 

II. EBC ANAL VSIS 

The formulation ofEBC in this section follows Water
man's presentation6 (see Fig. 1). 

From Green's theorem, for an observation point r be
low z = <T( x), integration over the upper hemisphere yields 

O=rPi(r)- i dx'[G(koR)en·V'rP+ (r') oj x'J 

-rP+(r')en.V'G(koR)] (1) 

and for r above z = <T( x), integration over the lower hemi
sphere yields 

0= f dx'[G(KR)en,V'rP_(r') 
Joj x'i 

- rP_(r')en·V'G(KR)], (2) 

where 
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(3) 

Ko = 217"/A and R = Ir - r'l. The integrations in Eqs. (1) 
and (2) can be thought of as extended operators in the sense 

( dx'[Gen·V'tP+ -tP+en·V'G] Jaj xl 

because the chosen spanning functions for tP + do not satisfy 
orthogonality conditions on the surface z = 0'( x) but, in
stead, on the extended surfaces z = ± 10 , shown in Fig. 1. 
The Green's function for the boundary value problem is stat
ed as 

G ({~} Ir - r'l) 
exp [iko( x - x')sin (J ] 

2iA 

"" 
X I 

eXP[i(21TmIA)( x - x') ± i {~m } (z - Z')] 
Ym 

m = - oc 

(4) 

where the plus sign for the z dependence correponds to up
going waves and the minus sign, to down-going waves.8 

An alternative representation to Eq. (4) in terms of Han
kel functions of order zero is given in the form of the follow
ing theorem: 

Spherical waves have the Fourier representation 

exp[iko( x 2 + Z2)1/2] 

(Xl + Z2)1/2 

(5) 

where 
cos <Pn = [1 - ((2n1TIkoA ) + sin (J )2] 1/2. (6) 

Proof Consider the Fourier expansion of the spherical 
wave 

exp[iko( x 2 + Z2)1I 2 ] 

(x2 + Z2)1/2 
n = - oc 

with coefficients given by 

_ 1 J"" exp( - ian u)exp(iko(z2 + u2
)1I2) d a - - U 

n 217' _ 00 (Z2 + U2)1/2 ' 

where 

FIG. I. Geometry for scattering from a sinusoidal surface. 
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an = 2n1T1 A + ko sin e. 
Let U = z sinh e, du = z cosh () d(); then 

an = ~i B ~I [z(q - a~ )1/2] = VB bll(koZ cos ifJ,,). 

The following results are consequences ofEq. (4): 
2:-2 2 

K =rm+kx' 

k6=f",+k~, 

y;" = K" - (21Tm1A + sin ())2 = K2 cos2 ~m' 
A A 2 1/2 r:" = K cos ifJm = ko[cr - (21TmlAko + sin ())] , 

Im( Y m ) > 0 for Im(Er) > 0, 

(7a) 

(7b) 

(7c) 

(7d) 

(7e) 

r:" =k6 -k~ =k6 -(21TmIA +sin()f=k6 cos2 ifJm, 
(7f) 

cos <Pm 

_ k 1 - A + sin () , {f (21Tm )2J 112 

- 0 21Tm 2 112 
i f (koA + sin ()) - 1 J ' 

ko sin ifJm = 21TmiA + kosin (J, 

K sin ~m = 21Tml A + kosin (). 

21Tm . () 1 -- +sm « , 
koA 
21Tm + sin (» 1, 
koA 

(7g) 

(7h) 

(7i) 

The boundary conditions for TM polarization (tP represents 
By in Fig. 1) are 

tP+(r') = tP_(r'), (8) 

(9) 

where in Eqs. (8) and (9), the + and - subscripts corre
spond to a representation valid just above and below the 
surfacez = 0'( x), respectively, and the prime on the gradient 
operator refers to differentiation with respect to the primed 
coordinates. 

The spanning functions 

tPn (x) = exp(ikoX sin ifJn) (10) 

are orthogonal on the extended surfaces z = ± 10 , but not on 
the surface z = a( x), where the extended operator is defined. 
Therefore, if another vector tP n + I is added to the approxi
mating set of vectors, the previously computed set of coeffi
cients may change. For the surface fields, 

00 

tP+(r') = 2 I aneik,,x' sin",", (11) 
n = - 00 

00 

en·V'tP+(r') = 2iko I (Jneik,,x'sin,,,", (12) 
n = - 00 

The incident field in Eq. (1) is 

tP;(r) = exp[iko( x sin () - z cos ()) ]I(cos () )112. (13) 

The following results are needed for down-going waves: 

V'G(kaR) = (- iexko sin ifJm + iYmez)G(kaR) (14) 

and 

V'G(KR) = (-iexKsin¢m -iYmez)G(KR) (15) 

for up-going waves. 
Substituting Eqs. (4), (7), (8), (9), (11), (12), and (14) into 

(1) gives 
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exp Uko( x sin () - z cos () )] 
(cos () )1/2 

k 00 {OO JAI2 d' 
= A

O m~~oo exp(ikoXsin¢m -izYm) n~2;..oof3n -A12 y~2 exp(i(21Tx'IA)(n-m)+ikolocos(KoX')cos¢m] 

00 JA12 d' 
+ n ~2;.. oc an _ A12 y~2 [-loKo sin(KoX')sin ¢m + COS ¢m ]exp[i(21Tx'IA)(n - m) + ikolo cos(KoX')cos ¢m]} 

00 

I (16) 
m= - 00 

where the last equation defines am' The following T-matrix coefficients are generated from the integrations in Eq. (16): 

rll) = i
1n

-
ml 

J (k I A.) d r(2) _ (-1 + sin¢m sin¢n) rill 
mn ( A. )1/2 In-ml OOCOS'l'm an mn - A. mn' (17) 

cos 'I'm cos 'I'm 
Substituting Eqs. (4), (7), (8), (9), (11), (12), and (13) into Eq. (2) gives 

° = kotr f exp(iKx sin ¢m + iYm z ) 
A m ~ __ 00 y:';2 

{ 

00 JA 12 dx' '1 00 JA 12 dx' 
X I f3n ""'i/2exp[ -i[21T(m -n)x'IA] -i/€:kocos¢mlocos(KoX')J - -- I an -,-

n ~ - oc - A 12 r m /€: n ~ _ oc _ A 12 r:';2 

X[ -loKosin(KoX')sin¢m -cos¢m]exp[i[21T(m-n)x'IA] -i/€:kolocos¢m COS(KoX')J} (18) 

where the last equation defines bm. The T-matrix coeffi
cients generated from the integrations in Eq. (18) are 

and 

r (3) = (- i)lm - nl J ( c-k I ].) 
mn x /' In _ ml Vtr 0 oCos 'I'm 

(cos ¢m)1 -

r t;.ln = (- 1 + sin ¢ m, sin ¢ n) r ~)n • 
/€: cos ¢m 

(19a) 

(19b) 

Note from Eqs. (17) and (19) the "near orthogonality" of 
the spanning functions in Eq. (10) on the actual surface 
z = u( x). That is, for n = m, the Bessel functions are "near" 
zero. Also, including the z dependence in the basis functions 
in Eq. (10) would not yield an orthogonal set on the surface 
z = u( x). An additional reason for not includingthezdepen
dence in the basis functions is the ambiguity in sign [i.e., 
exp( ± ikoZ cos ¢n)] as the boundary z = 0'( x) is crossed. 
There exists a jump in the z dependence. A spanning set 
consisting of up-going and down-going waves in the z direc
tion of the form 

n. = .- oc 

X [an eik,,z cos.p" + f3n e - ik,,z cos.p" J, 
when substituted into Eq. (1), yields zero on the right-hand 
side ofEq. (16) unless n = m; which in turn implies 
f3n = - l,an = O. This result is interesting but does not give 
a consistent solution. The variables z and x are not indepen
dent on the surface z = 0'( x). 

The numerical implementation for the Bessel functions 
in Eqs. (17) and (19) is 

I n (z) = in In ( - iz), - 1T < arg(z) <;1T12, (20) 
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w here In (z) is a modified Bessel function of the first kind. The 
In's were calculated by using recursion relations. 

From Eq. (16), the only nonzero am is for m = 0; i.e., 

{
I, m = 0, 

am = 0, m#O, (21) 

and similarly from Eq. (18), all bm = O. These two results 
yield the following 2M + 1 equations in 2M + 1 unknowns: 

[r~ln] [f3n] + [r~ln] [an] 

~ 
12M+ Ilx12M+ I) 

~ 
12M+ I)xl 

° (-m) 

o 
1 

o 
(0) 

o (m) 

~~ 
12M + Ilx(2M + II (2M + I)x I 

(22) 

o (-m) 

o (23) 

o (m) 

At this point, EBC is identical with point matching 
where the weighting functions are delta functions or Gale
kin's method where the set of weighting functions coincides 
with the spanning set. The inner product of both sides ofEqs. 
(16) and (18) is taken with respect to the functions in the 
spanning set. 
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The scattered vector is obtained from Eq. (1) by taking 
the observation point above the surface z = a( x). This re
quires up-going waves in the Green's function in Eq. (4). The 
scattered field is with 

t/f(r) = (24a) 

k 00 { JA/2 
- 0 1/2 L (In dx'exp[ i[21Tx'(m - n)1 A ] - ikolo cos(KoX')cos CPm 1 

A (cosCPm) n= - 00 -A/2 
a = m 

+ an JA 12 dx' [ - laKo sin(KoX')sin CPm - cos CPm ]exp[ i[21Tx'(m - n)l A ] - ikolo cos(KoX')cos CPm 1 }. 
- A 12 

(24b) 

The T-matrix coefficients generated from the integrations in Eq. (24) are 

I'll) _ (i)ln - ml J (k I A.) r(2) = (1 - sin CPm sin CPn) r(1) . (25) 
mn - ( A. )1/2 In - ml 00 COS 'I'm , mn COS A. mn 

coo 'I'm 'I'm 
Similarly, the transmitted vector is obtained from Eq. (2) by taking the observation point below the surface z = oi x). This 

requires down-going waves in the Green's function in Eq. (4). The transmitted field is 

~ exp(ikx sin ~m - iZYm) 
m =~ 00 bm (cos ¢m )1/2 

(26a) 

with 

K 00 { JA12 ~ bm = z 1/2 L (In dx'[exp[i(21Tx'IA)(n-m)+i~kolocos(KoX')cosCPmlJ 
A (cos CPm) n = - 00 - A 12 

JAI2 ~ } 
- an [ -loko sin(KoX')sin ~m + COS CPm ]exp[i(21TX'IA)(n - m) + i~kolo cos(KoX')cos CPm] . 

-A12 
(26b) 

The following T-matrix coefficients are generated from the 
integrations in Eq. (26): 

r(3 ) = mn (27a) 

r(4) = (1 - sin ~m sin ~n) r (3 ) 

mn ~ Cos~m mn' 
(27b) 

The scattered and transmitted vectors can be writeen in ma-
trix notation as 

[am] = - ([r~)n][ (In] + [r~)n ][an ]), 

[bm ] = [r~ln][ (In] - [r~n ][an ]· 
(28) 

It is desired to approximate the scattered and transmit
ted vectors in terms of the linear independent sets in Eqs. (24) 
and (26). The best approximation is considered to be the lin
ear combination 

M 

L am CP ~ ( x,z), 
m=-M 

which is closest to t/f(r); that is, for which the quantity 

II t/f(r) - I am exp(ikoX sin CPml/~ izy m) 112 
m = - M (cos CPm ) 

is the smallest. The problem is that t/f is unknown. However, 
the functions 

exp(ikoX sin CPm + izy m )/(cos CPm )1/2 

are orthogonal on the extended surfaces z = ± 10 , For any 
finite M, integrating on the surface z = 10 yields 
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~ exp(ikoX sin CPm + izy m 112 
L am A. 1/2 

m= -M (cos 'I'm) 
M 

L lam 12>0, 
m=-M 

which implies 

M 

L lam 12.;;; IW112.;;; 1. (29) 
m=-M 

The infinite series 

is the limit of a sequence of partial sums that increase mono
tonically with M and are bounded above by the unknown 
number 11t/f11 2

• The infinite series must, therefore, converge. 
Now IW112.;;; 1; so the partial sum 

M 

L lam l2 

-M 

is taken until the partial sums in the sequence change by less 
than a prescribed amount in a given significant figure. Ex
perience with several numerical examples has shown that 
the test in Eq. (29) gives an accurate convergence criterion. 
Because the series converges, it follows that limm~oo am = 0 
(the Riemann-Lebesque lemma), and this fact is consistent 
with numerical results shown later. 

III. PERTURBATION ANALYSIS 

The incident, scattered, and transmitted fields for TM 
polarization are 
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Ei = (exko cos tP + ezko sin 0) 
X exp [iko( x sin tP - z cos 0 )] 

Hi = - (kolZo)ey exp [iko( x sin 0 - z cos 0)] 

(30a) 

(30b) 

HT = _ koEr e 
Z y 

o 

00 

ES = ko I am ( - ex cos tPm + ez sin tPm) 
m = - 00 

Xexp[iko( x sin tPm + z cos tPm)] 

k HS= __ 0 e 

(30c) 

(30f) 

The similarity to Eqs. (24) and (26) is evident, and only the 
method for solving for the Fourier coefficients am and bm 
differs from the EBC method. The boundary condition [Eq. 
(8)] and the Rayleigh hypothesis gives 

Z y 
o 

00 

(30d) 
exp[iko( x sin 0 - z cos 0 )] 

(cos 0 )1/2 

I 
exp[iko( x sin tPm + z cos tPm )] + am I (cos tPm)1 2 

ET = ko£ I bm (ex cos ~m + ez sin ~m ) 
m = - cc =E

r 
'" b

m 
exp[iko£(xsi~~m -zcos~m)] (31) 

~ (costPm)1/2 (30e) 
and after some algebra, the boundary condition (9) gives 

[ -loko sin(KoX)sin 0 + cos 0] exp[ - ikolo cos 0 cos(KoX)] 
(cos 0)1/2 

'" [I k . (K ). A.. + A..] exp[i(2m1TxIA) + ikolo cos tPm cos(KoX)] - ~ am 0 0 sm oX sm 'I'm cos 'I'm I 
(cos Om)1 2 

_ ~ '" b [ l k . (K ). A. + A.] exp [i(2m1Txl A) - ikolo£ cos ~m cos(KoX)] 
- VEr ~ m - 0 0 sm oX sm 'I'm cos 'I'm x I 

(cos tPm)1 2 

At this point, this study departs somewhat from classical perturbation analysis5 and uses the orthogonality of the 
spanning functions 

e - i2n1rxlA 

(32) 

over theintervallxl <A 12. That is, both sides ofEqs. (31) and (32) are multiplied by the spanning functions in Eq. (10), and the 
following table of integrals is used: 

JA12 loko sin(KoX)exp[i(21TxIA )(m - n) + ikolo cos(KoX)]dx = A (sin tPm - sin tPn) ilm ~ nlJlm ~ nl (kolo cos tPm)' 
~A12 costPm 

J
AI2 

~A12/0ko sin(KoX)exp[i(21TxIA)(m - n) - ikolo£ cos ~m cos(KoX)]dx 

_ A (sin ~n - sin~m) ( ')Im - nlJ (k I ~ A.) - x - I 1m ~ nl 0 OVEr cos 'I'm . 
costPm 

Next, the ratio of surface height to slope is assumed to be small; i.e., 

E = A. 1 A < 0.1. 

(33) 

(34) 

Substituting Eq. (33) into Eqs. (31) and (32) and combining the two equations yield a factor on the right-hand side that is 
approximated as (for IE r I;> 1) 

1 - sin ~m sin ~n 
cos~m 

(Er - sin20 )1/2 

F 
The approximation in Eq. (35) is tight because IEr I is on the order of 100 in the case of sea water at 1.6 GHz. 

Substituting Eqs. (33) and (35) into Eqs. (31) and (32) yields 
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M ( . 2 1/2 Er{1 - sin tPm sin tPn)) ilm - nlJ1m - nl (ko/o cos tPm) 
L am (Er - sm 0) + A. ( A. )112 

m = _ M cos 'I'm cos 'I'm 

. 2 112 . n J 1nl (ko/ocos 0) 
[Er(COS 0 - nEtan 0) - (Er - sm 0) ](1)1 1 (COS 0)1/2 ' (36) 

n = 0, ± 1, ± 2, ... , ± M 

These equations can now be solved in a perturbation manner. If n = 0, there is one equation in one unknown, and the zeroth 

order result for ao is 

n ( . 2 n )1/2 
(0) _ E r cos u - E r - sm u 

ao - 1/2' 
Er cos 0 + (Er - sin2 0) 

(37) 

which is the Fresnel reflection coefficient. 
For n = ± 1, there are three equations in three unknowns, which give the first- and second-order correction to the 

coefficients am' These equations are 

[ . 2n)1/2 A.] J.o(ko/ocosA._ I) + (I) [( _. 2n)1/2+ (Er-Smu +ErCOS'f'_1 ~/2 ao Er smu 
(COStP_l) 

Er(l - sin 0 sin tP-I) ] iJI(ko/o cos 0) 
COStP_I (cos 0)1/2 

• 12 (- i)J (k 10 cos 0 ) +0= kr(COSO+EtanO)-(Er -sm20)I] I 0 
(cos 0)1/2 

[( 
. 2n )1/2 Er{1 - sin tPl sin 0)] iJI(ko/o cos tP-I) + II) [( • 2 n )1/2 + n Jo(ko/o cos 0 )] E - sm v + I ao Er - sm u Er cos u 1/2 

r cosO (cOStP_dI 2 (cosO) 

11)[( . 2n)1/2 Er{1-sinOsintPI)]iJI(koiocostPl)_[ n_( _. 2n)I12] Jo(ko/ocosO) 
+ a l Er - sm u + 1/2 - Er cos u Er sm v 1/2 

cos 0 (cos tPI) (cos 0) 

O + II) [( . 2 n )1/2 + Er{1 - sin 0 sin tPI)] iJI(ko/o cos 0) + (11[( • 2 n) A. ] Jo(ko/o cos tPl) 
ao Er - sm u 1/2 a l Er - sm u + Er cos '1'1 1/2 

cos tPl (cos 0) (cos tPd 

. 2 112 (- i)J (k I cos 0) 
= kr(COSO-EtanO)-(Er -sm 0)] I 00 

(COS)1/2 

The determinant of the matrix involved in Eq. (38) is 

.a ~ [( E r - sin 2 0 ) 11 2 + E r cos tP _ tl [( E r - sin 2 0 ) 1/ 2 + E r cos 0 ] [( E r - sin 2 0 ) I 12 + E r cos tP I] 

X Jo(ko/o cos tP-d Jo(ko/o cos 0) Jo(kolo cos tPI) 
(costP_dIl2 (cos 0)1/2 (COStPdI/2 ' 

From Eq. (38), new results are obtained (which in spirit agree 
with those of Rice,4 Wait,9 and Fang. to To first order, 

(11 _(_.) 12[ErcosO-(Er-sin2 0)I!2]+ErEtanO) 
a 1- I 

- [(Er-sin20)1/2+ErCOStP_tl 

X (cos tP-I )112 JI(koiocos 0) (40) 
cos 0 Jo(ko/ocos tP -I) 

and 

I 
.a = [(Er-sin20)1/2+ErCOStP_I] 

X [(Er - sin2 0)1/2 + ErCOS 0] 

. 12 J. (k I cos A. ) X [(Er -sm2 0)1 + ErCOStPI] 0 00 '1'-1 

cos tP-1 
X {I + JI(ko/ocos 0) JI(ko/ocos tP -I) }. 

Jo(ko/ocos 0) Jo(ko/ocos tP -I) 

(38) 

(39) 

(43) 

12[Er COSO-(Er -sin20)1/2]-ErEtanO} a\11 = ( - i) ~.!...:..!:"""':""::"'::"":--'-!..--------"-:-:;,!-~::-----'--
[Er cos 0 + (Er - sin2 0 )112] 

X (cos tP l )112 JI(ko/ocosO). (41) 
cos 0 Jo(kolo cos tPd 

This process could be continued to yield the higher order 
nonzeros coefficients al~ 2' al~ I' ab4

), aI~ 2' al~ 4'"'' [namely, 
all the aY:,) are zero except those in the set aY:,) iP 

To second order, ao is 

ao~a~1 + a~1 = a~1 

[
1 JI(kJoCOSO)JI(kJocostP_d] 

Jo(kolo cos 0) Jo(kolo cos tP - d X ---~~~-~~~~-~~-

[
1 + JI(ko/o cos 0) JI(ko/o cos tP-I)] 

Jo(kJo cos 0) Jo(ko/o cos tP-I) 

(42) 

which is a new result. To second order, the determinant for 
three equations in three unknowns is 
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= 0,1,2,3, ... ,; m = ±p, ± (p - 2), 
± (p - 4), ... , ± mod(p,2)}.11 

IV. NUMERICAL RESULTS 

Examples will be shown in which the number of modes 
is increased for a given set of surface parameters, the surface 
height in wavelengths is varied (all other parameters con
stant), and the surface period is varied (all other parameters 
constant). Finally, the EBC results will be compared with 
the perturbation results where applicable. 
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Before numerical results are presented, some informa
tion will now be given about the computer used to generate 
the numerical results. The assembler architecture is IBM 
370 (third generation) with a 3350 storage device (i.e., 
572 070 bytes per cylinder, 1024 bytes per record). The 8-
byte word length option was used, providing about 14 signif
icant figures. (Early calculations showed that the single word 
length of 4 bytes, or about 6.2 significant figures, was not 
adequate for the large matrices in this problem.) 

Figure 2 shows an interesting phenomenon that occurs 
when the chosen truncation interval of the Fourier represen
tation for the surface fields is not equal to a multiple of the 
period of the sinusoid. In Fig. 2, the magnitude of the scat
tered vectors, am' is plotted as a function of mode order m 
for eight different choices of the total number of basis func
tions, 2M + 1. The parameters for the example are 10 g;;A 13, 
A g;;67A, Ko g;;0. 5 m -I, () = 10°, and E, g;;72 + i72 + i52 at 
1.6 GHz. For these parameters, propagating modes occur 
for - 78<;m<;55. The sidelobe occurring for mode orders in 
the range - 20<;m <; - 8 is a result of not choosing the trun
cation, or total number of basis functions, to be nearly a 

2M + 1 ~ 37 

"Iaml' ~ 0.687820 

04 ~o"'\!3 

0.3 A = 67A 

02 tl = 100 

o 1 t r '" 72 + i 52 

------~ __ ~~UiLuilLU~UULU~~Q--------------
-20 -18 ·16·1.4 ·12 ·10 -8 -6 

2M + 1 ~ 45 

[Iami' ~ 0.723268 

2M + 1 ~ 47 

[Ia I' ~ 1.019877 

m , 111111111111" 1111111111111, 

2M + 1 0 51 

[Iaml' ~ 0.681301 

2M + 1 • 53 

[Iaml' • 0.662806 

! 11111 I!, 

2M + 1 • 55 

[Iaml' • 0.663510 

FIG. 2, Scattered vector am versus mode order m for eight different 
numbers of basis functions (occurrence of the sidelobe for m where 
- 20<;;m<;;8 results from truncating the infinite matrix). 
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multiple of the period of the sinusoid (i.e., 41T m - I in the 
example). Truncation of the infinite matrix results in the 
[sin(21TmIM)]IM function, which in a convolution with 
Green's function (that is, used in the extended operator), in
troduces additionallobing. Fortunately, however, the scat
tered energy, ~Iam 1

2
, is not semiconvergent, as can be seen 

in Fig. 2. That is, two significant figure accuracy in the scat
tered energy can be realized when 55 modes are included. 
Note that the nearest multiples ofthe wave period, 41T, are 37 
and 51. The results for 37 and 53 modes agree reasonably 
well. For this set of parameters, the method of physical op
tics is applicable. However, a method applicable to cases in 
which the angle of incidence is near grazing is of interest. 

For the case of a lossless surface having the same pa
rameters as those in Fig. 2 (i.e., E, = 72 + iO), the sidelobe 
resulting from truncation of the infinite matrix does not oc
cur. This suggests that in the EBC method the requirement 
for near cancellation of the fields at the surface of a good 
conductor results in numerical instability. The scattered and 
transmitted vectors for the case of a lossless surface are given 
in Table I. 

For the case of a lossless surface, conservation of energy 

(44) 

provides a good numerical check on the accuracy of the re
sults. For the case of Fig. 2, the check yielded 1.0001373. 
The total number of basis functions for this case was on the 
order of AlA. 

In Fig. 3, the sinusoid period is reduced by a factor of 3 
from its value in Fig. 2. The total number of basis functions 
in Fig. 3 is approximately 15 times the period of the sinusoid. 
The (sin m)/m function is reduced by at least a factor of 3 
from its value in Fig. 2, and the presence of any sidelobes is 
thereby reduced. Also, as seen in Fig. 3, three significant 
figure accuracy is obtained for the scattered energy, with 
about 7 parts error in the fourth significant figure. 

Figure 4 shows the behavior of the scattered vectors as 
the height ofthe sinsusoid is varied. The angle ofincidence is 

TABLE I. Scattered and transmitted vectors for 10 = A /3, A = 67,1" 
0= 10·, E, = 72 + iO, 2M + I = 55, 

m am bm 

-7 - ID.015 29478 - iO.285 746 
-6 0.04693628 - 0,342853 
-5 iO.119 57174 - iO.024 687 
-4 - 0.239 881 84 - 0.358 538 
-3 - iO.341 877 59 iO.157469 
-2 0.25503787 - 0.298 550 
-I - ID.094 549 13 ID.233576 

0 0.3019232 - 0,268 661 
I - ID.091 389 19 ID.233927 
2 0.2594655 - 0.298106 
3 - iO.340 792 7 ID.158812 
4 - 0.234 215 85 - 0.358 364 
5 iO.113 834 24 -ID.022455 
6 0.043 342754 - 0.344 260 
7 - ID,013 625 494 -ID,284013 
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2M + 1 ~ 57 

qaml' ~ 0.563006 

2M + 1 ~ 61 

'Iaml' ~ 0.562498 

2M + 1 ~ 65 

'Iaml' ~ 0.561819 

~ -4 -2 024 

I I I1IIII11 

I I I1IIII111 

0.4 

0.3 £0 -= A!3 

0.2 ' ~ 2n 
8 -= 45° 

0.1 
£ ::: 72 + ; 52 

r 
o ' 

FIG. 3. Scattered vectors am versus mode order m for three different 
choices of total number of basis functions (in contrast to Fig. 2, no sidelobe 
occurs). 

<r= 72+i52 

f = 1.6 GHz 

FIG. 4. Scattered vectors an versus scattering angle tPm and height of sinus
oid. 
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NUMERICAL EXAMPLE OF SCA TIERING BY 
SEA STATE 2 (WIND VELOCITY 4-6 KNOTS) 

vv~ 
1.6 GHz ("-O.1875m) ~4m~ 
(r = 72+;52 
44 MODES 

FIG. 5. Scattering pattern for sea state 2 modeled as a sinusoid. (The dis
tance from the origin to the tip of each vector represents the magnitude of 
the scattered wave in that direction. The dashed curve between each vector 
represents a conceptuallobing phenomenon.) 

45°, and the complex dielectric constant of the surface is 
72 + i52. The width ofthe sidelobes in this figure is a straight 
line and is only symbolic. As may be seen from these figures, 
diffuse scattering takes place for lolA = 0.1673, and the 
maximum lobe does not lie in the specular direction. The 
magnitude and phase of the specular component for the 
smallest roughness (i.e., lolA = 0.0559) is 0.7ei5

.
4°, which is 

in good agreement with the Fresnel reflection coefficient for 
vertical polarization (TM), which yields 0.74ei5

°. 

Figure 5 shows a plot of the magnitude of the scattered 
vectors, am' for a sea state 2 (wind velocity approximately 4 
to 6 knots). The electrical height of the sinusoid for this ex
ample is 0.387A. 

Figure 6 plots the magnitude of the scattered vectors, 

2M + 1 ~ 61 

'Iaml' ~ 0.577758 
, ~ 112, 

0.4 

0.3 

0.2 

0.1 

lo " 0.363\, 

e = 45 0 

lOr :: 72 + i 52 

~ __ ~ __ ~~~ __ -LLL~~~LL~-LO ______ __ 

~ -4 -2 0 2 4 

2M+l~71 

'Iaml' ~ 0.569313 
A ::: 21 A 

2M + 1 ~ 71 

[Iaml' ~ 0.559110 

J\ ::: 10.7 A 

2M + 1 ~ 71 

'Iaml' ~ 0.514456 
, ~ 1.71 

····~-7 
EVANESCENT MODES 

I I 

-4-20~···· 
EVANESCENT MODES 

FIG. 6. Scattered vectors am versus mode order m and period of the sinus
oid. 
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2M + I 71 

drnl -l1486941 

/2' 

O.16!· 

__ 0 __ _ 

, 
• = 85.9" t 
fi 

I I 

0.2 0.4 0.6 0.8 

FIG. 7. Scattering pattern for near grazing incidence (The distance from the 
origin to the tip of each vector represents the magnitude of the scattered 
wave in that direction.) 

am' as the period of the sinusoid is varied. For the angle of 
incidence of 45°, the asymmetry in am for ± m increases as 
the period decreases, as expected. 

Figure 7 plots the magnitude of the scattered vectors as 
a function of the scattering angles ¢ m for a case of near graz
ing incidence. This example is outside the range of applica
bility of the physical optics method. 

Table II compares the results obtained from EBC with 
the perturbation method for a sinusoidal height of 0,056.-1. 

From Table II, four significant figure accuracy with 3.5 
parts error in the fourth significant figure is obtained for the 
magnitude of a _I' Two significant figure accuracy with 1.6 
parts error in the second significant figure is obtained for the 
magnitude of a I' Two significant figure accuracy with 4 
parts error in the second signficant figure is obtained for the 
magnitude of ao. 

Table III compares the results obtained from EBC with 
the perturbation method for a sinusoidal height of 0.167"l. 

From Table III, one significant figure accuracy with 9.2 
parts error in the second significant figure is obtained for the 
magnitude of a _ I' One significant figure is obtained for the 
magnitude of a I' About 30% error occurs in the magnitude 
of ao. 

When the surface height increases to 0.335.-1, the pertur
bation method gives 0.75 for the magnitude of a_I' while the 
EBC predicts essentially a null, i.e., 0.043. The total height of 
the surface is 0.67.-1, well beyond the expected range of valid
ity for the perturbation method. 

From these comparisons, the perturbation analysis ap
pears reasonably accurate for surface heights less than O.lA 
(peak to trough heights of 0.4.-1 ). The authors are unaware of 
any numerical checks on the validity of the perturbation 
analysis in the literature. It is hoped that these results will 
provide useful criteria for the use of the perturbation meth
od. 

TABLE II. Comparison ofEBCand perturbation for 10 = 0.OS611, () = 1T/4, 
A = 21.311, E, = 72 + iS2. 

EBC 
Perturbation 

ao 

0.18822ei84780· 0.70e,54· 
0.18787ei84 059' 0.74e"·o· 

a, 

0.18903e,84 069' 

0.1733Ie,84J45· 
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TABLE III. Comparison ofEBC and perturbation for 10 = 0.16711, () = 1T/ 
4, A = 21.311, E, = 72 + iS2. 

EBC 
Perturbation 

0.426Sei84.782" 0.388e"'· 
0.SI892e,84n54

" O.SOSe,54· 

v. CONCLUSIONS 

a, 

0.4073Iei84J48· 
0.S221 e,84.00.· 

New numerical results have been presented for which 
the EBC method was used for scattering from very lossy 
sinusoidal surfaces. For a sinusoidal surface with 
10 = 0.427A, the EBC method required 99 complex modes to 
reach a convergent result for the scattered energy, and to 
eliminate the (sin m)/m sidelobe arising from truncating the 
infinite matrix. The computer CPU time was 3 min 10 s on 
the IBM 370. This example appears to be near the limit of 
computational efficiency in terms of time and storage (99 
complex modes require 198 storage locations). 

The EBC method does fill a void for applicable methods 
when the surface period becomes as large as 100.-1 and the 
angle of incidence approaches grazing. There does not ap
pear to be any results in the literature for scattering from 
very lossy sinusoidal surfaces for which the point matching 
technique was used. It would be interesting to compare the 
computational efficiency of the point-matching technique 
with the EBC method for scattering from lossy sinusoidal 
surfaces. One advantage ofEBC versus point matching is its 
applicability to periodic surfaces having singularities similar 
to a rectangular tooth or a thin comb. 

New analytical expressions have also been presented for 
the coefficients of the scattered vector obtained by the per
turbation method. Results obtained by the perturbation 
method have been compared with those obtained by EBe for 
surfaces where the height is less than O.lA. These numerical 
checks should be useful in understanding the range of appli
cability when applying the perturbation method to scatter
ing problems. 
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Erratum: Irreducible representations of SU(m/n) 
[J. Math. Phys. 24, 157 (1983)] 

J.-P. Hurni and B. Morel 
Universite de Geneve, Departement de Physique Theorique, 1211 Geneve 4, Switzerland 

(Received 30 March 1983; accepted for publication 8 April 1983) 

PACS numbers: 02.20.Qs, 1l.30.Pb, 99.10. + g 

In the tableau of the bottom of page 161 showing the 
representations ofSU(l/8), instead of a2 one should read a l 

and for the value a I = 8 the correct content is 

i.e., J. Ellis, M. K. Gaillard, and B. Zumino, Phys. Lett. B 94, 
345 (1980). 

8 + 63 + 216 + 420 + 504 + 378 + 168 + 36. 

In the line above, the three last members of the "typical" 
representation are (36 + 28) + 8 instead of (26 + 28) + 8. 

As a consequence, in the special case a I = 8, one recov
ers a representation satisfying the trace condition of Ref. 8, 

We thank J. Thierry-Mieg for pointing out to us this 
mistake. 

On page 160, right-hand column, ninth line from the 
top, read: 

a2 = 2 2 + 3 ofSU(2). 

Erratum: New sum rule for products of Bessel functions with application to 
plasma physics [J. Math. Phys. 23, 1278 (1982)] 

Barry S. Newberger 
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

(Received 19 May 1983; accepted for publication 26 May 1983) 

PACS numbers: 02.30.Gp, 99.10. + g 

T(z, a) = -

yielding the result 

T(z, a) = - (1T/sin 1Ta)J -aJa-m' m,O. 

The extension of the results beyond their original do
main of restriction by analytic continuation in'the param
eters a and /3 in Sec. III is false. The original series can be 
shown to diverge outside of this domain. The statement with 
regard to S2 that the condition Re(a + /3 »p is sufficient but 
not necessary remains true, as the case a = /3 = 0, r = 1 
shows; otherwise, the restrictions imposed in the proofs 
must be observed. 

As a consequence, the results for Turkins functions, Eq. 
(4.6), must be restricted to m>O. For m,O, the restrictions 
are satisfied for the representation of Turkin's function 

Correspondence with M. Bakker and N. M. Temme in this 
regard is greatly appreciated. Attention is called to their re
port which discusses this issue as well as provides interesting 
new results [Mathematisch Centrum Report TNI03/83, re
vised (to appear)). 

Erratum: Symmetry of the complete second-order nonlinear conductivity 
tensor for an unmagnetized relativistic turbulent plasma 
[J. Math. Phys. 24, 1332 (1983)] 

Howard E. Brandt 
u. S. Army Electronics Research and Development Command, Harry Diamond Laboratories, Adelphi, 
Maryland 20783 

(Received 16 May 1983; accepted for publication 26 May 1983) 

PACS numbers: 52.60. + h, 52.35.Ra, 52.25.Fi, 52.35.Mw, 99.10. + g 

In Eq. (42) there is a typographical error in the last sign 
which should be plus instead of minus. Also in Eq. (35) u 
should be fl. 
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